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Before Calculus

Exercise Set 0.1

1. (a) −2.9, −2.0, 2.35, 2.9 (b) None (c) y = 0 (d) −1.75 ≤ x ≤ 2.15, x = −3, x = 3

(e) ymax = 2.8 at x = −2.6; ymin = −2.2 at x = 1.2

2. (a) x = −1, 4 (b) None (c) y = −1 (d) x = 0, 3, 5

(e) ymax = 9 at x = 6; ymin = −2 at x = 0

3. (a) Yes (b) Yes (c) No (vertical line test fails) (d) No (vertical line test fails)

4. (a) The natural domain of f is x 6= −1, and for g it is the set of all x. f(x) = g(x) on the intersection of their
domains.

(b) The domain of f is the set of all x ≥ 0; the domain of g is the same, and f(x) = g(x).

5. (a) 1999, $47,700 (b) 1993, $41,600

(c) The slope between 2000 and 2001 is steeper than the slope between 2001 and 2002, so the median income was
declining more rapidly during the first year of the 2-year period.

6. (a) In thousands, approximately
47.7− 41.6

6
=

6.1

6
per yr, or $1017/yr.

(b) From 1993 to 1996 the median income increased from $41.6K to $44K (K for ‘kilodollars’; all figures approx-
imate); the average rate of increase during this time was (44 − 41.6)/3 K/yr = 2.4/3 K/yr = $800/year. From
1996 to 1999 the average rate of increase was (47.7 − 44)/3 K/yr = 3.7/3 K/yr ≈ $1233/year. The increase was
larger during the last 3 years of the period.

(c) 1994 and 2005.

7. (a) f(0) = 3(0)2 − 2 = −2; f(2) = 3(2)2 − 2 = 10; f(−2) = 3(−2)2 − 2 = 10; f(3) = 3(3)2 − 2 = 25; f(
√

2) =
3(
√

2)2 − 2 = 4; f(3t) = 3(3t)2 − 2 = 27t2 − 2.

(b) f(0) = 2(0) = 0; f(2) = 2(2) = 4; f(−2) = 2(−2) = −4; f(3) = 2(3) = 6; f(
√

2) = 2
√

2; f(3t) = 1/(3t) for
t > 1 and f(3t) = 6t for t ≤ 1.

8. (a) g(3) =
3 + 1

3− 1
= 2; g(−1) =

−1 + 1

−1− 1
= 0; g(π) =

π + 1

π − 1
; g(−1.1) =

−1.1 + 1

−1.1− 1
=
−0.1

−2.1
=

1

21
; g(t2 − 1) =

t2 − 1 + 1

t2 − 1− 1
=

t2

t2 − 2
.

(b) g(3) =
√

3 + 1 = 2; g(−1) = 3; g(π) =
√
π + 1; g(−1.1) = 3; g(t2 − 1) = 3 if t2 < 2 and g(t2 − 1) =√

t2 − 1 + 1 = |t| if t2 ≥ 2.
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9. (a) Natural domain: x 6= 3. Range: y 6= 0. (b) Natural domain: x 6= 0. Range: {1,−1}.

(c) Natural domain: x ≤ −
√

3 or x ≥
√

3. Range: y ≥ 0.

(d) x2 − 2x+ 5 = (x− 1)2 + 4 ≥ 4. So G(x) is defined for all x, and is ≥
√

4 = 2. Natural domain: all x. Range:
y ≥ 2.

(e) Natural domain: sinx 6= 1, so x 6= (2n+ 1
2 )π, n = 0,±1,±2, . . .. For such x, −1 ≤ sinx < 1, so 0 < 1−sinx ≤ 2,

and 1
1−sin x ≥ 1

2 . Range: y ≥ 1
2 .

(f) Division by 0 occurs for x = 2. For all other x, x2−4
x−2 = x + 2, which is nonnegative for x ≥ −2. Natural

domain: [−2, 2) ∪ (2,+∞). The range of
√
x+ 2 is [0,+∞). But we must exclude x = 2, for which

√
x+ 2 = 2.

Range: [0, 2) ∪ (2,+∞).

10. (a) Natural domain: x ≤ 3. Range: y ≥ 0. (b) Natural domain: −2 ≤ x ≤ 2. Range: 0 ≤ y ≤ 2.

(c) Natural domain: x ≥ 0. Range: y ≥ 3. (d) Natural domain: all x. Range: all y.

(e) Natural domain: all x. Range: −3 ≤ y ≤ 3.

(f) For
√
x to exist, we must have x ≥ 0. For H(x) to exist, we must also have sin

√
x 6= 0, which is equivalent to√

x 6= πn for n = 0, 1, 2, . . .. Natural domain: x > 0, x 6= (πn)2 for n = 1, 2, . . .. For such x, 0 < | sin√x| ≤ 1, so
0 < (sin

√
x)2 ≤ 1 and H(x) ≥ 1. Range: y ≥ 1.

11. (a) The curve is broken whenever someone is born or someone dies.

(b) C decreases for eight hours, increases rapidly (but continuously), and then repeats.

12. (a) Yes. The temperature may change quickly under some conditions, but not instantaneously.

(b) No; the number is always an integer, so the changes are in movements (jumps) of at least one unit.

13.
t

h

14.
t

T

15. Yes. y =
√

25− x2.

16. Yes. y = −
√

25− x2.

17. Yes. y =

{ √
25− x2, −5 ≤ x ≤ 0

−
√

25− x2, 0 < x ≤ 5
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18. No; the vertical line x = 0 meets the graph twice.

19. False. E.g. the graph of x2 − 1 crosses the x-axis at x = 1 and x = −1.

20. True. This is Definition 0.1.5.

21. False. The range also includes 0.

22. False. The domain of g only includes those x for which f(x) > 0.

23. (a) x = 2, 4 (b) None (c) x ≤ 2; 4 ≤ x (d) ymin = −1; no maximum value.

24. (a) x = 9 (b) None (c) x ≥ 25 (d) ymin = 1; no maximum value.

25. The cosine of θ is (L− h)/L (side adjacent over hypotenuse), so h = L(1− cos θ).

26. The sine of θ/2 is (L/2)/10 (side opposite over hypotenuse), so L = 20 sin(θ/2).

27. (a) If x < 0, then |x| = −x so f(x) = −x+ 3x+ 1 = 2x+ 1. If x ≥ 0, then |x| = x so f(x) = x+ 3x+ 1 = 4x+ 1;

f(x) =

{
2x+ 1, x < 0
4x+ 1, x ≥ 0

(b) If x < 0, then |x| = −x and |x− 1| = 1− x so g(x) = −x+ (1− x) = 1− 2x. If 0 ≤ x < 1, then |x| = x and
|x− 1| = 1−x so g(x) = x+ (1−x) = 1. If x ≥ 1, then |x| = x and |x− 1| = x− 1 so g(x) = x+ (x− 1) = 2x− 1;

g(x) =





1− 2x, x < 0
1, 0 ≤ x < 1

2x− 1, x ≥ 1

28. (a) If x < 5/2, then |2x − 5| = 5 − 2x so f(x) = 3 + (5 − 2x) = 8 − 2x. If x ≥ 5/2, then |2x − 5| = 2x − 5 so
f(x) = 3 + (2x− 5) = 2x− 2;

f(x) =

{
8− 2x, x < 5/2
2x− 2, x ≥ 5/2

(b) If x < −1, then |x− 2| = 2− x and |x+ 1| = −x− 1 so g(x) = 3(2− x)− (−x− 1) = 7− 2x. If −1 ≤ x < 2,
then |x− 2| = 2− x and |x+ 1| = x+ 1 so g(x) = 3(2− x)− (x+ 1) = 5− 4x. If x ≥ 2, then |x− 2| = x− 2 and
|x+ 1| = x+ 1 so g(x) = 3(x− 2)− (x+ 1) = 2x− 7;

g(x) =





7− 2x, x < −1
5− 4x, −1 ≤ x < 2
2x− 7, x ≥ 2

29. (a) V = (8− 2x)(15− 2x)x (b) 0 < x < 4

(c)

100

0
0 4

0 < V ≤ 91, approximately

(d) As x increases, V increases and then decreases; the maximum value occurs when x is about 1.7.

30. (a) V = (6− 2x)2x (b) 0 < x < 3
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(c)

20

0
0 3

0 < V ≤ 16, approximately

(d) As x increases, V increases and then decreases; the maximum value occurs when x is about 1.

31. (a) The side adjacent to the building has length x, so L = x+ 2y. (b) A = xy = 1000, so L = x+ 2000/x.

(c) 0 < x ≤ 100 (d)

120

80
20 80

x ≈ 44.72 ft, y ≈ 22.36 ft

32. (a) x = 3000 tan θ (b) 0 ≤ θ < π/2 (c) 3000 ft

6000

0
0 6

33. (a) V = 500 = πr2h, so h =
500

πr2
. Then C = (0.02)(2)πr2 + (0.01)2πrh = 0.04πr2 + 0.02πr

500

πr2
= 0.04πr2 +

10

r
;

Cmin ≈ 4.39 cents at r ≈ 3.4 cm, h ≈ 13.7 cm.

(b) C = (0.02)(2)(2r)2 + (0.01)2πrh = 0.16r2 +
10

r
. Since 0.04π < 0.16, the top and bottom now get more weight.

Since they cost more, we diminish their sizes in the solution, and the cans become taller.

(c) r ≈ 3.1 cm, h ≈ 16.0 cm, C ≈ 4.76 cents.

34. (a) The length of a track with straightaways of length L and semicircles of radius r is P = (2)L+ (2)(πr) ft. Let
L = 360 and r = 80 to get P = 720 + 160π ≈ 1222.65 ft. Since this is less than 1320 ft (a quarter-mile), a solution
is possible.

(b)

450

0
0 100

P = 2L + 2πr = 1320 and 2r = 2x + 160, so L = (1320 − 2πr)/2 =
(1320− 2π(80 + x))/2 = 660− 80π − πx.

(c) The shortest straightaway is L = 360, so we solve the equation 360 = 660− 80π−πx to obtain x = 300
π − 80 ≈

15.49 ft.
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(d) The longest straightaway occurs when x = 0, so L = 660− 80π ≈ 408.67 ft.

35. (i) x = 1,−2 causes division by zero. (ii) g(x) = x+ 1, all x.

36. (i) x = 0 causes division by zero. (ii) g(x) = |x|+ 1, all x.

37. (a) 25◦F (b) 13◦F (c) 5◦F

38. If v = 48 then −60 = WCT ≈ 1.4157T − 30.6763; thus T ≈ −21◦F when WCT = −60.

39. If v = 48 then −60 = WCT ≈ 1.4157T − 30.6763; thus T ≈ 15◦F when WCT = −10.

40. The WCT is given by two formulae, but the first doesn’t work with the data. Hence 5 = WCT = −27.2v0.16+48.17
and v ≈ 18mi/h.

Exercise Set 0.2

1. (a) –1

0

1
y

–1 1 2
x

(b)

2

1

y

1 2 3

x

(c)

1
y

–1 1 2
x

(d)

2

y

–4 –2 2
x

2. (a)

x
y

1–2

(b)
x

1

y

1

(c)

x
1 3

y
1

(d)

x

1

y

1

–1

3. (a)
–1

1
y

x

–2 –1 1 2

(b)
–1

1
y

1
x
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(c)
–1

1 y

–1 1 2 3
x

(d) –1

1
y

–1 1 2 3
x

4.

-3 -2 -1 1 2 3

-1

1

x

y

5. Translate left 1 unit, stretch vertically by a factor of 2, reflect over x-axis, translate down 3 units.

–60

–20
–6 –2 2 6

xy

6. Translate right 3 units, compress vertically by a factor of 1
2 , and translate up 2 units.

y

x

2

4

7. y = (x+ 3)2 − 9; translate left 3 units and down 9 units.
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8. y = 1
2 [(x− 1)2 + 2]; translate right 1 unit and up 2 units, compress vertically by a factor of 1

2

y

x

1

2

1

9. Translate left 1 unit, reflect over x-axis, translate up 3 units.

-1 0 1 2 3 4

1

2

3

10. Translate right 4 units and up 1 unit.

01 2 3 4 5 6 7 8 9 10

1

2

3

4

11. Compress vertically by a factor of 1
2 , translate up 1 unit.

2
y

1 2 3

x

12. Stretch vertically by a factor of
√

3 and reflect over x-axis.

y x

–1

2

13. Translate right 3 units.
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–10

10
y

4 6
x

14. Translate right 1 unit and reflect over x-axis.
y

x

–4

2

–2 4

15. Translate left 1 unit, reflect over x-axis, translate up 2 units.

–6

–2

6

y

–3 1 2

x

16. y = 1− 1/x; reflect over x-axis, translate up 1 unit.
y

x

–5

5

2

17. Translate left 2 units and down 2 units.

–2

–4 –2
x

y

18. Translate right 3 units, reflect over x-axis, translate up 1 unit.
y

x

–1

1

5

19. Stretch vertically by a factor of 2, translate right 1/2 unit and up 1 unit.
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y

x

2

4

2

20. y = |x− 2|; translate right 2 units.
y

x

1

2

2 4

21. Stretch vertically by a factor of 2, reflect over x-axis, translate up 1 unit.

–1

1

3

–2 2
x

y

22. Translate right 2 units and down 3 units.

y x

–2

2

23. Translate left 1 unit and up 2 units.

1

3
y

–3 –1 1
x

24. Translate right 2 units, reflect over x-axis.
y

x

–1

1

4
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25. (a)

2
y

–1 1

x

(b) y =

{
0 if x ≤ 0

2x if 0 < x

26.

y

x

–5

2

27. (f + g)(x) = 3
√
x− 1, x ≥ 1; (f − g)(x) =

√
x− 1, x ≥ 1; (fg)(x) = 2x− 2, x ≥ 1; (f/g)(x) = 2, x > 1

28. (f + g)(x) = (2x2 + 1)/[x(x2 + 1)], all x 6= 0; (f − g)(x) = −1/[x(x2 + 1)], all x 6= 0; (fg)(x) = 1/(x2 + 1), all
x 6= 0; (f/g)(x) = x2/(x2 + 1), all x 6= 0

29. (a) 3 (b) 9 (c) 2 (d) 2 (e)
√

2 + h (f) (3 + h)3 + 1

30. (a)
√

5s+ 2 (b)
√√

x+ 2 (c) 3
√

5x (d) 1/
√
x (e) 4

√
x (f) 0, x ≥ 0

(g) 1/ 4
√
x (h) |x− 1| (i)

√
x+ h

31. (f ◦ g)(x) = 1− x, x ≤ 1; (g ◦ f)(x) =
√

1− x2, |x| ≤ 1.

32. (f ◦ g)(x) =
√√

x2 + 3− 3, |x| ≥
√

6; (g ◦ f)(x) =
√
x, x ≥ 3.

33. (f ◦ g)(x) =
1

1− 2x
, x 6= 1

2
, 1; (g ◦ f)(x) = − 1

2x
− 1

2
, x 6= 0, 1.

34. (f ◦ g)(x) =
x

x2 + 1
, x 6= 0; (g ◦ f)(x) =

1

x
+ x, x 6= 0.

35. (f ◦ g ◦ h)(x) = x−6 + 1.

36. (f ◦ g ◦ h)(x) =
x

1 + x
.

37. (a) g(x) =
√
x, h(x) = x+ 2 (b) g(x) = |x|, h(x) = x2 − 3x+ 5

38. (a) g(x) = x+ 1, h(x) = x2 (b) g(x) = 1/x, h(x) = x− 3

39. (a) g(x) = x2, h(x) = sinx (b) g(x) = 3/x, h(x) = 5 + cosx

40. (a) g(x) = 3 sinx, h(x) = x2 (b) g(x) = 3x2 + 4x, h(x) = sinx

41. (a) g(x) = (1 + x)3, h(x) = sin(x2) (b) g(x) =
√

1− x, h(x) = 3
√
x

42. (a) g(x) =
1

1− x , h(x) = x2 (b) g(x) = |5 + x|, h(x) = 2x
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43. True, by Definition 0.2.1.

44. False. The domain consists of all x in the domain of g such that g(x) is in the domain of f .

45. True, by Theorem 0.2.3(a).

46. False. The graph of y = f(x+ 2) + 3 is obtained by translating the graph of y = f(x) left 2 units and up 3 units.

47.

y

x

–4

–2

2

–2 2

48. {−2,−1, 0, 1, 2, 3}

49. Note that f(g(−x)) = f(−g(x)) = f(g(x)), so f(g(x)) is even.

f (g(x))

x

y

1–3 –1
–1

–3

1

50. Note that g(f(−x)) = g(f(x)), so g(f(x)) is even.

x

y

–1

–2

1

3
–1

1

3

–3

g( f (x))

51. f(g(x)) = 0 when g(x) = ±2, so x ≈ ±1.5; g(f(x)) = 0 when f(x) = 0, so x = ±2.

52. f(g(x)) = 0 at x = −1 and g(f(x)) = 0 at x = −1.

53.
3(x+ h)2 − 5− (3x2 − 5)

h
=

6xh+ 3h2

h
= 6x+ 3h;

3w2 − 5− (3x2 − 5)

w − x =
3(w − x)(w + x)

w − x = 3w + 3x.

54.
(x+ h)2 + 6(x+ h)− (x2 + 6x)

h
=

2xh+ h2 + 6h

h
= 2x+ h+ 6;

w2 + 6w − (x2 + 6x)

w − x = w + x+ 6.

55.
1/(x+ h)− 1/x

h
=
x− (x+ h)

xh(x+ h)
=

−1

x(x+ h)
;

1/w − 1/x

w − x =
x− w

wx(w − x)
= − 1

xw
.

56.
1/(x+ h)2 − 1/x2

h
=
x2 − (x+ h)2

x2h(x+ h)2
= − 2x+ h

x2(x+ h)2
;

1/w2 − 1/x2

w − x =
x2 − w2

x2w2(w − x)
= −x+ w

x2w2
.

