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One of the following situations occurs:
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Example :

Solution.

Because the one-sided limits have opposite signs, all we can say about 

the two-sided limit is that it does not exist.

Example :

Solution.

(a) (b)

(c)

(a)

(b)

(c)
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Theorem:  Let

LIMITS INVOLVING RADICALS

Example

Solution.

Therefore,
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LIMITS OF PIECEWISE-DEFINED FUNCTIONS

Example

Solution. (a)

Find

Let

Solution. (b)

Solution. (c)
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LIMITS AT INFINITY: END BEHAVIOR OF A FUNCTION

Example :

The end behavior of a function f when

LIMITS AT INFINITY AND HORIZONTAL ASYMPTOTES

The behavior of a function f(x) as x increases without bound or decreases without 

bound is sometimes called the end behavior of the function.
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LIMITS OF PIECEWISE-DEFINED FUNCTIONS

Example

LIMIT LAWS FOR LIMITS AT INFINITY

Example

n is a positive integer
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INFINITE LIMITS AT INFINITY

If the values of f(x) increase without bound as

Examples

n is a positive integer
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Examples
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Examples

The end behavior of a polynomial matches the end behavior of its highest degree 

term.

Example

Solution.
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Examples

The end behavior of a rational function matches the end behavior of the quotient of

the highest degree term in the numerator divided by the highest degree term in the

denominator.

Example

Solution.
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Example

Solution.



Dr. Muhammad Yousaf , CIIT Islamabad
26



Dr. Muhammad Yousaf , CIIT Islamabad
27

CONTINUITY

Definition: A function f is said to be continuous at x = c provided the

following conditions are satisfied:

Infinite discontinuity at c.

removable discontinuity at c.



Dr. Muhammad Yousaf , CIIT Islamabad
28

Example

Solution.

Determine whether the following functions are continuous at x = 2.

The function f is undefined at x = 2, and hence is not continuous at x = 2

The function g is defined at x = 2, but its value there is g(2) = 3, which is not the 

same as the limit as x approaches 2; hence, g is also not continuous at x = 2

The value of the function h at x = 2 is h(2) = 4, which is the same as the limit as 

x approaches 2; hence, h is continuous at x = 2

h(2) = 4,  which is same as the 

limit as x approaches 2; 

hence, h is continuous at x = 2 .

We can write h(x) = x + 2.
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Definition: A function f is said to be continuous on a closed interval [a, b]

if the following conditions are satisfied:

1.  f is continuous on (a, b).

2.  f is continuous from the right at a.

3.  f is continuous from the left at b.

f is Continuous at the right endpoint of [a, b] because

It is not continuous at the left endpoint because

f is continuous from the left at c if

f is continuous from the right at c if

Example: What can you say about the continuity of the function

Solution.
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SOME PROPERTIES OF CONTINUOUS FUNCTIONS

Theorem: If the functions f and g are continuous at c, then

(a) f + g is continuous at c.

(b) f − g is continuous at c.

(c) f g is continuous at c.

(d ) f /g is continuous at c if g(c)      0 and has a discontinuity at c if  

g(c) = 0.

CONTINUITY OF POLYNOMIALS AND RATIONAL FUNCTIONS

If p(x) is a polynomial and a is any real number, then

Theorem:

(a) A polynomial is continuous everywhere.

(b) A rational function is continuous at every point where the denominator is

nonzero, and has discontinuities at the points where the denominator is zero.
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Example:

Solution.

For what values of x is there a discontinuity in the graph of

The function being graphed is a rational function, and hence is 
continuous at every number where the denominator is nonzero. 
Solving the equation

yields discontinuities at x = 2 and at x = 3

Example:

Solution.

The polynomial x on  (0,+    ) and is the same as the

polynomial −x on (−    , 0). But polynomials are continuous everywhere, so

x = 0 is the only possible discontinuity for
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CONTINUITY OF COMPOSITIONS
Theorem:

Theorem:

(a) If the function g is continuous at c, and the function f is continuous at g(c),

then the composition f ◦g is continuous at c.

(b)  If the function g is continuous everywhere and the function f is continuous 

everywhere,  then the composition f ◦g is continuous everywhere.

Example:

The absolute value of a continuous function is continuous.

Example:
is continuous everywhere, so

is also continuous everywhere.
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CONTINUITY OF TRIGONOMETRIC, EXPONENTIAL,

AND INVERSE FUNCTIONS:

Theorem: If c is any number in the natural domain of the stated trigonometric

function, then

Example: Find the limit

Solution.
Since the cosine function is continuous everywhere, it follows from Theorem
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CONTINUITY OF INVERSE FUNCTIONS

Theorem: If f is a one-to-one function that is continuous at each point of its

domain, then      is continuous at each point of its domain; that is,   

is continuous at each point in the range of f .

Example: Use Theorem to prove that            is continuous on the interval

[−1, 1].

Solution. is the inverse of the restricted sine function whose domain

is the interval [−π/2, π/2] and whose range is the interval [−1, 1]. Since 

sin x is continuous on the interval [−π/2, π/2], Theorem  implies

is continuous on the interval [−1, 1].
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Theorem:

Example: Where is the function                            continuous.

Solution.

Since            is continuous everywhere and ln x is continuous if x > 0, the 

numerator is continuous if x > 0. The denominator  is continuous everywhere, so 

the fraction will be continuous at  x > 0 and the denominator is nonzero. Thus, f 

is continuous on (0, 2) and (2,     ).

The fraction will be continuous at all points where the numerator and 

denominator are both continuous and the denominator is nonzero.
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Theorem:(The Squeezing Theorem)

Let f , g, and h be functions satisfying

g(x) ≤ f(x) ≤ h(x)

for all x in some open interval containing the number c, with the possible 

exception that the inequalities need not hold at c. If g and h have the same limit 

as x approaches c,say

then f also has this limit as x approaches c, that is,

Example:

Solution.
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Example:

Solution.

The inequalities and Theorem imply that