57. Neither; odd; even.
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58. (a) x −3 −2 −1 0 1 2 3

f(x) 1 −5 −1 0 −1 −5 1

(b) x −3 −2 −1 0 1 2 3

f(x) 1 5 −1 0 1 −5 −1

59. (a)

x

y

(b)

x

y

(c)

x

y

60. (a)
x

y

(b)

x

y

61. (a) Even. (b) Odd.

62. (a) Odd. (b) Neither.

63. (a) f(−x) = (−x)2 = x2 = f(x), even. (b) f(−x) = (−x)3 = −x3 = −f(x), odd.

(c) f(−x) = | − x| = |x| = f(x), even. (d) f(−x) = −x+ 1, neither.

(e) f(−x) =
(−x)5 − (−x)

1 + (−x)2
= −x

5 − x
1 + x2

= −f(x), odd. (f) f(−x) = 2 = f(x), even.

64. (a) g(−x) =
f(−x) + f(x)

2
=
f(x) + f(−x)

2
= g(x), so g is even.

(b) h(−x) =
f(−x)− f(x)

2
= −f(x)− f(−x)

2
= −h(x), so h is odd.

65. In Exercise 64 it was shown that g is an even function, and h is odd. Moreover by inspection f(x) = g(x) + h(x)
for all x, so f is the sum of an even function and an odd function.

66. (a) x-axis, because x = 5(−y)2 + 9 gives x = 5y2 + 9.

(b) x-axis, y-axis, and origin, because x2 − 2(−y)2 = 3, (−x)2 − 2y2 = 3, and (−x)2 − 2(−y)2 = 3 all give
x2 − 2y2 = 3.

(c) Origin, because (−x)(−y) = 5 gives xy = 5.

67. (a) y-axis, because (−x)4 = 2y3 + y gives x4 = 2y3 + y.

(b) Origin, because (−y) =
(−x)

3 + (−x)2
gives y =

x

3 + x2
.

(c) x-axis, y-axis, and origin because (−y)2 = |x| − 5, y2 = | − x| − 5, and (−y)2 = | − x| − 5 all give y2 = |x| − 5.
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68.

3

–3

–4 4

69.

2

–2

–3 3

70. (a) Whether we replace x with −x, y with −y, or both, we obtain the same equation, so by Theorem 0.2.3 the
graph is symmetric about the x-axis, the y-axis and the origin.

(b) y = (1− x2/3)3/2.

(c) For quadrant II, the same; for III and IV use y = −(1− x2/3)3/2.

71.

2

5
y

1 2

x

72.

y

x

2

2

73. (a)

1
y

C
x

O c o (b)

2
y

O
x

C c o

74. (a)

x

1

y

1

–1

(b)

x

1

y

1

–1 ‚2–‚2 ‚3
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(c)

x

1

y

–1

3

(d)

x

y
1

c/2C

75. Yes, e.g. f(x) = xk and g(x) = xn where k and n are integers.

Exercise Set 0.3

1. (a) y = 3x+ b (b) y = 3x+ 6

(c) –10

10

y

–2 2

x

y = 3x + 6

y = 3x + 2

y = 3x – 4

2. Since the slopes are negative reciprocals, y = − 1
3x+ b.

3. (a) y = mx+ 2 (b) m = tanφ = tan 135◦ = −1, so y = −x+ 2

(c)
-2 1 2

1

3

4

5

x

y

y =-x +2
y =1.5x +2

y =x +2

4. (a) y = mx (b) y = m(x− 1) (c) y = −2 +m(x− 1) (d) 2x+ 4y = C

5. Let the line be tangent to the circle at the point (x0, y0) where x2
0 + y2

0 = 9. The slope of the tangent line is the
negative reciprocal of y0/x0 (why?), so m = −x0/y0 and y = −(x0/y0)x + b. Substituting the point (x0, y0) as

well as y0 = ±
√

9− x2
0 we get y = ± 9− x0x√

9− x2
0

.

6. Solve the simultaneous equations to get the point (−2, 1/3) of intersection. Then y = 1
3 +m(x+ 2).

7. The x-intercept is x = 10 so that with depreciation at 10% per year the final value is always zero, and hence
y = m(x− 10). The y-intercept is the original value.

y

2 6 10

x
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8. A line through (6,−1) has the form y + 1 = m(x − 6). The intercepts are x = 6 + 1/m and y = −6m − 1. Set
−(6 + 1/m)(6m + 1) = 3, or 36m2 + 15m + 1 = (12m + 1)(3m + 1) = 0 with roots m = −1/12,−1/3; thus
y + 1 = −(1/3)(x− 6) and y + 1 = −(1/12)(x− 6).

9. (a) The slope is −1.

-2 2

-2

2

x

y

(b) The y-intercept is y = −1.

–4

2

4

–1 1
x

y

(c) They pass through the point (−4, 2).

y

x

–2

2

6

–6 –4

(d) The x-intercept is x = 1. –3

–1

1

3

1 2
x

y

10. (a) Horizontal lines.

x

y

(b) The y-intercept is y = −1/2.

x

y

– 2

2

2

(c) The x-intercept is x = −1/2.

x

y

1

1
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(d) They pass through (−1, 1).

x

y

–2

1

1

(–1, 1)

11. (a) VI (b) IV (c) III (d) V (e) I (f) II

12. In all cases k must be positive, or negative values would appear in the chart. Only kx−3 decreases, so that must
be f(x). Next, kx2 grows faster than kx3/2, so that would be g(x), which grows faster than h(x) (to see this,
consider ratios of successive values of the functions). Finally, experimentation (a spreadsheet is handy) for values
of k yields (approximately) f(x) = 10x−3, g(x) = x2/2, h(x) = 2x1.5.

13. (a) –30

–10

10

30

–2 1 2

x

y

–40

–10
–2 1 2

xy

(b)

–2

2

4

y

–4
2 4

x 6

10
y

–4 2 4

x

(c) –2

1

2

–1 2 3
x

y

1

y

1 2 3
x
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14. (a)

x

y

2

40

–40 x

y

2

40

–2

80

(b)

x

y

2

4

–2

–4

x
y

2

–2

–2

–4

(c)

x

y

–1
–2

4

–3

–2 2 4

–2

xy

15. (a)
–10

–5

5

10

y

–2 2
x

(b)

–2

4

6

y

–2 1 2
x

(c) –10

–5

5

10
y

–2 2
x

16. (a)

x

y

2

3

(b)

4

-2

2

x

y

(c)

x

y

2

2
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17. (a)

2

6

y

–3 –1 1

x

(b) –80

–20

20

80
y

1 2 3 4 5
x

(c)

–40

–10

y

–3

x

(d)

–40

–20

20

40

y

21 3 4 5
x

18. (a)

x

y
1

1

(b)

–2–6 2

–2

–1

1

2

x

y

(c)

x

y

2

4

–2
–4

(d)
-8 -7 -6 -5 -4 -3 -2 -1 0 1

4

8

12

19. y = x2 + 2x = (x+ 1)2 − 1.

20. (a) The part of the graph of y =
√
|x| with x ≥ 0 is the same as the graph of y =

√
x. The part with x ≤ 0 is

the reflection of the graph of y =
√
x across the y-axis.

-3 -2 -1 0 1 2 3

2

3

x

y

(b) The part of the graph of y = 3
√
|x| with x ≥ 0 is the same as the part of the graph of y = 3

√
x with x ≥ 0.

The part with x ≤ 0 is the reflection of the graph of y = 3
√
x with x ≥ 0 across the y-axis.

-3 -2 -1 0 1 2 3

2

3

x

y

21. (a) N·m (b) k = 20 N·m

(c) V (L) 0.25 0.5 1.0 1.5 2.0

P (N/m
2
) 80× 103 40× 103 20× 103 13.3× 103 10× 103
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(d)

10

20

30
P(N/m2)

10 20
V(m3)

22. If the side of the square base is x and the height of the container is y then V = x2y = 100; minimize A =
2x2 + 4xy = 2x2 + 400/x. A graphing utility with a zoom feature suggests that the solution is a cube of side 100

1
3

cm.

23. (a) F = k/x2 so 0.0005 = k/(0.3)2 and k = 0.000045 N·m2. (b) F = 0.000005 N.

(c)

0 5 10

5⋅10-6

x

F

(d) When they approach one another, the force increases without bound; when they get far apart it tends to
zero.

24. (a) 2000 = C/(4000)2, so C = 3.2× 1010 lb·mi2. (b) W = C/50002 = (3.2× 1010)/(25× 106) = 1280 lb.

(c)

5000

15000

W

2000 8000

x

(d) No, but W is very small when x is large.

25. True. The graph of y = 2x + b is obtained by translating the graph of y = 2x up b units (or down −b units if
b < 0).

26. True. x2 + bx+ c =

(
x+

b

2

)2

+

(
c− b2

4

)
, so the graph of y = x2 + bx+ c is obtained by translating the graph

of y = x2 left
b

2
units (or right − b

2
units if b < 0) and up c− b2

4
units (or down −(c− b2

4
) units if c− b2

4
< 0).

27. False. The curve’s equation is y = 12/x, so the constant of proportionality is 12.

28. True. As discussed before Example 2, the amplitude is | − 5| = 5 and the period is
2π

|Aπ| =
2

|A| .

29. (a) II; y = 1, x = −1, 2 (b) I; y = 0, x = −2, 3 (c) IV; y = 2 (d) III; y = 0, x = −2

30. The denominator has roots x = ±1, so x2 − 1 is the denominator. To determine k use the point (0,−1) to get
k = 1, y = 1/(x2 − 1).



20 Chapter 0

31. (a) y = 3 sin(x/2) (b) y = 4 cos 2x (c) y = −5 sin 4x

32. (a) y = 1 + cosπx (b) y = 1 + 2 sinx (c) y = −5 cos 4x

33. (a) y = sin(x+ π/2) (b) y = 3 + 3 sin(2x/9) (c) y = 1 + 2 sin(2x− π/2)

34. V = 120
√

2 sin(120πt).

35. (a) 3, π/2

y

x

–2

1

3

6

(b) 2, 2 –2

2

2 4

x

y

(c) 1, 4π

y

x

1

2

3

2c 4c 6c

36. (a) 4, π

y

x

–4

–2

2

3 9  f l

(b) 1/2, 2π/3

y

x

–0.2

0.4

8 c

(c) 4, 6π

y

x

–4

–2

2

4

i 15c
2

21c
2

37. Let ω = 2π. Then A sin(ωt + θ) = A(cos θ sin 2πt + sin θ cos 2πt) = (A cos θ) sin 2πt + (A sin θ) cos 2πt, so for
the two equations for x to be equivalent, we need A cos θ = 5

√
3 and A sin θ = 5/2. These imply that A2 =

(A cos θ)2 + (A sin θ)2 = 325/4 and tan θ =
A sin θ

A cos θ
=

1

2
√

3
. So let A =

√
325

4
=

5
√

13

2
and θ = tan−1 1

2
√

3
.

Then (verify) cos θ =
2
√

3√
13

and sin θ =
1√
13

, so A cos θ = 5
√

3 and A sin θ = 5/2, as required. Hence x =

5
√

13

2
sin

(
2πt+ tan−1 1

2
√

3

)
.

-10

10

-0.5 0.5 t

x

38. Three; x = 0, x ≈ ±1.8955.

3

–3

–3 3

Exercise Set 0.4

1. (a) f(g(x)) = 4(x/4) = x, g(f(x)) = (4x)/4 = x, f and g are inverse functions.
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(b) f(g(x)) = 3(3x− 1) + 1 = 9x− 2 6= x so f and g are not inverse functions.

(c) f(g(x)) = 3
√

(x3 + 2)− 2 = x, g(f(x)) = (x− 2) + 2 = x, f and g are inverse functions.

(d) f(g(x)) = (x1/4)4 = x, g(f(x)) = (x4)1/4 = |x| 6= x, f and g are not inverse functions.

2. (a) They are inverse functions.

4

4

(b) The graphs are not reflections of each other about the line y = x.

1

1

(c) They are inverse functions.

4

4

(d) They are not inverse functions.

2

2

3. (a) yes (b) yes (c) no (d) yes (e) no (f) no

4. (a) The horizontal line test shows the function is not one-to-one.

6

–2

–3 3
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(b) Yes: f(x) = (x− 1)3 so if f(x) = f(y) then x = 3
√
f(x) + 1 = 3

√
f(y) + 1 = y.

10

–10

–1 3

5. (a) Yes; all outputs (the elements of row two) are distinct.

(b) No; f(1) = f(6).

6. (a) Since the point (0, 0) lies on the graph, no other point on the line x = 0 can lie on the graph, by the vertical
line test. Thus the hour hand cannot point straight up or straight down, so noon, midnight, 6AM and 6PM are
impossible. To show that other times are possible, suppose the tip of the hour hand stopped at (a, b) with a 6= 0.
Then the function y = bx/a passes through (0, 0) and (a, b).

(b) If f is invertible then, since (0, 0) lies on the graph, no other point on the line y = 0 can lie on the graph,
by the horizontal line test. So, in addition to the times mentioned in (a), 3AM, 3PM, 9AM, and 9PM are also
impossible.

(c) In the generic case, the minute hand cannot point to 6 or 12, so times of the form 1:00, 1:30, 2:00, 2:30, . . . ,
12:30 are impossible. In case f is invertible, the minute hand cannot point to 3 or 9, so all hours :15 and :45 are
also impossible.

7. (a) f has an inverse because the graph passes the horizontal line test. To compute f−1(2) start at 2 on the y-axis
and go to the curve and then down, so f−1(2) = 8; similarly, f−1(−1) = −1 and f−1(0) = 0.

(b) Domain of f−1 is [−2, 2], range is [−8, 8].

(c)

–2 1 2

–8

–4

4

8
y

x

8. (a) The horizontal line test shows this. (b) −3 ≤ x ≤ −1; −1 ≤ x ≤ 2; and 2 ≤ x ≤ 4.

9. y = f−1(x), x = f(y) = 7y − 6, y =
1

7
(x+ 6) = f−1(x).

10. y = f−1(x), x = f(y) =
y + 1

y − 1
, xy − x = y + 1, (x− 1)y = x+ 1, y =

x+ 1

x− 1
= f−1(x).

11. y = f−1(x), x = f(y) = 3y3 − 5, y = 3
√

(x+ 5)/3 = f−1(x).

12. y = f−1(x), x = f(y) = 5
√

4y + 2, y =
1

4
(x5 − 2) = f−1(x).

13. y = f−1(x), x = f(y) = 3/y2, y = −
√

3/x = f−1(x).

14. y = f−1(x), x = f(y) =
5

y2 + 1
, y =

√
5− x
x

= f−1(x).
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15. y = f−1(x), x = f(y) =

{
5/2− y, y < 2

1/y, y ≥ 2
, y = f−1(x) =

{
5/2− x, x > 1/2

1/x, 0 < x ≤ 1/2
.

16. y = f−1(x), x = f(y) =

{
2y, y ≤ 0

y2, y > 0
, y = f−1(x) =

{
x/2, x ≤ 0
√
x, x > 0

.

17. y = f−1(x), x = f(y) = (y + 2)4 for y ≥ 0, y = f−1(x) = x1/4 − 2 for x ≥ 16.

18. y = f−1(x), x = f(y) =
√
y + 3 for y ≥ −3, y = f−1(x) = x2 − 3 for x ≥ 0.

19. y = f−1(x), x = f(y) = −√3− 2y for y ≤ 3/2, y = f−1(x) = (3− x2)/2 for x ≤ 0.

20. y = f−1(x), x = f(y) = y − 5y2 for y ≥ 1, y = f−1(x) = (1 +
√

1− 20x )/10 for x ≤ −4.

21. y = f−1(x), x = f(y) = ay2+by+c, ay2+by+c−x = 0, use the quadratic formula to get y =
−b±

√
b2 − 4a(c− x)

2a
;

(a) f−1(x) =
−b+

√
b2 − 4a(c− x)

2a
(b) f−1(x) =

−b−
√
b2 − 4a(c− x)

2a

22. (a) C =
5

9
(F − 32).

(b) How many degrees Celsius given the Fahrenheit temperature.

(c) C = −273.15◦ C is equivalent to F = −459.67◦ F, so the domain is F ≥ −459.67, the range is C ≥ −273.15.

23. (a) y = f(x) =
104

6.214
x. (b) x = f−1(y) = (6.214× 10−4)y.

(c) How many miles in y meters.

24. (a) f(g(x)) = f(
√
x) = (

√
x)2 = x, x > 1; g(f(x)) = g(x2) =

√
x2 = x, x > 1.

(b)
x

y

y = f (x)

y = g(x)

(c) No, because it is not true that f(g(x)) = x for every x in the domain of g (the domain of g is x ≥ 0).

25. (a) f(f(x)) =
3− 3− x

1− x
1− 3− x

1− x
=

3− 3x− 3 + x

1− x− 3 + x
= x so f = f−1.

(b) It is symmetric about the line y = x.
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26.

x

y

27. If f−1(x) = 1, then x = f(1) = 2(1)3 + 5(1) + 3 = 10.

28. If f−1(x) = 2, then x = f(2) = (2)3/[(2)2 + 1] = 8/5.

29. f(f(x)) = x thus f = f−1 so the graph is symmetric about y = x.

30. (a) Suppose x1 6= x2 where x1 and x2 are in the domain of g and g(x1), g(x2) are in the domain of f then
g(x1) 6= g(x2) because g is one-to-one so f(g(x1)) 6= f(g(x2)) because f is one-to-one thus f ◦ g is one-to-one
because (f ◦ g)(x1) 6= (f ◦ g)(x2) if x1 6= x2.

(b) f , g, and f ◦ g all have inverses because they are all one-to-one. Let h = (f ◦ g)−1 then (f ◦ g)(h(x)) =
f [g(h(x))] = x, apply f−1 to both sides to get g(h(x)) = f−1(x), then apply g−1 to get h(x) = g−1(f−1(x)) =
(g−1 ◦ f−1)(x), so h = g−1 ◦ f−1.

31. False. f−1(2) = f−1(f(2)) = 2.

32. False. For example, the inverse of f(x) = 1 + 1/x is g(x) = 1/(x − 1). The domain of f consists of all x except
x = 0; the domain of g consists of all x except x = 1.

33. True. Both terms have the same definition; see the paragraph before Theorem 0.4.3.

34. False. π/2 and −π/2 are not in the range of tan−1.

35. tan θ = 4/3, 0 < θ < π/2; use the triangle shown to get sin θ = 4/5, cos θ = 3/5, cot θ = 3/4, sec θ = 5/3,
csc θ = 5/4.

!

3

45

36. sec θ = 2.6, 0 < θ < π/2; use the triangle shown to get sin θ = 2.4/2.6 = 12/13, cos θ = 1/2.6 = 5/13, tan θ = 2.4 =
12/5, cot θ = 5/12, csc θ = 13/12.

!

2.6

1

2.4

37. (a) 0 ≤ x ≤ π (b) −1 ≤ x ≤ 1 (c) −π/2 < x < π/2 (d) −∞ < x < +∞

38. Let θ = sin−1(−3/4); then sin θ = −3/4, −π/2 < θ < 0 and (see figure) sec θ = 4/
√

7.
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!

–3
4

!7

39. Let θ = cos−1(3/5); sin 2θ = 2 sin θ cos θ = 2(4/5)(3/5) = 24/25.

!

3

45

40. (a) sin(cos−1 x) =
√

1− x2

1

x

!1 – x2

cos–1 x

(b) tan(cos−1 x) =

√
1− x2

x

1

x

cos–1 x

!1 – x2

(c) csc(tan−1 x) =

√
1 + x2

x
1

x

tan–1 x

!1 + x2

(d) sin(tan−1 x) =
x√

1 + x2
1

x

tan–1 x

1 + x2

41. (a) cos(tan−1 x) =
1√

1 + x2
1

x

tan–1 x

1 + x2

(b) tan(cos−1 x) =

√
1− x2

x
x

1

cos–1 x

1 – x2

(c) sin(sec−1 x) =

√
x2 − 1

x
1

x

sec–1 x

x2 – 1

(d) cot(sec−1 x) =
1√

x2 − 1
1

x
x2 – 1

sec–1 x

42. (a) x −1.00 −0.80 −0.60 −0.40 −0.20 0.00 0.20 0.40 0.60 0.80 1.00

sin−1 x −1.57 −0.93 −0.64 −0.41 −0.20 0.00 0.20 0.41 0.64 0.93 1.57

cos−1 x 3.14 2.50 2.21 1.98 1.77 1.57 1.37 1.16 0.93 0.64 0.00
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(b)

y

x
1

1

(c)

y

x

–1

1

2

3

0.5 1

43. (a)

–0.5 0.5
x

y

c/2–

c/2

(b)

x

y

c/2–

c/2

44. 42 = 22 + 32 − 2(2)(3) cos θ, cos θ = −1/4, θ = cos−1(−1/4) ≈ 104◦.

45. (a) x = π − sin−1(0.37) ≈ 2.7626 rad (b) θ = 180◦ + sin−1(0.61) ≈ 217.6◦.

46. (a) x = π + cos−1(0.85) ≈ 3.6964 rad (b) θ = − cos−1(0.23) ≈ −76.7◦.

47. (a) sin−1(sin−1 0.25) ≈ sin−1 0.25268 ≈ 0.25545; sin−1 0.9 > 1, so it is not in the domain of sin−1 x.

(b) −1 ≤ sin−1 x ≤ 1 is necessary, or −0.841471 ≤ x ≤ 0.841471.

48. sin 2θ = gR/v2 = (9.8)(18)/(14)2 = 0.9, 2θ = sin−1(0.9) or 2θ = 180◦ − sin−1(0.9) so θ = 1
2 sin−1(0.9) ≈ 32◦ or

θ = 90◦ − 1
2 sin−1(0.9) ≈ 58◦. The ball will have a lower parabolic trajectory for θ = 32◦ and hence will result in

the shorter time of flight.

49. (a)

y

x
–10 10

c/2

c y

x

c/2

5

(b) The domain of cot−1 x is (−∞,+∞), the range is (0, π); the domain of csc−1 x is (−∞,−1] ∪ [1,+∞), the
range is [−π/2, 0) ∪ (0, π/2].

50. (a) y = cot−1 x; if x > 0 then 0 < y < π/2 and x = cot y, tan y = 1/x, y = tan−1(1/x); if x < 0 then π/2 < y < π

and x = cot y = cot(y − π), tan(y − π) = 1/x, y = π + tan−1 1

x
.

(b) y = sec−1 x, x = sec y, cos y = 1/x, y = cos−1(1/x).

(c) y = csc−1 x, x = csc y, sin y = 1/x, y = sin−1(1/x).

51. (a) 55.0◦ (b) 33.6◦ (c) 25.8◦

52. (b) θ = sin−1 R

R+ h
= sin−1 6378

16, 378
≈ 23◦.
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53. (a) If γ = 90◦, then sin γ = 1,
√

1− sin2 φ sin2 γ =
√

1− sin2 φ = cosφ, D = tanφ tanλ = (tan 23.45◦)(tan 65◦) ≈
0.93023374 so h ≈ 21.1 hours.

(b) If γ = 270◦, then sin γ = −1, D = − tanφ tanλ ≈ −0.93023374 so h ≈ 2.9 hours.

54. θ = α− β, cotα =
x

a+ b
and cotβ =

x

b
so θ = cot−1 x

a+ b
− cot−1

(x
b

)
.

a

!

"
#

b

x

55. y = 0 when x2 = 6000v2/g, x = 10v
√

60/g = 1000
√

30 for v = 400 and g = 32; tan θ = 3000/x = 3/
√

30,

θ = tan−1(3/
√

30) ≈ 29◦.

56. (a) Let θ = sin−1(−x) then sin θ = −x, −π/2 ≤ θ ≤ π/2. But sin(−θ) = − sin θ and −π/2 ≤ −θ ≤ π/2 so
sin(−θ) = −(−x) = x, −θ = sin−1 x, θ = − sin−1 x.

(b) Proof is similar to that in part (a).

57. (a) Let θ = cos−1(−x) then cos θ = −x, 0 ≤ θ ≤ π. But cos(π− θ) = − cos θ and 0 ≤ π− θ ≤ π so cos(π− θ) = x,
π − θ = cos−1 x, θ = π − cos−1 x.

(b) Let θ = sec−1(−x) for x ≥ 1; then sec θ = −x and π/2 < θ ≤ π. So 0 ≤ π − θ < π/2 and π − θ =
sec−1 sec(π − θ) = sec−1(− sec θ) = sec−1 x, or sec−1(−x) = π − sec−1 x.

58. (a) sin−1 x = tan−1 x√
1− x2

(see figure).

1 x

sin–1 x

!1 – x2

(b) sin−1 x+ cos−1 x = π/2; cos−1 x = π/2− sin−1 x = π/2− tan−1 x√
1− x2

.

59. tan(α+ β) =
tanα+ tanβ

1− tanα tanβ
,

tan(tan−1 x+ tan−1 y) =
tan(tan−1 x) + tan(tan−1 y)

1− tan(tan−1 x) tan(tan−1 y)
=

x+ y

1− xy

so tan−1 x+ tan−1 y= tan−1 x+ y

1− xy .

60. (a) tan−1 1

2
+ tan−1 1

3
= tan−1 1/2 + 1/3

1− (1/2) (1/3)
= tan−1 1 = π/4.

(b) 2 tan−1 1

3
= tan−1 1

3
+ tan−1 1

3
= tan−1 1/3 + 1/3

1− (1/3) (1/3)
= tan−1 3

4
,
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2 tan−1 1

3
+ tan−1 1

7
= tan−1 3

4
+ tan−1 1

7
= tan−1 3/4 + 1/7

1− (3/4) (1/7)
= tan−1 1 = π/4.

61. sin(sec−1 x) = sin(cos−1(1/x)) =

√
1−

(
1

x

)2

=

√
x2 − 1

|x| .

62. Suppose that g and h are both inverses of f . Then f(g(x)) = x, h[f(g(x))] = h(x); but h[f(g(x))] = g(x) because
h is an inverse of f so g(x) = h(x).

Exercise Set 0.5

1. (a) −4 (b) 4 (c) 1/4

2. (a) 1/16 (b) 8 (c) 1/3

3. (a) 2.9691 (b) 0.0341

4. (a) 1.8882 (b) 0.9381

5. (a) log2 16 = log2(24) = 4 (b) log2

(
1

32

)
= log2(2−5) = −5 (c) log4 4 = 1 (d) log9 3 = log9(91/2) = 1/2

6. (a) log10(0.001) = log10(10−3) = −3 (b) log10(104) = 4 (c) ln(e3) = 3 (d) ln(
√
e) = ln(e1/2) = 1/2

7. (a) 1.3655 (b) −0.3011

8. (a) −0.5229 (b) 1.1447

9. (a) 2 ln a+
1

2
ln b+

1

2
ln c = 2r + s/2 + t/2 (b) ln b− 3 ln a− ln c = s− 3r − t

10. (a)
1

3
ln c− ln a− ln b = t/3− r − s (b)

1

2
(ln a+ 3 ln b− 2 ln c) = r/2 + 3s/2− t

11. (a) 1 + log x+
1

2
log(x− 3) (b) 2 ln |x|+ 3 ln(sinx)− 1

2
ln(x2 + 1)

12. (a)
1

3
log |x+ 2| − log | cos 5x| when x < −2 and cos 5x < 0 or when x > −2 and cos 5x > 0.

(b)
1

2
ln(x2 + 1)− 1

2
ln(x3 + 5)

13. log
24(16)

3
= log(256/3)

14. log
√
x− log(sin3 2x) + log 100 = log

100
√
x

sin3 2x

15. ln
3
√
x(x+ 1)2

cosx

16. 1 + x = 103 = 1000, x = 999

17.
√
x = 10−1 = 0.1, x = 0.01
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18. x2 = e4, x = ±e2

19. 1/x = e−2, x = e2

20. x = 7

21. 2x = 8, x = 4

22. ln 4x− lnx6 = ln 2, ln
4

x5
= ln 2,

4

x5
= 2, x5 = 2, x = 5

√
2

23. ln 2x2 = ln 3, 2x2 = 3, x2 = 3/2, x =
√

3/2 (we discard −
√

3/2 because it does not satisfy the original equation).

24. ln 3x = ln 2, x ln 3 = ln 2, x =
ln 2

ln 3

25. ln 5−2x = ln 3, −2x ln 5 = ln 3, x = − ln 3

2 ln 5

26. e−2x = 5/3, −2x = ln(5/3), x = − 1
2 ln(5/3)

27. e3x = 7/2, 3x = ln(7/2), x =
1

3
ln(7/2)

28. ex(1− 2x) = 0 so ex = 0 (impossible) or 1− 2x = 0, x = 1/2

29. e−x(x+ 2) = 0 so e−x = 0 (impossible) or x+ 2 = 0, x = −2

30. With u = e−x, the equation becomes u2 − 3u = −2, so (u− 1)(u− 2) = u2 − 3u+ 2 = 0, and u = 1 or 2. Hence
x = − ln(u) gives x = 0 or x = − ln 2.

31. (a) Domain: all x; range: y > −1.

y

x

2

4

6

–2 4

(b) Domain: x 6= 0; range: all y.

y

x

–4

2

–4 2

32. (a) Domain: x > 2; range: all y.

y

x

–2

2

2 6
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(b) Domain: all x; range: y > 3.

y

x

2

–2 2

33. (a) Domain: x 6= 0; range: all y.

-4 4

-4

4

x

y

(b) Domain: all x; range: 0 < y ≤ 1. -2 2

2

x

y

34. (a) Domain: all x; range: y < 1.

y x

–10

–1

(b) Domain: x > 1; range: all y.

y

x

–1
3

35. False. The graph of an exponential function passes through (0, 1), but the graph of y = x3 does not.

36. True. For any b > 0, b0 = 1.

37. True, by definition.

38. False. The domain is the interval x > 0.

39. log2 7.35 = (log 7.35)/(log 2) = (ln 7.35)/(ln 2) ≈ 2.8777; log5 0.6 = (log 0.6)/(log 5) = (ln 0.6)/(ln 5) ≈ −0.3174.
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40.

10

–5

0 2

41.

2

–3

0 3

42. (a) Let X = logb x and Y = loga x. Then bX = x and aY = x so aY = bX , or aY/X = b, which means loga b = Y/X.

Substituting for Y and X yields
loga x

logb x
= loga b, logb x =

loga x

loga b
.

(b) Let x = a to get logb a = (loga a)/(loga b) = 1/(loga b) so (loga b)(logb a) = 1. Now (log2 81)(log3 32) =
(log2[34])(log3[25]) = (4 log2 3)(5 log3 2) = 20(log2 3)(log3 2) = 20.

43. x ≈ 1.47099 and x ≈ 7.85707.

44. x ≈ ±0.836382

45. (a) No, the curve passes through the origin. (b) y = ( 4
√

2)x (c) y = 2−x = (1/2)x (d) y = (
√

5)x

5

0
–1 2

46. (a) As x → +∞ the function grows very slowly, but it is always increasing and tends to +∞. As x → 1+ the
function tends to −∞.

(b)

1 2

–5

5

x

y

47. log(1/2) < 0 so 3 log(1/2) < 2 log(1/2).

48. Let x = logb a and y = logb c, so a = bx and c = by.

First, ac = bxby = bx+y or equivalently, logb(ac) = x+ y = logb a+ logb c.



32 Chapter 0

Second, a/c = bx/by = bx−y or equivalently, logb(a/c) = x− y = logb a− logb c.

Next, ar = (bx)r = brx or equivalently, logb a
r = rx = r logb a.

Finally, 1/c = 1/by = b−y or equivalently, logb(1/c) = −y = − logb c.

49. 75e−t/125 = 15, t = −125 ln(1/5) = 125 ln 5 ≈ 201 days.

50. (a) If t = 0, then Q = 12 grams.

(b) Q = 12e−0.055(4) = 12e−0.22 ≈ 9.63 grams.

(c) 12e−0.055t = 6, e−0.055t = 0.5, t = −(ln 0.5)/(0.055) ≈ 12.6 hours.

51. (a) 7.4; basic (b) 4.2; acidic (c) 6.4; acidic (d) 5.9; acidic

52. (a) log[H+] = −2.44, [H+] = 10−2.44 ≈ 3.6× 10−3 mol/L

(b) log[H+] = −8.06, [H+] = 10−8.06 ≈ 8.7× 10−9 mol/L

53. (a) 140 dB; damage (b) 120 dB; damage (c) 80 dB; no damage (d) 75 dB; no damage

54. Suppose that I1 = 3I2 and β1 = 10 log10 I1/I0, β2 = 10 log10 I2/I0. Then I1/I0 = 3I2/I0, log10 I1/I0 =
log10 3I2/I0 = log10 3 + log10 I2/I0, β1 = 10 log10 3 + β2, β1 − β2 = 10 log10 3 ≈ 4.8 decibels.

55. Let IA and IB be the intensities of the automobile and blender, respectively. Then log10 IA/I0 = 7 and log10 IB/I0 =
9.3, IA = 107I0 and IB = 109.3I0, so IB/IA = 102.3 ≈ 200.

56. First we solve 120 = 10 log(I/I0) to find the intensity of the original sound: I = 10120/10I0 = 1012 · 10−12 =

1 W/m
2
. Hence the intensity of the n’th echo is (2/3)n W/m

2
and its decibel level is 10 log

(
(2/3)n

10−12

)
=

10(n log(2/3) + 12). Setting this equal to 10 gives n = − 11

log(2/3)
≈ 62.5. So the first 62 echoes can be heard.

57. (a) logE = 4.4 + 1.5(8.2) = 16.7, E = 1016.7 ≈ 5× 1016 J

(b) Let M1 and M2 be the magnitudes of earthquakes with energies of E and 10E, respectively. Then 1.5(M2 −
M1) = log(10E)− logE = log 10 = 1, M2 −M1 = 1/1.5 = 2/3 ≈ 0.67.

58. Let E1 and E2 be the energies of earthquakes with magnitudes M and M +1, respectively. Then logE2− logE1 =
log(E2/E1) = 1.5, E2/E1 = 101.5 ≈ 31.6.

Chapter 0 Review Exercises

1.
5-1

5

x

y

2. (a) f(−2) = 2, g(3) = 2 (b) x = −3, 3 (c) x < −2, x > 3

(d) The domain is −5 ≤ x ≤ 5 and the range is −5 ≤ y ≤ 4.



Chapter 0 Review Exercises 33

(e) The domain is −4 ≤ x ≤ 4.1, the range is −3 ≤ y ≤ 5.

(f) f(x) = 0 at x = −3, 5; g(x) = 0 at x = −3, 2

3.
40

50

70

0 2 4 6

t

T

4. Assume that the paint is applied in a thin veneer of uniform thickness, so that the quantity of paint to be used is
proportional to the area covered. If P is the amount of paint to be used, P = kπr2. The constant k depends on
physical factors, such as the thickness of the paint, absorption of the wood, etc.

5. (a) If the side has length x and height h, then V = 8 = x2h, so h = 8/x2. Then the cost C = 5x2 + 2(4)(xh) =
5x2 + 64/x.

(b) The domain of C is (0,+∞) because x can be very large (just take h very small).

6. (a) Suppose the radius of the uncoated ball is r and that of the coated ball is r+ h. Then the plastic has volume
equal to the difference of the volumes, i.e. V = 4

3π(r+h)3− 4
3πr

3 = 4
3πh[3r2 + 3rh+h2] in3. But r = 3 and hence

V = 4
3πh[27 + 9h+ h2].

(b) 0 < h <∞

7. (a) The base has sides (10− 2x)/2 and 6− 2x, and the height is x, so V = (6− 2x)(5− x)x ft3.

(b) From the picture we see that x < 5 and 2x < 6, so 0 < x < 3.

(c) 3.57 ft ×3.79 ft ×1.21 ft

8. (a) d =
√

(x− 1)2 + 1/x2 (b) 0 < x < +∞ (c) d ≈ 0.82 at x ≈ 1.38

0.8
1

1.2

1.6

2

0.5 1 2 3

y

x

9. –2

1

y

–2 1 2

x

10. On the interval [−20, 30] the curve seems tame, but seen close up on the interval [−1.2, .4] we see that there is
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some wiggling near the origin.
–10 20 30

200000

300000

x

y

x

y

-0.5 0.5

-5

5

-1

11. x −4 −3 −2 −1 0 1 2 3 4

f(x) 0 −1 2 1 3 −2 −3 4 −4

g(x) 3 2 1 −3 −1 −4 4 −2 0

(f ◦ g)(x) 4 −3 −2 −1 1 0 −4 2 3

(g ◦ f)(x) −1 −3 4 −4 −2 1 2 0 3

12. (f ◦ g)(x) = −1/x with domain x > 0, and (g ◦ f)(x) is nowhere defined, with domain ∅.

13. f(g(x)) = (3x+ 2)2 + 1, g(f(x)) = 3(x2 + 1) + 2, so 9x2 + 12x+ 5 = 3x2 + 5, 6x2 + 12x = 0, x = 0,−2.

14. (a) (3− x)/x

(b) No; the definition of f(g(x)) requires g(x) to be defined, so x 6= 1, and f(g(x)) requires g(x) 6= −1, so we
must have g(x) 6= −1, i.e. x 6= 0; whereas h(x) only requires x 6= 0.

15. For g(h(x)) to be defined, we require h(x) 6= 0, i.e. x 6= ±1. For f(g(h(x))) to be defined, we also require
g(h(x)) 6= 1, i.e. x 6= ±

√
2. So the domain of f ◦ g ◦ h consists of all x except ±1 and ±

√
2. For all x in the

domain, (f ◦ g ◦ h)(x) = 1/(2− x2).

16. g(x) = x2 + 2x

17. (a) even × odd = odd (b) odd × odd = even (c) even + odd is neither (d) odd × odd = even

18. (a) y = |x− 1|, y = |(−x)− 1| = |x+ 1|, y = 2|x+ 1|, y = 2|x+ 1| − 3, y = −2|x+ 1|+ 3

(b)

y

x

–1

3

–3 –1 2

19. (a) The circle of radius 1 centered at (a, a2); therefore, the family of all circles of radius 1 with centers on the
parabola y = x2.

(b) All translates of the parabola y = x2 with vertex on the line y = x/2.

20. Let y = ax2 + bx+ c. Then 4a+ 2b+ c = 0, 64a+ 8b+ c = 18, 64a− 8b+ c = 18, from which b = 0 and 60a = 18,
or finally y = 3

10x
2 − 6

5 .
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21. (a) –20

20

60

y

100 300

t

(b) When
2π

365
(t− 101) =

3π

2
, or t = 374.75, which is the same date as t = 9.75, so during the night of January

10th-11th.

(c) From t = 0 to t = 70.58 and from t = 313.92 to t = 365 (the same date as t = 0), for a total of about 122
days.

22. Let y = A+B sin(at+ b). Since the maximum and minimum values of y are 35 and 5, A+B = 35 and A−B = 5,
A = 20, B = 15. The period is 12 hours, so 12a = 2π and a = π/6. The maximum occurs at t = 1, so
1 = sin(a+ b) = sin(π/6 + b), π/6 + b = π/2, b = π/2− π/6 = π/3 and y = 20 + 15 sin(πt/6 + π/3).

23. When x = 0 the value of the green curve is higher than that of the blue curve, therefore the blue curve is given by
y = 1 + 2 sinx.

The points A,B,C,D are the points of intersection of the two curves, i.e. where 1+2 sinx = 2 sin(x/2)+2 cos(x/2).
Let sin(x/2) = p, cos(x/2) = q. Then 2 sinx = 4 sin(x/2) cos(x/2) (basic trigonometric identity), so the equation
which yields the points of intersection becomes 1 + 4pq = 2p + 2q, 4pq − 2p − 2q + 1 = 0, (2p − 1)(2q − 1) = 0;
thus whenever either sin(x/2) = 1/2 or cos(x/2) = 1/2, i.e. when x/2 = π/6, 5π/6,±π/3. Thus A has coordinates
(−2π/3, 1 −

√
3), B has coordinates (π/3, 1 +

√
3), C has coordinates (2π/3, 1 +

√
3), and D has coordinates

(5π/3, 1−
√

3).

24. (a) R = R0 is the R-intercept, R0k is the slope, and T = −1/k is the T -intercept.

(b) −1/k = −273, or k = 1/273.

(c) 1.1 = R0(1 + 20/273), or R0 = 1.025.

(d) T = 126.55◦C.

25. (a) f(g(x)) = x for all x in the domain of g, and g(f(x)) = x for all x in the domain of f .

(b) They are reflections of each other through the line y = x.

(c) The domain of one is the range of the other and vice versa.

(d) The equation y = f(x) can always be solved for x as a function of y. Functions with no inverses include
y = x2, y = sinx.

26. (a) For sinx, −π/2 ≤ x ≤ π/2; for cosx, 0 ≤ x ≤ π; for tanx, −π/2 < x < π/2; for secx, 0 ≤ x < π/2 or
π/2 < x ≤ π.

(b)

y

x

–1

1

c/2

y = sin–1 x

y = sin x

y

x

–1

c

y = cos–1 x

y = cos x

y

x

–2

2

c/2–c/2

y = tan–1 x

y = tan x

y

x

–1

2

c/2

y = sec–1 x y = sec x

y = sec–1 x

y = sec x
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27. (a) x = f(y) = 8y3 − 1; f−1(x) = y =

(
x+ 1

8

)1/3

=
1

2
(x+ 1)1/3.

(b) f(x) = (x− 1)2; f does not have an inverse because f is not one-to-one, for example f(0) = f(2) = 1.

(c) x = f(y) = (ey)2 + 1; f−1(x) = y = ln
√
x− 1 = 1

2 ln(x− 1).

(d) x = f(y) =
y + 2

y − 1
; f−1(x) = y =

x+ 2

x− 1
.

(e) x = f(y) = sin

(
1− 2y

y

)
; f−1(x) = y =

1

2 + sin−1 x
.

(f) x =
1

1 + 3 tan−1 y
; y = tan

(
1− x

3x

)
. The range of f consists of all x <

−2

3π − 2
or >

2

3π + 2
, so this is also

the domain of f−1. Hence f−1(x) = tan

(
1− x

3x

)
, x <

−2

3π − 2
or x >

2

3π + 2
.

28. It is necessary and sufficient that the graph of f pass the horizontal line test. Suppose to the contrary that
ah+ b

ch+ d
=
ak + b

ck + d
for h 6= k. Then achk+ bck+ adh+ bd = achk+ adk+ bch+ bd, bc(h− k) = ad(h− k). It follows

from h 6= k that ad− bc = 0. These steps are reversible, hence f−1 exists if and only if ad− bc 6= 0, and if so, then

x =
ay + b

cy + d
, xcy + xd = ay + b, y(cx− a) = b− xd, y =

b− xd
cx− a = f−1(x).

29. Draw right triangles of sides 5, 12, 13, and 3, 4, 5. Then sin[cos−1(4/5)] = 3/5, sin[cos−1(5/13)] = 12/13,
cos[sin−1(4/5)] = 3/5, and cos[sin−1(5/13)] = 12/13.

(a) cos[cos−1(4/5) + sin−1(5/13)] = cos(cos−1(4/5)) cos(sin−1(5/13)− sin(cos−1(4/5)) sin(sin−1(5/13)) =
4

5

12

13
−

3

5

5

13
=

33

65
.

(b) sin[sin−1(4/5) + cos−1(5/13)] = sin(sin−1(4/5)) cos(cos−1(5/13)) + cos(sin−1(4/5)) sin(cos−1(5/13)) =
4

5

5

13
+

3

5

12

13
=

56

65
.

30. (a)

y

x
c/2

1

(b)

y

x

c/2

1

(c)

y

x

–c/2

5

(d)

y

x
c/2

1

31. y = 5 ft = 60 in, so 60 = log x, x = 1060 in ≈ 1.58× 1055 mi.

32. y = 100 mi = 12× 5280× 100 in, so x = log y = log 12 + log 5280 + log 100 ≈ 6.8018 in.

33. 3 ln
(
e2x(ex)3

)
+ 2 exp(ln 1) = 3 ln e2x + 3 ln(ex)3 + 2 · 1 = 3(2x) + (3 · 3)x+ 2 = 15x+ 2.

34. Y = ln(Cekt) = lnC + ln ekt = lnC + kt, a line with slope k and Y -intercept lnC.
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35. (a)

y

x

–2

2

4

(b) The curve y = e−x/2 sin 2x has x−intercepts at x = −π/2, 0, π/2, π, 3π/2. It intersects the curve y = e−x/2

at x = π/4, 5π/4 and it intersects the curve y = −e−x/2 at x = −π/4, 3π/4.

36. (a)

5

20

v

1 2 3 4 5

t

(b) As t gets larger, the velocity v grows towards 24.61 ft/s.

(c) For large t the velocity approaches c = 24.61.

(d) No; but it comes very close (arbitrarily close).

(e) 3.009 s.

37. (a)

100

200
N

10 30 50

t

(b) N = 80 when t = 9.35 yrs.

(c) 220 sheep.

38. (a) The potato is done in the interval 27.65 < t < 32.71.

(b) The oven temperature is always 400◦ F, so the difference between the oven temperature and the potato
temperature is D = 400− T . Initially D = 325, so solve D = 75 + 325/2 = 237.5 for t, so t ≈ 22.76 min.

39. (a) The function lnx− x0.2 is negative at x = 1 and positive at x = 4, so it is reasonable to expect it to be zero
somewhere in between. (This will be established later in this book.)

(b) x = 3.654 and 3.32105× 105.
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40. (a)

–1 1 3 5

–5

–3

–1

1
x

y

If xk = ex then k lnx = x, or
lnx

x
=

1

k
. The steps are reversible.

(b) By zooming it is seen that the maximum value of y is approximately 0.368 (actually, 1/e), so there are two
distinct solutions of xk = ex whenever k > 1/0.368 ≈ 2.717.

(c) x ≈ 1.155, 26.093.

41. (a) The functions x2 and tanx are positive and increasing on the indicated interval, so their product x2 tanx is
also increasing there. So is lnx; hence the sum f(x) = x2 tanx+ lnx is increasing, and it has an inverse.

(b)

x

y

y=x
y=f(x)

y=f   (x)-1

π/2

π/2

The asymptotes for f(x) are x = 0, x = π/2. The asymptotes for f−1(x) are y = 0, y = π/2.



Limits and Continuity

Exercise Set 1.1

1. (a) 3 (b) 3 (c) 3 (d) 3

2. (a) 0 (b) 0 (c) 0 (d) 0

3. (a) −1 (b) 3 (c) does not exist (d) 1

4. (a) 2 (b) 0 (c) does not exist (d) 2

5. (a) 0 (b) 0 (c) 0 (d) 3

6. (a) 1 (b) 1 (c) 1 (d) 0

7. (a) −∞ (b) −∞ (c) −∞ (d) 1

8. (a) +∞ (b) +∞ (c) +∞ (d) can not be found from graph

9. (a) +∞ (b) +∞ (c) 2 (d) 2 (e) −∞ (f) x = −2, x = 0, x = 2

10. (a) does not exist (b) −∞ (c) 0 (d) −1 (e) +∞ (f) 3 (g) x = −2, x = 2

11. (i) −0.01 −0.001 −0.0001 0.0001 0.001 0.01

0.9950166 0.9995002 0.9999500 1.0000500 1.0005002 1.0050167

(ii)

   

0.995

1.005

-0.01 0.01
The limit appears to be 1.

12. (i) −0.1 −0.01 −0.001 0.001 0.01 0.1

2.0135792 2.0001334 2.0000013 2.0000013 2.0001334 2.0135792

(ii)

2.014

2
1.01.0-

The limit appears to be 2.

39
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13. (a) 2 1.5 1.1 1.01 1.001 0 0.5 0.9 0.99 0.999

0.1429 0.2105 0.3021 0.3300 0.3330 1.0000 0.5714 0.3690 0.3367 0.3337

1

0
0 2

The limit is 1/3.

(b) 2 1.5 1.1 1.01 1.001 1.0001

0.4286 1.0526 6.344 66.33 666.3 6666.3

50

0
1 2

The limit is +∞.

(c) 0 0.5 0.9 0.99 0.999 0.9999

−1 −1.7143 −7.0111 −67.001 −667.0 −6667.0

0

-50

0 1

The limit is −∞.

14. (a) −0.25 −0.1 −0.001 −0.0001 0.0001 0.001 0.1 0.25

0.5359 0.5132 0.5001 0.5000 0.5000 0.4999 0.4881 0.4721

0.6

0
-0.25 0.25

The limit is 1/2.

(b) 0.25 0.1 0.001 0.0001

8.4721 20.488 2000.5 20001
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100

0
0 0.25

The limit is +∞.

(c) −0.25 −0.1 −0.001 −0.0001

−7.4641 −19.487 −1999.5 −20000

0

-100

-0.25 0

The limit is −∞.

15. (a) −0.25 −0.1 −0.001 −0.0001 0.0001 0.001 0.1 0.25

2.7266 2.9552 3.0000 3.0000 3.0000 3.0000 2.9552 2.7266

3

2
-0.25 0.25

The limit is 3.

(b) 0 −0.5 −0.9 −0.99 −0.999 −1.5 −1.1 −1.01 −1.001

1 1.7552 6.2161 54.87 541.1 −0.1415 −4.536 −53.19 −539.5

60

-60

-1.5 0

The limit does not exist.

16. (a) 0 −0.5 −0.9 −0.99 −0.999 −1.5 −1.1 −1.01 −1.001

1.5574 1.0926 1.0033 1.0000 1.0000 1.0926 1.0033 1.0000 1.0000

1.5

1
-1.5 0

The limit is 1.
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(b) −0.25 −0.1 −0.001 −0.0001 0.0001 0.001 0.1 0.25

1.9794 2.4132 2.5000 2.5000 2.5000 2.5000 2.4132 1.9794

2.5

2
-0.25 0.25

The limit is 5/2.

17. False; define f(x) = x for x 6= a and f(a) = a+ 1. Then limx→a f(x) = a 6= f(a) = a+ 1.

18. True; by 1.1.3.

19. False; define f(x) = 0 for x < 0 and f(x) = x+ 1 for x ≥ 0. Then the left and right limits exist but are unequal.

20. False; define f(x) = 1/x for x > 0 and f(0) = 2.

27. msec =
x2 − 1

x+ 1
= x− 1 which gets close to −2 as x gets close to −1, thus y − 1 = −2(x+ 1) or y = −2x− 1.

28. msec =
x2

x
= x which gets close to 0 as x gets close to 0, thus y = 0.

29. msec =
x4 − 1

x− 1
= x3 + x2 + x+ 1 which gets close to 4 as x gets close to 1, thus y − 1 = 4(x− 1) or y = 4x− 3.

30. msec =
x4 − 1

x+ 1
= x3−x2 +x−1 which gets close to −4 as x gets close to −1, thus y−1 = −4(x+1) or y = −4x−3.

31. (a) The length of the rod while at rest.

(b) The limit is zero. The length of the rod approaches zero as its speed approaches c.

32. (a) The mass of the object while at rest.

(b) The limiting mass as the velocity approaches the speed of light; the mass is unbounded.

33. (a)

3.5

2.5
–1 1

The limit appears to be 3.

(b)

3.5

2.5
–0.001 0.001

The limit appears to be 3.
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(c)

3.5

2.5
–0.000001 0.000001

The limit does not exist.

Exercise Set 1.2

1. (a) By Theorem 1.2.2, this limit is 2 + 2 · (−4) = −6.

(b) By Theorem 1.2.2, this limit is 0− 3 · (−4) + 1 = 13.

(c) By Theorem 1.2.2, this limit is 2 · (−4) = −8.

(d) By Theorem 1.2.2, this limit is (−4)2 = 16.

(e) By Theorem 1.2.2, this limit is 3
√

6 + 2 = 2.

(f) By Theorem 1.2.2, this limit is
2

(−4)
= −1

2
.

2. (a) By Theorem 1.2.2, this limit is 0 + 0 = 0.

(b) The limit doesn’t exist because lim f doesn’t exist and lim g does.

(c) By Theorem 1.2.2, this limit is −2 + 2 = 0.

(d) By Theorem 1.2.2, this limit is 1 + 2 = 3.

(e) By Theorem 1.2.2, this limit is 0/(1 + 0) = 0.

(f) The limit doesn’t exist because the denominator tends to zero but the numerator doesn’t.

(g) The limit doesn’t exist because
√
f(x) is not defined for 0 < x < 2.

(h) By Theorem 1.2.2, this limit is
√

1 = 1.

3. By Theorem 1.2.3, this limit is 2 · 1 · 3 = 6.

4. By Theorem 1.2.3, this limit is 33 − 3 · 32 + 9 · 3 = 27.

5. By Theorem 1.2.4, this limit is (32 − 2 · 3)/(3 + 1) = 3/4.

6. By Theorem 1.2.4, this limit is (6 · 0− 9)/(03 − 12 · 0 + 3) = −3.

7. After simplification,
x4 − 1

x− 1
= x3 + x2 + x+ 1, and the limit is 13 + 12 + 1 + 1 = 4.

8. After simplification,
t3 + 8

t+ 2
= t2 − 2t+ 4, and the limit is (−2)2 − 2 · (−2) + 4 = 12.

9. After simplification,
x2 + 6x+ 5

x2 − 3x− 4
=
x+ 5

x− 4
, and the limit is (−1 + 5)/(−1− 4) = −4/5.
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10. After simplification,
x2 − 4x+ 4

x2 + x− 6
=
x− 2

x+ 3
, and the limit is (2− 2)/(2 + 3) = 0.

11. After simplification,
2x2 + x− 1

x+ 1
= 2x− 1, and the limit is 2 · (−1)− 1 = −3.

12. After simplification,
3x2 − x− 2

2x2 + x− 3
=

3x+ 2

2x+ 3
, and the limit is (3 · 1 + 2)/(2 · 1 + 3) = 1.

13. After simplification,
t3 + 3t2 − 12t+ 4

t3 − 4t
=
t2 + 5t− 2

t2 + 2t
, and the limit is (22 + 5 · 2− 2)/(22 + 2 · 2) = 3/2.

14. After simplification,
t3 + t2 − 5t+ 3

t3 − 3t+ 2
=
t+ 3

t+ 2
, and the limit is (1 + 3)/(1 + 2) = 4/3.

15. The limit is +∞.

16. The limit is −∞.

17. The limit does not exist.

18. The limit is +∞.

19. The limit is −∞.

20. The limit does not exist.

21. The limit is +∞.

22. The limit is −∞.

23. The limit does not exist.

24. The limit is −∞.

25. The limit is +∞.

26. The limit does not exist.

27. The limit is +∞.

28. The limit is +∞.

29. After simplification,
x− 9√
x− 3

=
√
x+ 3, and the limit is

√
9 + 3 = 6.

30. After simplification,
4− y

2−√y
= 2 +

√
y, and the limit is 2 +

√
4 = 4.

31. (a) 2 (b) 2 (c) 2

32. (a) does not exist (b) 1 (c) 4

33. True, by Theorem 1.2.2.

34. False; e.g. lim
x→0

x2

x
= 0.
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35. False; e.g. f(x) = 2x, g(x) = x, so lim
x→0

f(x) = lim
x→0

g(x) = 0, but lim
x→0

f(x)/g(x) = 2.

36. True, by Theorem 1.2.4.

37. After simplification,

√
x+ 4− 2

x
=

1√
x+ 4 + 2

, and the limit is 1/4.

38. After simplification,

√
x2 + 4− 2

x
=

x√
x2 + 4 + 2

, and the limit is 0.

39. (a) After simplification,
x3 − 1

x− 1
= x2 + x+ 1, and the limit is 3.

(b)

y

x

4

1

40. (a) After simplification,
x2 − 9

x+ 3
= x− 3, and the limit is −6, so we need that k = −6.

(b) On its domain (all real numbers), f(x) = x− 3.

41. (a) Theorem 1.2.2 doesn’t apply; moreover one cannot subtract infinities.

(b) lim
x→0+

(
1

x
− 1

x2

)
= lim
x→0+

(
x− 1

x2

)
= −∞.

42. (a) Theorem 1.2.2 assumes that L1 and L2 are real numbers, not infinities. It is in general not true that ”∞·0 = 0 ”.

(b)
1

x
− 2

x2 + 2x
=

x2

x(x2 + 2x)
=

1

x+ 2
for x 6= 0, so that lim

x→0

(
1

x
− 2

x2 + 2x

)
=

1

2
.

43. For x 6= 1,
1

x− 1
− a

x2 − 1
=
x+ 1− a
x2 − 1

and for this to have a limit it is necessary that lim
x→1

(x + 1 − a) = 0, i.e.

a = 2. For this value,
1

x− 1
− 2

x2 − 1
=
x+ 1− 2

x2 − 1
=

x− 1

x2 − 1
=

1

x+ 1
and lim

x→1

1

x+ 1
=

1

2
.

44. (a) For small x, 1/x2 is much bigger than ±1/x.

(b)
1

x
+

1

x2
=
x+ 1

x2
. Since the numerator has limit 1 and x2 tends to zero from the right, the limit is +∞.

45. The left and/or right limits could be plus or minus infinity; or the limit could exist, or equal any preassigned real
number. For example, let q(x) = x− x0 and let p(x) = a(x− x0)n where n takes on the values 0, 1, 2.

46. If on the contrary lim
x→a

g(x) did exist then by Theorem 1.2.2 so would lim
x→a

[f(x) + g(x)], and that would be a

contradiction.

47. Clearly, g(x) = [f(x) + g(x)]− f(x). By Theorem 1.2.2, lim
x→a

[f(x) + g(x)]− lim
x→a

f(x) = lim
x→a

[f(x) + g(x)− f(x)] =

lim
x→a

g(x).
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48. By Theorem 1.2.2, lim
x→a

f(x) =

(
lim
x→a

f(x)

g(x)

)
lim
x→a

g(x) =

(
lim
x→a

f(x)

g(x)

)
· 0 = 0, since lim

x→a

f(x)

g(x)
exists.

Exercise Set 1.3

1. (a) −∞ (b) +∞

2. (a) 2 (b) 0

3. (a) 0 (b) −1

4. (a) does not exist (b) 0

5. (a) 3 + 3 · (−5) = −12 (b) 0− 4 · (−5) + 1 = 21 (c) 3 · (−5) = −15 (d) (−5)2 = 25

(e) 3
√

5 + 3 = 2 (f) 3/(−5) = −3/5 (g) 0

(h) The limit doesn’t exist because the denominator tends to zero but the numerator doesn’t.

6. (a) 2 · 7− (−6) = 20 (b) 6 · 7 + 7 · (−6) = 0 (c) +∞ (d) −∞ (e) 3
√
−42

(f) −6/7 (g) 7 (h) −7/12

7. (a) x 0.1 0.01 0.001 0.0001 0.00001 0.000001

f(x) 1.471128 1.560797 1.569796 1.570696 1.570786 1.570795

The limit appears to be ≈ 1.57079 . . ..

(b) The limit is π/2.

8. x 10 100 1000 10000 100000 1000000

f(x) 1.258925 1.047129 1.006932 1.000921 1.000115 1.000014

The limit appears to be 1.

9. The limit is −∞, by the highest degree term.

10. The limit is +∞, by the highest degree term.

11. The limit is +∞.

12. The limit is +∞.

13. The limit is 3/2, by the highest degree terms.

14. The limit is 5/2, by the highest degree terms.

15. The limit is 0, by the highest degree terms.

16. The limit is 0, by the highest degree terms.

17. The limit is 0, by the highest degree terms.

18. The limit is 5/3, by the highest degree terms.

19. The limit is −∞, by the highest degree terms.

20. The limit is +∞, by the highest degree terms.

21. The limit is −1/7, by the highest degree terms.

22. The limit is 4/7, by the highest degree terms.
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23. The limit is 3
√
−5/8 = − 3

√
5 /2, by the highest degree terms.

24. The limit is 3
√

3/2 , by the highest degree terms.

25.

√
5x2 − 2

x+ 3
=

√
5− 2

x2

−1− 3
x

when x < 0. The limit is −
√

5 .

26.

√
5x2 − 2

x+ 3
=

√
5− 2

x2

1 + 3
x

when x > 0. The limit is
√

5 .

27.
2− y√
7 + 6y2

=
− 2
y + 1√
7
y2 + 6

when y < 0. The limit is 1/
√

6 .

28.
2− y√
7 + 6y2

=

2
y − 1√

7
y2 + 6

when y > 0. The limit is −1/
√

6 .

29.

√
3x4 + x

x2 − 8
=

√
3 + 1

x3

1− 8
x2

when x < 0. The limit is
√

3 .

30.

√
3x4 + x

x2 − 8
=

√
3 + 1

x3

1− 8
x2

when x > 0. The limit is
√

3 .

31. lim
x→+∞

(
√
x2 + 3 − x)

√
x2 + 3 + x√
x2 + 3 + x

= lim
x→+∞

3√
x2 + 3 + x

= 0, by the highest degree terms.

32. lim
x→+∞

(
√
x2 − 3x − x)

√
x2 − 3x + x√
x2 − 3x + x

= lim
x→+∞

−3x√
x2 − 3x + x

= −3/2, by the highest degree terms.

33. lim
x→−∞

1− ex

1 + ex
=

1− 0

1 + 0
= 1.

34. Divide the numerator and denominator by ex: lim
x→+∞

1− ex

1 + ex
= lim
x→+∞

e−x − 1

e−x + 1
=

0− 1

0 + 1
= −1.

35. Divide the numerator and denominator by ex: lim
x→+∞

1 + e−2x

1− e−2x
=

1 + 0

1− 0
= 1.

36. Divide the numerator and denominator by e−x: lim
x→−∞

e2x + 1

e2x − 1
=

0 + 1

0− 1
= −1.

37. The limit is −∞.

38. The limit is +∞.

39.
x+ 1

x
= 1 +

1

x
, so lim

x→+∞

(x+ 1)x

xx
= e from Figure 1.3.4.

40.

(
1 +

1

x

)−x
=

1(
1 + 1

x

)x , so the limit is e−1.

41. False: lim
x→+∞

(
1 +

1

x

)2x

=

[
lim

x→+∞

(
1 +

1

x

)x]2

= e2.

42. False; y = 0 is a horizontal asymptote for the curve y = ex yet lim
x→+∞

ex does not exist.

43. True: for example f(x) = sinx/x crosses the x-axis infinitely many times at x = nπ, n = 1, 2, . . ..
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44. False: if the asymptote is y = 0, then lim
x→±∞

p(x)/q(x) = 0, and clearly the degree of p(x) is strictly less than the

degree of q(x). If the asymptote is y = L 6= 0, then lim
x→±∞

p(x)/q(x) = L and the degrees must be equal.

45. It appears that lim
t→+∞

n(t) = +∞, and lim
t→+∞

e(t) = c.

46. (a) It is the initial temperature of the potato (400◦ F).

(b) It is the ambient temperature, i.e. the temperature of the room.

47. (a) +∞ (b) −5

48. (a) 0 (b) −6

49. lim
x→−∞

p(x) = +∞. When n is even, lim
x→+∞

p(x) = +∞; when n is odd, lim
x→+∞

p(x) = −∞.

50. (a) p(x) = q(x) = x. (b) p(x) = x, q(x) = x2. (c) p(x) = x2, q(x) = x. (d) p(x) = x+ 3, q(x) = x.

51. (a) No. (b) Yes, tanx and secx at x = nπ + π/2 and cotx and cscx at x = nπ, n = 0,±1,±2, . . ..

52. If m > n the limit is zero. If m = n the limit is cm/dm. If n > m the limit is +∞ if cndm > 0 and −∞ if cndm < 0.

53. (a) Every value taken by ex
2

is also taken by et: choose t = x2. As x and t increase without bound, so does

et = ex
2

. Thus lim
x→+∞

ex
2

= lim
t→+∞

et = +∞.

(b) If f(t) → +∞ (resp. f(t) → −∞) then f(t) can be made arbitrarily large (resp. small) by taking t large
enough. But by considering the values g(x) where g(x) > t, we see that f(g(x)) has the limit +∞ too (resp. limit
−∞). If f(t) has the limit L as t → +∞ the values f(t) can be made arbitrarily close to L by taking t large
enough. But if x is large enough then g(x) > t and hence f(g(x)) is also arbitrarily close to L.

(c) For lim
x→−∞

the same argument holds with the substitutiion ”x decreases without bound” instead of ”x increases

without bound”. For lim
x→c−

substitute ”x close enough to c, x < c”, etc.

54. (a) Every value taken by e−x
2

is also taken by et: choose t = −x2. As x increases without bound and t decreases

without bound, the quantity et = e−x
2

tends to 0. Thus lim
x→+∞

e−x
2

= lim
t→−∞

et = 0.

(b) If f(t) → +∞ (resp. f(t) → −∞) then f(t) can be made arbitrarily large (resp. small) by taking t small
enough. But by considering the values g(x) where g(x) < t, we see that f(g(x)) has the limit +∞ too (resp. limit
−∞). If f(t) has the limit L as t → −∞ the values f(t) can be made arbitrarily close to L by taking t small
enough. But if x is large enough then g(x) < t and hence f(g(x)) is also arbitrarily close to L.

(c) For lim
x→−∞

the same argument holds with the substitutiion ”x decreases without bound” instead of ”x increases

without bound”. For lim
x→c−

substitute ”x close enough to c, x < c”, etc.

55. t = 1/x, lim
t→+∞

f(t) = +∞.

56. t = 1/x, lim
t→−∞

f(t) = 0.

57. t = cscx, lim
t→+∞

f(t) = +∞.

58. t = cscx, lim
t→−∞

f(t) = 0.

59. Let t = lnx. Then t also tends to +∞, and
ln 2x

ln 3x
=
t+ ln 2

t+ ln 3
, so the limit is 1.

60. With t = x− 1, [ln(x2 − 1)− ln(x+ 1)] = ln(x+ 1) + ln(x− 1)− ln(x+ 1) = ln t, so the limit is +∞.
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61. Set t = −x, then get lim
t→−∞

(
1 +

1

t

)t
= e by Figure 1.3.4.

62. With t = x/2, lim
x→+∞

(
1 +

2

x

)x
=

(
lim

t→+∞
[1 + 1/t]

t

)2

= e2

63. From the hint, lim
x→+∞

bx = lim
x→+∞

e(ln b)x =


0 if b < 1,

1 if b = 1,

+∞ if b > 1.

64. It suffices by Theorem 1.1.3 to show that the left and right limits at zero are equal to e.

(a) lim
x→+∞

(1 + x)1/x = lim
t→0+

(1 + 1/t)t = e.

(b) lim
x→−∞

(1 + x)1/x = lim
t→0−

(1 + 1/t)t = e.

65. (a) 4 8 12 16 20

40

80

120

160

200

t

v

(b) lim
t→∞

v = 190
(

1− lim
t→∞

e−0.168t
)

= 190, so the asymptote is v = c = 190 ft/sec.

(c) Due to air resistance (and other factors) this is the maximum speed that a sky diver can attain.

66. (a) p(1990) = 525/(1 + 1.1) = 250 (million).

(b)
1920 2000 2080

250

500

t

P

(c) lim
t→∞

p(t) =
525

1 + 1.1 limt→∞ e−0.02225(t−1990)
= 525 (million).

(d) The population becomes stable at this number.

67. (a) n 2 3 4 5 6 7

1 + 10−n 1.01 1.001 1.0001 1.00001 1.000001 1.0000001

1 + 10n 101 1001 10001 100001 1000001 10000001

(1 + 10−n)1+10n

2.7319 2.7196 2.7184 2.7183 2.71828 2.718282

The limit appears to be e.

(b) This is evident from the lower left term in the chart in part (a).

(c) The exponents are being multiplied by a, so the result is ea.
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68. (a) f(−x) =

(
1− 1

x

)−x
=

(
x− 1

x

)−x
=

(
x

x− 1

)x
, f(x− 1) =

(
x

x− 1

)x−1

=

(
x− 1

x

)
f(−x).

(b) lim
x→−∞

(
1 +

1

x

)x
= lim
x→+∞

f(−x) =

[
lim

x→+∞

x

x− 1

]
lim

x→+∞
f(x− 1) = lim

x→+∞
f(x− 1) = e.

69. After a long division, f(x) = x + 2 +
2

x− 2
, so lim

x→±∞
(f(x) − (x + 2)) = 0 and f(x) is asymptotic to y = x + 2.

The only vertical asymptote is at x = 2.

–12 –6 3 9 15

–15

–9

–3

3

9

15

x

x = 2

y

y = x + 2

70. After a simplification, f(x) = x2 − 1 +
3

x
, so lim

x→±∞
(f(x) − (x2 − 1)) = 0 and f(x) is asymptotic to y = x2 − 1.

The only vertical asymptote is at x = 0.

–4 –2 2 4

–2

1

3

5

x

y

y = x2 – 1

71. After a long division, f(x) = −x2+1+
2

x− 3
, so lim

x→±∞
(f(x)−(−x2+1)) = 0 and f(x) is asymptotic to y = −x2+1.

The only vertical asymptote is at x = 3.

–4 –2 2 4

–12

–6

6

12

x

x = 3

y

y = –x2 + 1

72. After a long division, f(x) = x3 +
3

2(x− 1)
− 3

2(x+ 1)
, so lim

x→±∞
(f(x)−x3) = 0 and f(x) is asymptotic to y = x3.

The vertical asymptotes are at x = ±1.
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–2 2

–15

5

15

x

y

y = x3

x = 1

x = –1

73. lim
x→±∞

(f(x)− sinx) = 0 so f(x) is asymptotic to y = sinx. The only vertical asymptote is at x = 1.

–4 2 8

–4

3

5

x

y

y = sin x

x = 1

Exercise Set 1.4

1. (a) |f(x)− f(0)| = |x+ 2− 2| = |x| < 0.1 if and only if |x| < 0.1.

(b) |f(x)− f(3)| = |(4x− 5)− 7| = 4|x− 3| < 0.1 if and only if |x− 3| < (0.1)/4 = 0.025.

(c) |f(x) − f(4)| = |x2 − 16| < ε if |x − 4| < δ. We get f(x) = 16 + ε = 16.001 at x = 4.000124998, which
corresponds to δ = 0.000124998; and f(x) = 16− ε = 15.999 at x = 3.999874998, for which δ = 0.000125002. Use
the smaller δ: thus |f(x)− 16| < ε provided |x− 4| < 0.000125 (to six decimals).

2. (a) |f(x)− f(0)| = |2x+ 3− 3| = 2|x| < 0.1 if and only if |x| < 0.05.

(b) |f(x)− f(0)| = |2x+ 3− 3| = 2|x| < 0.01 if and only if |x| < 0.005.

(c) |f(x)− f(0)| = |2x+ 3− 3| = 2|x| < 0.0012 if and only if |x| < 0.0006.

3. (a) x0 = (1.95)2 = 3.8025, x1 = (2.05)2 = 4.2025.

(b) δ = min ( |4− 3.8025|, |4− 4.2025| ) = 0.1975.

4. (a) x0 = 1/(1.1) = 0.909090 . . . , x1 = 1/(0.9) = 1.111111 . . .

(b) δ = min( |1− 0.909090|, |1− 1.111111| ) = 0.0909090 . . .

5. |(x3−4x+5)−2| < 0.05 is equivalent to−0.05 < (x3−4x+5)−2 < 0.05, which means 1.95 < x3−4x+5 < 2.05. Now
x3−4x+5 = 1.95 at x = 1.0616, and x3−4x+5 = 2.05 at x = 0.9558. So δ = min (1.0616− 1, 1− 0.9558) = 0.0442.
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2.2

1.9
0.9 1.1

6.
√

5x+ 1 = 3.5 at x = 2.25,
√

5x+ 1 = 4.5 at x = 3.85, so δ = min(3− 2.25, 3.85− 3) = 0.75.

5

0
2 4

7. With the TRACE feature of a calculator we discover that (to five decimal places) (0.87000, 1.80274) and (1.13000, 2.19301)
belong to the graph. Set x0 = 0.87 and x1 = 1.13. Since the graph of f(x) rises from left to right, we see that if
x0 < x < x1 then 1.80274 < f(x) < 2.19301, and therefore 1.8 < f(x) < 2.2. So we can take δ = 0.13.

8. From a calculator plot we conjecture that lim
x→0

f(x) = 2. Using the TRACE feature we see that the points

(±0.2, 1.94709) belong to the graph. Thus if −0.2 < x < 0.2, then 1.95 < f(x) ≤ 2 and hence |f(x)−L| < 0.05 <
0.1 = ε.

9. |2x− 8| = 2|x− 4| < 0.1 when |x− 4| < 0.1/2 = 0.05 = δ.

10. |(5x− 2)− 13| = 5|x− 3| < 0.01 when |x− 3| < 0.01/5 = 0.002 = δ.

11. If x 6= 3, then

∣∣∣∣x2 − 9

x− 3
− 6

∣∣∣∣ =

∣∣∣∣x2 − 9− 6x+ 18

x− 3

∣∣∣∣ =

∣∣∣∣x2 − 6x+ 9

x− 3

∣∣∣∣ = |x− 3| < 0.05 when |x− 3| < 0.05 = δ.

12. If x 6= −1/2, then

∣∣∣∣4x2 − 1

2x+ 1
− (−2)

∣∣∣∣ =

∣∣∣∣4x2 − 1 + 4x+ 2

2x+ 1

∣∣∣∣ =

∣∣∣∣4x2 + 4x+ 1

2x+ 1

∣∣∣∣ = |2x+ 1| = 2|x− (−1/2)| < 0.05 when

|x− (−1/2)| < 0.025 = δ.

13. Assume δ ≤ 1. Then −1 < x− 2 < 1 means 1 < x < 3 and then |x3 − 8| = |(x− 2)(x2 + 2x+ 4)| < 19|x− 2|, so
we can choose δ = 0.001/19.

14. Assume δ ≤ 1. Then −1 < x−4 < 1 means 3 < x < 5 and then |
√
x − 2| =

∣∣∣∣ x− 4√
x + 2

∣∣∣∣ < |x− 4|√
3 + 2

, so we can choose

δ = 0.001 · (
√

3 + 2).

15. Assume δ ≤ 1. Then −1 < x − 5 < 1 means 4 < x < 6 and then

∣∣∣∣ 1x − 1

5

∣∣∣∣ =

∣∣∣∣x− 5

5x

∣∣∣∣ < |x− 5|
20

, so we can choose

δ = 0.05 · 20 = 1.

16. ||x| − 0| = |x| < 0.05 when |x− 0| < 0.05 = δ.

17. Let ε > 0 be given. Then |f(x)− 3| = |3− 3| = 0 < ε regardless of x, and hence any δ > 0 will work.

18. Let ε > 0 be given. Then |(x+ 2)− 6| = |x− 4| < ε provided δ = ε (although any smaller δ would work).
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19. |3x− 15| = 3|x− 5| < ε if |x− 5| < ε/3, δ = ε/3.

20. |7x+ 5 + 2| = 7|x+ 1| < ε if |x+ 1| < ε/7, δ = ε/7.

21.

∣∣∣∣2x2 + x

x
− 1

∣∣∣∣ = |2x| < ε if |x| < ε/2, δ = ε/2.

22.

∣∣∣∣x2 − 9

x+ 3
− (−6)

∣∣∣∣ = |x+ 3| < ε if |x+ 3| < ε, δ = ε.

23. |f(x)− 3| = |x+ 2− 3| = |x− 1| < ε if 0 < |x− 1| < ε, δ = ε.

24. |9− 2x− 5| = 2|x− 2| < ε if 0 < |x− 2| < ε/2, δ = ε/2.

25. If ε > 0 is given, then take δ = ε; if |x− 0| = |x| < δ, then |x− 0| = |x| < ε.

26. If x < 2 then |f(x)−5| = |9−2x−5| = 2|x−2| < ε if |x−2| < ε/2, δ1 = ε/2. If x > 2 then |f(x)−5| = |3x−1−5| =
3|x− 2| < ε if |x− 2| < ε/3, δ2 = ε/3 Now let δ = min(δ1, δ2) then for any x with |x− 2| < δ, |f(x)− 5| < ε.

27. For the first part, let ε > 0. Then there exists δ > 0 such that if a < x < a + δ then |f(x) − L| < ε. For the left
limit replace a < x < a+ δ with a− δ < x < a.

28. (a) Given ε > 0 there exists δ > 0 such that if 0 < |x− a| < δ then ||f(x)− L| − 0| < ε, or |f(x)− L| < ε.

(b) From part (a) it follows that |f(x) − L| < ε is the defining condition for each of the two limits, so the two
limit statements are equivalent.

29. (a) |(3x2 + 2x− 20− 300| = |3x2 + 2x− 320| = |(3x+ 32)(x− 10)| = |3x+ 32| · |x− 10|.

(b) If |x− 10| < 1 then |3x+ 32| < 65, since clearly x < 11.

(c) δ = min(1, ε/65); |3x+ 32| · |x− 10| < 65 · |x− 10| < 65 · ε/65 = ε.

30. (a)

∣∣∣∣ 28

3x+ 1
− 4

∣∣∣∣ =

∣∣∣∣28− 12x− 4

3x+ 1

∣∣∣∣ =

∣∣∣∣−12x+ 24

3x+ 1

∣∣∣∣ =

∣∣∣∣ 12

3x+ 1

∣∣∣∣ · |x− 2|.

(b) If |x− 2| < 4 then −2 < x < 6, so x can be very close to −1/3, hence

∣∣∣∣ 12

3x+ 1

∣∣∣∣ is not bounded.

(c) If |x− 2| < 1 then 1 < x < 3 and 3x+ 1 > 4, so

∣∣∣∣ 12

3x+ 1

∣∣∣∣ < 12

4
= 3.

(d) δ = min(1, ε/3);

∣∣∣∣ 12

3x+ 1

∣∣∣∣ · |x− 2| < 3 · |x− 2| < 3 · ε/3 = ε.

31. If δ < 1 then |2x2 − 2| = 2|x− 1||x+ 1| < 6|x− 1| < ε if |x− 1| < ε/6, so δ = min(1, ε/6).

32. If δ < 1 then |x2 + x− 12| = |x+ 4| · |x− 3| < 5|x− 3| < ε if |x− 3| < ε/5, so δ = min(1, ε/5).

33. If δ < 1/2 and |x− (−2)| < δ then −5/2 < x < −3/2, x+ 1 < −1/2, |x+ 1| > 1/2; then∣∣∣∣ 1

x+ 1
− (−1)

∣∣∣∣ =
|x+ 2|
|x+ 1|

< 2|x+ 2| < ε if |x+ 2| < ε/2, so δ = min(1/2, ε/2).

34. If δ < 1/4 and |x−(1/2)| < δ then

∣∣∣∣2x+ 3

x
− 8

∣∣∣∣ =
|6x− 3|
|x|

<
6|x− (1/2)|

1/4
= 24|x−(1/2)| < ε if |x−(1/2)| < ε/24,

so δ = min(1/4, ε/24).
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35. |
√
x− 2| =

∣∣∣∣(√x− 2)

√
x+ 2√
x+ 2

∣∣∣∣ =

∣∣∣∣ x− 4√
x+ 2

∣∣∣∣ < 1

2
|x− 4| < ε if |x− 4| < 2ε, so δ = min(2ε, 4).

36. If δ < 1 and |x− 2| < δ then |x| < 3 and x2 + 2x+ 4 < 9 + 6 + 4 = 19 , so
|x3 − 8| = |x− 2| · |x2 + 2x+ 4| < 19δ < ε if δ = min(ε/19, 1).

37. Let ε > 0 be given and take δ = ε. If |x| < δ, then |f(x)− 0| = 0 < ε if x is rational, and |f(x)− 0| = |x| < δ = ε
if x is irrational.

38. If the limit did exist, then for ε = 1/2 there would exist δ > 0 such that if |x| < δ then |f(x) − L| < 1/2.
Some of the x-values are rational, for which |L| < 1/2; some are irrational, for which |1 − L| < 1/2. But
1 = |1| = L+ (1− L) < 1/2 + 1/2, or 1 < 1, a contradiction. Hence the limit cannot exist.

39. (a) We have to solve the equation 1/N2 = 0.1 here, so N =
√

10.

(b) This will happen when N/(N + 1) = 0.99, so N = 99.

(c) Because the function 1/x3 approaches 0 from below when x → −∞, we have to solve the equation 1/N3 =
−0.001, and N = −10.

(d) The function x/(x+1) approaches 1 from above when x→ −∞, so we have to solve the equation N/(N+1) =
1.01. We obtain N = −101.

40. (a) N = 3
√

10 (b) N = 3
√

100 (c) N = 3
√

1000 = 10

41. (a)
x2

1

1 + x2
1

= 1− ε, x1 = −
√

1− ε
ε

;
x2

2

1 + x2
2

= 1− ε, x2 =

√
1− ε
ε

(b) N =

√
1− ε
ε

(c) N = −
√

1− ε
ε

42. (a) x1 = −1/ε3; x2 = 1/ε3 (b) N = 1/ε3 (c) N = −1/ε3

43.
1

x2
< 0.01 if |x| > 10, N = 10.

44.
1

x+ 2
< 0.005 if |x+ 2| > 200, x > 198, N = 198.

45.

∣∣∣∣ x

x+ 1
− 1

∣∣∣∣ =

∣∣∣∣ 1

x+ 1

∣∣∣∣ < 0.001 if |x+ 1| > 1000, x > 999, N = 999.

46.

∣∣∣∣4x− 1

2x+ 5
− 2

∣∣∣∣ =

∣∣∣∣ 11

2x+ 5

∣∣∣∣ < 0.1 if |2x+ 5| > 110, 2x > 105, N = 52.5.

47.

∣∣∣∣ 1

x+ 2
− 0

∣∣∣∣ < 0.005 if |x+ 2| > 200, −x− 2 > 200, x < −202, N = −202.

48.

∣∣∣∣ 1

x2

∣∣∣∣ < 0.01 if |x| > 10, −x > 10, x < −10, N = −10.

49.

∣∣∣∣4x− 1

2x+ 5
− 2

∣∣∣∣ =

∣∣∣∣ 11

2x+ 5

∣∣∣∣ < 0.1 if |2x+ 5| > 110, −2x− 5 > 110, 2x < −115, x < −57.5, N = −57.5.

50.

∣∣∣∣ x

x+ 1
− 1

∣∣∣∣ =

∣∣∣∣ 1

x+ 1

∣∣∣∣ < 0.001 if |x+ 1| > 1000, −x− 1 > 1000, x < −1001, N = −1001.
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51.

∣∣∣∣ 1

x2

∣∣∣∣ < ε if |x| > 1√
ε
, so N =

1√
ε
.

52.

∣∣∣∣ 1

x+ 2

∣∣∣∣ < ε if |x+ 2| > 1

ε
, i.e. when x+ 2 >

1

ε
, or x >

1

ε
− 2, so N =

1

ε
− 2.

53.

∣∣∣∣4x− 1

2x+ 5
− 2

∣∣∣∣ =

∣∣∣∣ 11

2x+ 5

∣∣∣∣ < ε if |2x+5| > 11

ε
, i.e. when −2x−5 >

11

ε
, which means 2x < −11

ε
−5, or x < −11

2ε
− 5

2
,

so N = −5

2
− 11

2ε
.

54.

∣∣∣∣ x

x+ 1
− 1

∣∣∣∣ =

∣∣∣∣ 1

x+ 1

∣∣∣∣ < ε if |x+ 1| > 1

ε
, i.e. when −x− 1 >

1

ε
, or x < −1− 1

ε
, so N = −1− 1

ε
.

55.

∣∣∣∣ 2
√
x√

x− 1
− 2

∣∣∣∣ =

∣∣∣∣ 2√
x− 1

∣∣∣∣ < ε if
√
x− 1 >

2

ε
, i.e. when

√
x > 1 +

2

ε
, or x >

(
1 +

2

ε

)2

, so N =

(
1 +

2

ε

)2

.

56. 2x < ε if x < log2 ε, so N = log2 ε.

57. (a)
1

x2
> 100 if |x| < 1

10
(b)

1

|x− 1|
> 1000 if |x− 1| < 1

1000

(c)
−1

(x− 3)2
< −1000 if |x− 3| < 1

10
√

10
(d) − 1

x4
< −10000 if x4 <

1

10000
, |x| < 1

10

58. (a)
1

(x− 1)2
> 10 if and only if |x− 1| < 1√

10

(b)
1

(x− 1)2
> 1000 if and only if |x− 1| < 1

10
√

10

(c)
1

(x− 1)2
> 100000 if and only if |x− 1| < 1

100
√

10

59. If M > 0 then
1

(x− 3)2
> M when 0 < (x− 3)2 <

1

M
, or 0 < |x− 3| < 1√

M
, so δ =

1√
M

.

60. If M < 0 then
−1

(x− 3)2
< M when 0 < (x− 3)2 < − 1

M
, or 0 < |x− 3| < 1√

−M
, so δ =

1√
−M

.

61. If M > 0 then
1

|x|
> M when 0 < |x| < 1

M
, so δ =

1

M
.

62. If M > 0 then
1

|x− 1|
> M when 0 < |x− 1| < 1

M
, so δ =

1

M
.

63. If M < 0 then − 1

x4
< M when 0 < x4 < − 1

M
, or |x| < 1

(−M)1/4
, so δ =

1

(−M)1/4
.

64. If M > 0 then
1

x4
> M when 0 < x4 <

1

M
, or x <

1

M1/4
, so δ =

1

M1/4
.

65. If x > 2 then |x+ 1− 3| = |x− 2| = x− 2 < ε if 2 < x < 2 + ε, so δ = ε.

66. If x < 1 then |3x+ 2− 5| = |3x− 3| = 3|x− 1| = 3(1− x) < ε if 1− x < ε/3, or 1− ε/3 < x < 1, so δ = ε/3.
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67. If x > 4 then
√
x− 4 < ε if x− 4 < ε2, or 4 < x < 4 + ε2, so δ = ε2.

68. If x < 0 then
√
−x < ε if −x < ε2, or −ε2 < x < 0, so δ = ε2.

69. If x > 2 then |f(x)− 2| = |x− 2| = x− 2 < ε if 2 < x < 2 + ε, so δ = ε.

70. If x < 2 then |f(x)− 6| = |3x− 6| = 3|x− 2| = 3(2− x) < ε if 2− x < ε/3, or 2− ε/3 < x < 2, so δ = ε/3.

71. (a) Definition: For every M < 0 there corresponds a δ > 0 such that if 1 < x < 1 + δ then f(x) < M . In our case

we want
1

1− x
< M , i.e. 1− x > 1

M
, or x < 1− 1

M
, so we can choose δ = − 1

M
.

(b) Definition: For every M > 0 there corresponds a δ > 0 such that if 1− δ < x < 1 then f(x) > M . In our case

we want
1

1− x
> M , i.e. 1− x < 1

M
, or x > 1− 1

M
, so we can choose δ =

1

M
.

72. (a) Definition: For every M > 0 there corresponds a δ > 0 such that if 0 < x < δ then f(x) > M . In our case we

want
1

x
> M , i.e. x <

1

M
, so take δ =

1

M
.

(b) Definition: For every M < 0 there corresponds a δ > 0 such that if −δ < x < 0 then f(x) < M . In our case

we want
1

x
< M , i.e x >

1

M
, so take δ = − 1

M
.

73. (a) Given any M > 0, there corresponds an N > 0 such that if x > N then f(x) > M , i.e. x + 1 > M , or
x > M − 1, so N = M − 1.

(b) Given any M < 0, there corresponds an N < 0 such that if x < N then f(x) < M , i.e. x + 1 < M , or
x < M − 1, so N = M − 1.

74. (a) Given any M > 0, there corresponds an N > 0 such that if x > N then f(x) > M , i.e. x2 − 3 > M , or
x >
√
M + 3, so N =

√
M + 3.

(b) Given any M < 0, there corresponds an N < 0 such that if x < N then f(x) < M , i.e. x3 + 5 < M , or
x < (M − 5)1/3, so N = (M − 5)1/3.

75. (a)
3.0

7.5
= 0.4 (amperes) (b) [0.3947, 0.4054] (c)

[
3

7.5 + δ
,

3

7.5− δ

]
(d) 0.0187

(e) It approaches infinity.

Exercise Set 1.5

1. (a) No: lim
x→2

f(x) does not exist. (b) No: lim
x→2

f(x) does not exist. (c) No: lim
x→2−

f(x) 6= f(2).

(d) Yes. (e) Yes. (f) Yes.

2. (a) No: lim
x→2

f(x) 6= f(2). (b) No: lim
x→2

f(x) 6= f(2). (c) No: lim
x→2−

f(x) 6= f(2).

(d) Yes. (e) No: lim
x→2+

f(x) 6= f(2). (f) Yes.

3. (a) No: f(1) and f(3) are not defined. (b) Yes. (c) No: f(1) is not defined.

(d) Yes. (e) No: f(3) is not defined. (f) Yes.
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4. (a) No: f(3) is not defined. (b) Yes. (c) Yes.

(d) Yes. (e) No: f(3) is not defined. (f) Yes.

5. (a) No. (b) No. (c) No. (d) Yes. (e) Yes. (f) No. (g) Yes.

6. (a) No. (b) No. (c) No. (d) No. (e) Yes. (f) Yes. (g) Yes.

7. (a)

y

x
3 (b)

y

x

1

1 3

(c)

y

x

-1

1

1

(d)

y

x
2 3

8. The discontinuities probably correspond to the times when the patient takes the medication. We see a jump in the
concentration values here, which are followed by continuously decreasing concentration values as the medication
is being absorbed.

9. (a)

C

t

1

$4

2

(b) One second could cost you one dollar.

10. (a) Not continuous, since the values are integers.

(b) Continuous.

(c) Not continuous, again, the values are integers (if we measure them in cents).

(d) Continuous.

11. None, this is a continuous function on the real numbers.

12. None, this is a continuous function on the real numbers.

13. None, this is a continuous function on the real numbers.

14. The function is not continuous at x = 2 and x = −2.

15. The function is not continuous at x = −1/2 and x = 0.
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16. None, this is a continuous function on the real numbers.

17. The function is not continuous at x = 0, x = 1 and x = −1.

18. The function is not continuous at x = 0 and x = −4.

19. None, this is a continuous function on the real numbers.

20. The function is not continuous at x = 0 and x = −1.

21. None, this is a continuous function on the real numbers. f(x) = 2x+ 3 is continuous on x < 4 and f(x) = 7 +
16

x
is continuous on 4 < x; lim

x→4−
f(x) = lim

x→4+
f(x) = f(4) = 11 so f is continuous at x = 4.

22. The function is not continuous at x = 1, as lim
x→1

f(x) does not exist.

23. True; by Theorem 1.5.5.

24. False; e.g. f(x) = 1 if x 6= 3, f(3) = −1.

25. False; e.g. f(x) = g(x) = 2 if x 6= 3, f(3) = 1, g(3) = 3.

26. False; e.g. f(x) = g(x) = 2 if x 6= 3, f(3) = 1, g(3) = 4.

27. True; use Theorem 1.5.3 with g(x) =
√
f(x).

28. Generally, this statement is false because
√
f(x) might not even be defined. If we suppose that f(c) is nonnegative,

and f(x) is also nonnegative on some interval (c − α, c + α), then the statement is true. If f(c) = 0 then given
ε > 0 there exists δ > 0 such that whenever |x− c| < δ, 0 ≤ f(x) < ε2. Then |

√
f(x)| < ε and

√
f is continuous at

x = c. If f(c) 6= 0 then given ε > 0 there corresponds δ > 0 such that whenever |x− c| < δ, |f(x)−f(c)| < ε
√
f(c).

Then |
√
f(x)−

√
f(c)| = |f(x)− f(c)|

|
√
f(x) +

√
f(c)|

≤ |f(x)− f(c)|√
f(c)

< ε.

29. (a) f is continuous for x < 1, and for x > 1; lim
x→1−

f(x) = 5, lim
x→1+

f(x) = k, so if k = 5 then f is continuous for

all x.

(b) f is continuous for x < 2, and for x > 2; lim
x→2−

f(x) = 4k, lim
x→2+

f(x) = 4 + k, so if 4k = 4 + k, k = 4/3 then f

is continuous for all x.

30. (a) f is continuous for x < 3, and for x > 3; lim
x→3−

f(x) = k/9, lim
x→3+

f(x) = 0, so if k = 0 then f is continuous for

all x.

(b) f is continuous for x < 0, and for x > 0; lim
x→0−

f(x) doesn’t exist unless k = 0, and if so then lim
x→0−

f(x) =

0; lim
x→0+

f(x) = 9, so there is no k value which makes the function continuous everywhere.

31. f is continuous for x < −1, −1 < x < 2 and x > 2; lim
x→−1−

f(x) = 4, lim
x→−1+

f(x) = k, so k = 4 is required. Next,

lim
x→2−

f(x) = 3m+ k = 3m+ 4, lim
x→2+

f(x) = 9, so 3m+ 4 = 9,m = 5/3 and f is continuous everywhere if k = 4

and m = 5/3.

32. (a) No, f is not defined at x = 2. (b) No, f is not defined for x ≤ 2. (c) Yes. (d) No, see (b).
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33. (a)

y

x
c (b)

y

x
c

34. (a) f(c) = lim
x→c

f(x)

(b) lim
x→1

f(x) = 2, lim
x→1

g(x) = 1.

-1 0 1 2

2.5

y

x

1

1

(c) Define f(1) = 2 and redefine g(1) = 1.

35. (a) x = 0, lim
x→0−

f(x) = −1 6= +1 = lim
x→0+

f(x) so the discontinuity is not removable.

(b) x = −3; define f(−3) = −3 = lim
x→−3

f(x), then the discontinuity is removable.

(c) f is undefined at x = ±2; at x = 2, lim
x→2

f(x) = 1, so define f(2) = 1 and f becomes continuous there; at

x = −2, lim
x→−2

f(x) does not exist, so the discontinuity is not removable.

36. (a) f is not defined at x = 2; lim
x→2

f(x) = lim
x→2

x+ 2

x2 + 2x+ 4
=

1

3
, so define f(2) =

1

3
and f becomes continuous

there.

(b) lim
x→2−

f(x) = 1 6= 4 = lim
x→2+

f(x), so f has a nonremovable discontinuity at x = 2.

(c) lim
x→1

f(x) = 8 6= f(1), so f has a removable discontinuity at x = 1.

37. (a)

y

x

-5

5

5

Discontinuity at x = 1/2, not removable; at x = −3, removable.

(b) 2x2 + 5x− 3 = (2x− 1)(x+ 3)
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38. (a)

4

–4

–3 3

There appears to be one discontinuity near x = −1.52.

(b) One discontinuity at x ≈ −1.52.

39. Write f(x) = x3/5 = (x3)1/5 as the composition (Theorem 1.5.6) of the two continuous functions g(x) = x3 and
h(x) = x1/5; it is thus continuous.

40. x4 + 7x2 + 1 ≥ 1 > 0, thus f(x) is the composition of the polynomial x4 + 7x2 + 1, the square root
√
x, and the

function 1/x and is therefore continuous by Theorem 1.5.6.

41. Since f and g are continuous at x = c we know that lim
x→c

f(x) = f(c) and lim
x→c

g(x) = g(c). In the following we use

Theorem 1.2.2.

(a) f(c) + g(c) = lim
x→c

f(x) + lim
x→c

g(x) = lim
x→c

(f(x) + g(x)) so f + g is continuous at x = c.

(b) Same as (a) except the + sign becomes a − sign.

(c) f(c)g(c) = lim
x→c

f(x) lim
x→c

g(x) = lim
x→c

f(x)g(x) so fg is continuous at x = c.

42. A rational function is the quotient f(x)/g(x) of two polynomials f(x) and g(x). By Theorem 1.5.2 f and g are
continuous everywhere; by Theorem 1.5.3 f/g is continuous except when g(x) = 0.

43. (a) Let h = x− c, x = h+ c. Then by Theorem 1.5.5, lim
h→0

f(h+ c) = f( lim
h→0

(h+ c)) = f(c).

(b) With g(h) = f(c+h), lim
h→0

g(h) = lim
h→0

f(c+h) = f(c) = g(0), so g(h) is continuous at h = 0. That is, f(c+h)

is continuous at h = 0, so f is continuous at x = c.

44. The function h(x) = f(x) − g(x) is continuous on the interval [a, b], and satisfies h(a) > 0, h(b) < 0. The
Intermediate Value Theorem or Theorem 1.5.8 tells us that there is at least one solution of the equation on this
interval h(x) = 0, i.e. f(x) = g(x).

45. Of course such a function must be discontinuous. Let f(x) = 1 on 0 ≤ x < 1, and f(x) = −1 on 1 ≤ x ≤ 2.

46. (a) (i) No. (ii) Yes. (b) (i) No. (ii) No. (c) (i) No. (ii) No.

47. If f(x) = x3 + x2 − 2x− 1, then f(−1) = 1, f(1) = −1. The Intermediate Value Theorem gives us the result.

48. Since lim
x→−∞

p(x) = −∞ and lim
x→+∞

p(x) = +∞ (or vice versa, if the leading coefficient of p is negative), it follows

that for M = −1 there corresponds N1 < 0, and for M = 1 there is N2 > 0, such that p(x) < −1 for x < N1 and
p(x) > 1 for x > N2. We choose x1 < N1 and x2 > N2 and use Theorem 1.5.8 on the interval [x1, x2] to show the
existence of a solution of p(x) = 0.

49. For the negative root, use intervals on the x-axis as follows: [−2,−1]; since f(−1.3) < 0 and f(−1.2) > 0, the
midpoint x = −1.25 of [−1.3,−1.2] is the required approximation of the root. For the positive root use the interval
[0, 1]; since f(0.7) < 0 and f(0.8) > 0, the midpoint x = 0.75 of [0.7, 0.8] is the required approximation.

50. For the negative root, use intervals on the x-axis as follows: [−2,−1]; since f(−1.7) < 0 and f(−1.6) > 0, use
the interval [−1.7,−1.6]. Since f(−1.61) < 0 and f(−1.60) > 0 the midpoint x = −1.605 of [−1.61,−1.60] is the
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required approximation of the root. For the positive root use the interval [1, 2]; since f(1.3) > 0 and f(1.4) < 0,
use the interval [1.3, 1.4]. Since f(1.37) > 0 and f(1.38) < 0, the midpoint x = 1.375 of [1.37, 1.38] is the required
approximation.

51. For the positive root, use intervals on the x-axis as follows: [2, 3]; since f(2.2) < 0 and f(2.3) > 0, use the interval
[2.2, 2.3]. Since f(2.23) < 0 and f(2.24) > 0 the midpoint x = 2.235 of [2.23, 2.24] is the required approximation
of the root.

52. Assume the locations along the track are numbered with increasing x ≥ 0. Let TS(x) denote the time during the
sprint when the runner is located at point x, 0 ≤ x ≤ 100. Let TJ(x) denote the time when the runner is at the
point x on the return jog, measured so that TJ(100) = 0. Then TS(0) = 0, TS(100) > 0, TJ(100) = 0, TJ(0) > 0,
so that Exercise 44 applies and there exists an x0 such that TS(x0) = TJ(x0).

53. Consider the function f(θ) = T (θ + π)− T (θ). Note that T has period 2π, T (θ + 2π) = T (θ), so that f(θ + π) =
T (θ + 2π) − T (θ + π) = −(T (θ + π) − T (θ)) = −f(θ). Now if f(θ) ≡ 0, then the statement follows. Otherwise,
there exists θ such that f(θ) 6= 0 and then f(θ + π) has an opposite sign, and thus there is a t0 between θ and
θ + π such that f(t0) = 0 and the statement follows.

54. Let the ellipse be contained between the horizontal lines y = a and y = b, where a < b. The expression
|f(z1) − f(z2)| expresses the area of the ellipse that lies between the vertical lines x = z1 and x = z2, and
thus |f(z1) − f(z2)| ≤ (b − a)|z1 − z2|. Thus for a given ε > 0 there corresponds δ = ε/(b − a), such that if
|z1 − z2| < δ, then |f(z1)− f(z2)| ≤ (b− a)|z1 − z2| < (b− a)δ = ε which proves that f is a continuous function.

55. Since R and L are arbitrary, we can introduce coordinates so that L is the x-axis. Let f(z) be as in Exercise 54.
Then for large z, f(z) = area of ellipse, and for small z, f(z) = 0. By the Intermediate Value Theorem there is a
z1 such that f(z1) = half of the area of the ellipse.

56. (a)

y

x

0.4

1

0.2 0.8

(b) Let g(x) = x − f(x). Then g(x) is continuous, g(1) ≥ 0 and g(0) ≤ 0; by the Intermediate Value Theorem
there is a solution c in [0, 1] of g(c) = 0, which means f(c) = c.

Exercise Set 1.6

1. This is a composition of continuous functions, so it is continuous everywhere.

2. Discontinuity at x = π.

3. Discontinuities at x = nπ, n = 0,±1,±2, . . .

4. Discontinuities at x =
π

2
+ nπ, n = 0,±1,±2, . . .

5. Discontinuities at x = nπ, n = 0,±1,±2, . . .

6. Continuous everywhere.

7. Discontinuities at x =
π

6
+ 2nπ, and x =

5π

6
+ 2nπ, n = 0,±1,±2, . . .
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8. Discontinuities at x =
π

2
+ nπ, n = 0,±1,±2, . . .

9. sin−1 u is continuous for −1 ≤ u ≤ 1, so −1 ≤ 2x ≤ 1, or −1/2 ≤ x ≤ 1/2.

10. cos−1 u is defined and continuous for −1 ≤ u ≤ 1 which means −1 ≤ lnx ≤ 1, or 1/e ≤ x ≤ e.

11. (0, 3) ∪ (3,∞).

12. (−∞, 0) ∪ (0,+∞).

13. (−∞,−1] ∪ [1,∞).

14. (−3, 0) ∪ (0,∞).

15. (a) f(x) = sinx, g(x) = x3 + 7x+ 1. (b) f(x) = |x|, g(x) = sinx. (c) f(x) = x3, g(x) = cos(x+ 1).

16. (a) f(x) = |x|, g(x) = 3 + sin 2x. (b) f(x) = sinx, g(x) = sinx. (c) f(x) = x5 − 2x3 + 1,
g(x) = cosx.

17. lim
x→+∞

cos

(
1

x

)
= cos

(
lim

x→+∞

1

x

)
= cos 0 = 1.

18. lim
x→+∞

sin

(
πx

2− 3x

)
= sin

(
lim

x→+∞

πx

2− 3x

)
= sin

(
−π

3

)
= −
√

3

2
.

19. lim
x→+∞

sin−1

(
x

1− 2x

)
= sin−1

(
lim

x→+∞

x

1− 2x

)
= sin−1

(
−1

2

)
= −π

6
.

20. lim
x→+∞

ln

(
x+ 1

x

)
= ln

(
lim

x→+∞

x+ 1

x

)
= ln(1) = 0.

21. lim
x→0

esin x = e

(
lim
x→0

sinx
)

= e0 = 1.

22. lim
x→+∞

cos(2 tan−1 x) = cos( lim
x→+∞

2 tan−1 x) = cos(2(π/2)) = −1.

23. lim
θ→0

sin 3θ

θ
= 3 lim

θ→0

sin 3θ

3θ
= 3.

24. lim
h→0

sinh

2h
=

1

2
lim
h→0

sinh

h
=

1

2
.

25. lim
θ→0+

sin θ

θ2
=

(
lim
θ→0+

1

θ

)
lim
θ→0+

sin θ

θ
= +∞.

26. lim
θ→0+

sin2 θ

θ
=

(
lim
θ→0

sin θ

)
lim
θ→0

sin θ

θ
= 0.

27.
tan 7x

sin 3x
=

7

3 cos 7x
· sin 7x

7x
· 3x

sin 3x
, so lim

x→0

tan 7x

sin 3x
=

7

3 · 1
· 1 · 1 =

7

3
.

28.
sin 6x

sin 8x
=

6

8
· sin 6x

6x
· 8x

sin 8x
, so lim

x→0

sin 6x

sin 8x
=

6

8
· 1 · 1 =

3

4
.
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29. lim
x→0+

sinx

5
√
x

=
1

5
lim
x→0+

√
x lim
x→0+

sinx

x
= 0.

30. lim
x→0

sin2 x

3x2
=

1

3

(
lim
x→0

sinx

x

)2

=
1

3
.

31. lim
x→0

sinx2

x
=
(

lim
x→0

x
)(

lim
x→0

sinx2

x2

)
= 0.

32.
sinh

1− cosh
=

sinh

1− cosh
· 1 + cosh

1 + cosh
=

sinh(1 + cosh)

1− cos2 h
=

1 + cosh

sinh
; this implies that lim

h→0+
is +∞, and lim

h→0−
is −∞,

therefore the limit does not exist.

33.
t2

1− cos2 t
=

(
t

sin t

)2

, so lim
t→0

t2

1− cos2 t
= 1.

34. cos( 1
2π − x) = cos(1

2π) cosx+ sin( 1
2π) sinx = sinx, so lim

x→0

x

cos
(

1
2π − x

) = 1.

35.
θ2

1− cos θ
· 1 + cos θ

1 + cos θ
=
θ2(1 + cos θ)

1− cos2 θ
=

(
θ

sin θ

)2

(1 + cos θ), so lim
θ→0

θ2

1− cos θ
= (1)2 · 2 = 2.

36.
1− cos 3h

cos2 5h− 1
· 1 + cos 3h

1 + cos 3h
=

sin2 3h

− sin2 5h
· 1

1 + cos 3h
, so (using the result of problem 28)

lim
x→0

1− cos 3h

cos2 5h− 1
= lim
x→0

sin2 3h

− sin2 5h
· 1

1 + cos 3h
= −

(
3

5

)2

· 1

2
= − 9

50

37. lim
x→0+

sin

(
1

x

)
= lim
t→+∞

sin t, so the limit does not exist.

38. lim
x→0

x2 − 3 sinx

x
= lim
x→0

x− 3 lim
x→0

sinx

x
= −3.

39.
2− cos 3x− cos 4x

x
=

1− cos 3x

x
+

1− cos 4x

x
. Note that

1− cos 3x

x
=

1− cos 3x

x
· 1 + cos 3x

1 + cos 3x
=

sin2 3x

x(1 + cos 3x)
=

sin 3x

x
· sin 3x

1 + cos 3x
. Thus

lim
x→0

2− cos 3x− cos 4x

x
= lim
x→0

sin 3x

x
· sin 3x

1 + cos 3x
+ lim
x→0

sin 4x

x
· sin 4x

1 + cos 4x
= 3 · 0 + 4 · 0 = 0.

40.
tan 3x2 + sin2 5x

x2
=

3

cos 3x2
· sin 3x2

3x2
+ 25 · sin2 5x

(5x)2
, so

lim
x→0

tan 3x2 + sin2 5x

x2
= lim
x→0

3

cos 3x2
lim
x→0

sin 3x2

3x2
+ 25 lim

x→0

(
sin 5x

5x

)2

= 3 + 25 = 28.

41. (a) 4 4.5 4.9 5.1 5.5 6
0.093497 0.100932 0.100842 0.098845 0.091319 0.076497

The limit appears to be 0.1.

(b) Let t = x− 5. Then t→ 0 as x→ 5 and lim
x→5

sin(x− 5)

x2 − 25
= lim
x→5

1

x+ 5
lim
t→0

sin t

t
=

1

10
· 1 =

1

10
.
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42. (a) −2.1 −2.01 −2.001 −1.999 −1.99 −1.9
−1.09778 −1.00998 −1.00100 −0.99900 −0.98998 −0.89879

The limit appears to be −1.

(b) Let t = (x+2)(x+1). Then t→ 0 as x→ −2, and lim
x→−2

sin[(x+ 2)(x+ 1)]

x+ 2
= lim
x→−2

(x+1) lim
t→0

sin t

t
= −1 ·1 =

−1 by the Substitution Principle (Exercise 1.3.53).

43. True: let ε > 0 and δ = ε. Then if |x− (−1)| = |x+ 1| < δ then |f(x) + 5| < ε.

44. True; from the proof of Theorem 1.6.5 we have tanx ≥ x ≥ sinx for 0 < x < π/2, and the desired inequalities
follow immediately.

45. False; consider f(x) = tan−1 x.

46. True; by the Squeezing Theorem 1.6.4 | lim
x→0

xf(x)| ≤M lim
x→0
|x| = 0 and

∣∣∣∣ lim
x→+∞

f(x)

x

∣∣∣∣ ≤M lim
x→+∞

1

x
= 0.

47. (a) The student calculated x in degrees rather than radians.

(b) sinx◦ = sin t where x◦ is measured in degrees, t is measured in radians and t =
πx◦

180
. Thus lim

x◦→0

sinx◦

x◦
=

lim
t→0

sin t

(180t/π)
=

π

180
.

48. Denote θ by x in accordance with Figure 1.6.4. Let P have coordinates (cosx, sinx) and Q coordinates (1, 0) so

that c2(x) = (1− cosx)2 + sin2 x = 2(1− cosx). Since s = rθ = 1 ·x = x we have lim
x→0+

c2(x)

s2(x)
= lim
x→0+

2
1− cosx

x2
=

lim
x→0+

2
1− cosx

x2
· 1 + cosx

1 + cosx
= lim
x→0+

(
sinx

x

)2
2

1 + cosx
= 1.

49. lim
x→0−

f(x) = k lim
x→0

sin kx

kx cos kx
= k, lim

x→0+
f(x) = 2k2, so k = 2k2, and the nonzero solution is k =

1

2
.

50. No; sinx/|x| has unequal one-sided limits (+1 and −1).

51. (a) lim
t→0+

sin t

t
= 1.

(b) lim
t→0−

1− cos t

t
= 0 (Theorem 1.6.3).

(c) sin(π − t) = sin t, so lim
x→π

π − x
sinx

= lim
t→0

t

sin t
= 1.

52. Let t =
π

2
− π

x
. Then cos

(π
2
− t
)

= sin t, so lim
x→2

cos(π/x)

x− 2
= lim
t→0

(π − 2t) sin t

4t
= lim
t→0

π − 2t

4
lim
t→0

sin t

t
=
π

4
.

53. t = x− 1; sin(πx) = sin(πt+ π) = − sinπt; and lim
x→1

sin(πx)

x− 1
= − lim

t→0

sinπt

t
= −π.

54. t = x− π/4; tanx− 1 =
2 sin t

cos t− sin t
; lim
x→π/4

tanx− 1

x− π/4
= lim
t→0

2 sin t

t(cos t− sin t)
= 2.
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55. t = x − π/4, cos(t + π/4) = (
√

2/2)(cos t − sin t), sin(t + π/4) = (
√

2/2)(sin t + cos t), so
cosx− sinx

x− π/4
=

−
√

2 sin t

t
; lim
x→π/4

cosx− sinx

x− π/4
= −
√

2 lim
t→0

sin t

t
= −
√

2.

56. Let g(x) = f−1(x) and h(x) = f(x)/x when x 6= 0 and h(0) = L. Then lim
x→0

h(x) = L = h(0), so h is continuous

at x = 0. Apply Theorem 1.5.5 to h ◦ g to obtain that on the one hand h(g(0)) = L, and on the other h(g(x)) =
f(g(x))

g(x)
, x 6= 0, and lim

x→0
h(g(x)) = h(g(0)). Since f(g(x)) = x and g = f−1 this shows that lim

x→0

x

f−1(x)
= L.

57. lim
x→0

x

sin−1 x
= lim
x→0

sinx

x
= 1.

58. tan(tan−1 x) = x, so lim
x→0

tan−1 x

x
= lim
x→0

x

tanx
= ( lim

x→0
cosx) lim

x→0

x

sinx
= 1.

59. 5 lim
x→0

sin−1 5x

5x
= 5 lim

x→0

5x

sin 5x
= 5.

60. lim
x→1

1

x+ 1
lim
x→1

sin−1(x− 1)

x− 1
=

1

2
lim
x→1

x− 1

sin(x− 1)
=

1

2
.

61. −|x| ≤ x cos

(
50π

x

)
≤ |x|, which gives the desired result.

62. −x2 ≤ x2 sin

(
50π
3
√
x

)
≤ x2, which gives the desired result.

63. Since lim
x→0

sin(1/x) does not exist, no conclusions can be drawn.

64. lim
x→0

f(x) = 1 by the Squeezing Theorem.

–1

0

1

–1 1
x

y

y = cos x

y = 1 – x2

y = f (x)

65. lim
x→+∞

f(x) = 0 by the Squeezing Theorem.

y

x

-1

4
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66.

y

x

y

x

67. (a) Let f(x) = x− cosx; f(0) = −1, f (π/2) = π/2. By the IVT there must be a solution of f(x) = 0.

(b)

y

x

0

0.5

1

1.5

y = cos x

c/2

y = x

(c) 0.739

68. (a) f(x) = x+ sinx− 1; f(0) = −1, f (π/6) = π/6− 1/2 > 0. By the IVT there must be a solution of f(x) = 0
in the interval.

(b)

y

x

0

0.5

c/6

y = x

y = 1 –  sin x

(c) 0.511

69. (a) Gravity is strongest at the poles and weakest at the equator.

30 60 90

9.80

9.82

9.84

f

g

(b) Let g(φ) be the given function. Then g(38) < 9.8 and g(39) > 9.8, so by the Intermediate Value Theorem
there is a value c between 38 and 39 for which g(c) = 9.8 exactly.

Chapter 1 Review Exercises

1. (a) 1 (b) Does not exist. (c) Does not exist. (d) 1 (e) 3 (f) 0 (g) 0

(h) 2 (i) 1/2

2. (a) x 2.00001 2.0001 2.001 2.01 2.1 2.5

f(x) 0.250 0.250 0.250 0.249 0.244 0.222
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For x 6= 2, f(x) =
1

x+ 2
, so the limit is 1/4.

(b) x -0.01 -0.001 -0.0001 0.0001 0.001 0.01

f(x) 4.0021347 4.0000213 4.0000002 4.0000002 4.0000213 4.0021347

Use
tan 4x

x
=

sin 4x

x cos 4x
=

4

cos 4x
· sin 4x

4x
; the limit is 4.

3. (a) x -0.01 -0.001 -0.0001 0.0001 0.001 0.01

f(x) 0.402 0.405 0.405 0.406 0.406 0.409

(b)

y

x

0.5

-1 1

4. x 2.9 2.99 2.999 3.001 3.01 3.1

f(x) 5.357 5.526 5.543 5.547 5.564 5.742

5. The limit is
(−1)3 − (−1)2

−1− 1
= 1.

6. For x 6= 1,
x3 − x2

x− 1
= x2, so lim

x→1

x3 − x2

x− 1
= 1.

7. If x 6= −3 then
3x+ 9

x2 + 4x+ 3
=

3

x+ 1
with limit −3

2
.

8. The limit is −∞.

9. By the highest degree terms, the limit is
25

3
=

32

3
.

10.

√
x2 + 4− 2

x2
·
√
x2 + 4 + 2√
x2 + 4 + 2

=
x2

x2(
√
x2 + 4 + 2)

=
1√

x2 + 4 + 2
, so lim

x→0

√
x2 + 4− 2

x2
= lim
x→0

1√
x2 + 4 + 2

=
1

4
.

11. (a) y = 0. (b) None. (c) y = 2.

12. (a)
√

5, no limit,
√

10,
√

10, no limit, +∞, no limit.

(b) −1,+1,−1,−1, no limit, −1,+1

13. If x 6= 0, then
sin 3x

tan 3x
= cos 3x, and the limit is 1.

14. If x 6= 0, then
x sinx

1− cosx
· 1 + cosx

1 + cosx
=

x

sinx
(1 + cosx), so the limit is 2.

15. If x 6= 0, then
3x− sin(kx)

x
= 3− k sin(kx)

kx
, so the limit is 3− k.

16. lim
θ→0

tan

(
1− cos θ

θ

)
= tan

(
lim
θ→0

1− cos θ

θ

)
= tan

(
lim
θ→0

1− cos2 θ

θ(1 + cos θ)

)
= tan

(
lim
θ→0

sin θ

θ
· sin θ

(1 + cos θ)

)
= 0.
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17. As t→ π/2+, tan t→ −∞, so the limit in question is 0.

18. ln(2 sin θ cos θ)− ln tan θ = ln 2 + 2 ln cos θ, so the limit is ln 2.

19.

(
1 +

3

x

)−x
=

[(
1 +

3

x

)x/3](−3)

, so the limit is e−3.

20.
(

1 +
a

x

)bx
=

[(
1 +

a

x

)x/a](ab)

, so the limit is eab.

21. $2,001.60, $2,009.66, $2,013.62, $2013.75.

23. (a) f(x) = 2x/(x− 1).

(b)

y

x

10

10

24. Given any window of height 2ε centered at the point x = a, y = L there exists a width 2δ such that the window
of width 2δ and height 2ε contains all points of the graph of the function for x in that interval.

25. (a) lim
x→2

f(x) = 5.

(b) δ = (3/4) · (0.048/8) = 0.0045.

26. δ ≈ 0.07747 (use a graphing utility).

27. (a) |4x− 7− 1| < 0.01 means 4|x− 2| < 0.01, or |x− 2| < 0.0025, so δ = 0.0025.

(b)

∣∣∣∣4x2 − 9

2x− 3
− 6

∣∣∣∣ < 0.05 means |2x+ 3− 6| < 0.05, or |x− 1.5| < 0.025, so δ = 0.025.

(c) |x2 − 16| < 0.001; if δ < 1 then |x + 4| < 9 if |x − 4| < 1; then |x2 − 16| = |x − 4||x + 4| ≤ 9|x − 4| < 0.001
provided |x− 4| < 0.001/9 = 1/9000, take δ = 1/9000, then |x2 − 16| < 9|x− 4| < 9(1/9000) = 1/1000 = 0.001.

28. (a) Given ε > 0 then |4x− 7− 1| < ε provided |x− 2| < ε/4, take δ = ε/4.

(b) Given ε > 0 the inequality

∣∣∣∣4x2 − 9

2x− 3
− 6

∣∣∣∣ < ε holds if |2x+ 3− 6| < ε, or |x− 1.5| < ε/2, take δ = ε/2.

29. Let ε = f(x0)/2 > 0; then there corresponds a δ > 0 such that if |x − x0| < δ then |f(x) − f(x0)| < ε,
−ε < f(x)− f(x0) < ε, f(x) > f(x0)− ε = f(x0)/2 > 0, for x0 − δ < x < x0 + δ.

30. (a) x 1.1 1.01 1.001 1.0001 1.00001 1.000001

f(x) 0.49 0.54 0.540 0.5403 0.54030 0.54030

(b) cos 1
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31. (a) f is not defined at x = ±1, continuous elsewhere.

(b) None; continuous everywhere.

(c) f is not defined at x = 0 and x = −3, continuous elsewhere.

32. (a) Continuous everywhere except x = ±3.

(b) Defined and continuous for x ≤ −1, x ≥ 1.

(c) Defined and continuous for x > 0.

33. For x < 2 f is a polynomial and is continuous; for x > 2 f is a polynomial and is continuous. At x = 2,
f(2) = −13 6= 13 = lim

x→2+
f(x), so f is not continuous there.

35. f(x) = −1 for a ≤ x < a+ b

2
and f(x) = 1 for

a+ b

2
≤ x ≤ b; f does not take the value 0.

36. If, on the contrary, f(x0) < 0 for some x0 in [0, 1], then by the Intermediate Value Theorem we would have a
solution of f(x) = 0 in [0, x0], contrary to the hypothesis.

37. f(−6) = 185, f(0) = −1, f(2) = 65; apply Theorem 1.5.8 twice, once on [−6, 0] and once on [0, 2].

Chapter 1 Making Connections

1. Let P (x, x2) be an arbitrary point on the curve, let Q(−x, x2) be its reflection through the y-axis, let O(0, 0) be
the origin. The perpendicular bisector of the line which connects P with O meets the y-axis at a point C(0, λ(x)),
whose ordinate is as yet unknown. A segment of the bisector is also the altitude of the triangle ∆OPC which is
isosceles, so that CP = CO.

Using the symmetrically opposing point Q in the second quadrant, we see that OP = OQ too, and thus C is
equidistant from the three points O,P,Q and is thus the center of the unique circle that passes through the three
points.

2. Let R be the midpoint of the line segment connecting P and O, so that R(x/2, x2/2). We start with the

Pythagorean Theorem OC
2

= OR
2

+ CR
2
, or λ2 = (x/2)2 + (x2/2)2 + (x/2)2 + (λ − x2/2)2. Solving for λ

we obtain λx2 = (x2 + x4)/2, λ = 1/2 + x2/2.

3. Replace the parabola with the general curve y = f(x) which passes through P (x, f(x)) and S(0, f(0)). Let the
perpendicular bisector of the line through S and P meet the y-axis at C(0, λ), and let R(x/2, (f(x) − λ)/2)

be the midpoint of P and S. By the Pythagorean Theorem, CS
2

= RS
2

+ CR
2
, or (λ − f(0))2 = x2/4 +[

f(x) + f(0)

2
− f(0)

]2

+ x2/4 +

[
f(x) + f(0)

2
− λ

]2

,

which yields λ =
1

2

[
f(0) + f(x) +

x2

f(x)− f(0)

]
.

4. (a) f(0) = 0, C(x) = 1
8 + 2x2, x2 + (y − 1

8 )2 =
(

1
8

)2
.

(b) f(0) = 0, C(x) = 1
2 (secx+ x2), x2 + (y − 1

2 )2 =
(

1
2

)2
.

(c) f(0) = 0, C(x) = 1
2

x2 + |x|2

|x|
, x2 + y2 = 0 (not a circle).

(d) f(0) = 0, C(x) = 1
2

x(1 + sin2 x)

sinx
, x2 +

(
y − 1

2

)2

=

(
1

2

)2

.
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(e) f(0) = 1, C(x) = 1
2

x2 − sin2 x

cosx− 1
, x2 + y2 = 1.

(f) f(0) = 0, C(x) =
1

2g(x)
+
x2g(x)

2
, x2 +

(
y − 1

2g(0)

)2

=

(
1

2g(0)

)2

.

(g) f(0) = 0, C(x) = 1
2

1 + x6

x2
, limit does not exist, osculating circle does not exist.



The Derivative

Exercise Set 2.1

1. (a) mtan = (50− 10)/(15− 5) = 40/10 = 4 m/s.

(b)

May 25, 2011 17:52 answers Sheet number 7 Page number 7 cyan magenta yellow black

Answers to Odd-Numbered Exercises A7

41. (a)

x

f (x)

4

0.093497

4.5

0.100932

4.9

0.100842

5.1

0.098845

5.5

0.091319

6

0.076497

The limit appears to be 1
10 . (b) 1

10
Responses to True–False questions may be abridged to save space.
43. True; use the Squeezing Theorem.
45. False; consider f(x) = tan−1 x.

47. (a) Using degrees instead of radians (b) π/180
49. k = 1

2 51. (a) 1 (b) 0 (c) 1
53. −π 55. −

√
2 57. 1 59. 5 61. −|x| ≤ x cos(50π/x) ≤ |x|

63. lim
x→0

sin(1/x) does not exist

65. The limit is 0.

−1

1 x

y

y = f (x)
y =  x

1

y = − x
1

67. (b)
1

x

y

6

y = x

y = cos x

(c) 0.739

69. (a) Gravity is strongest at the
poles and weakest at the equator.

3015 45 60 75 90

9.78

9.79

9.81

9.82

9.83

f

g

! Chapter 1 Review Exercises (Page XX)
1. (a) 1 (b) does not exist (c) does not exist (d) 1 (e) 3 (f ) 0

(g) 0 (h) 2 (i) 1
2

3. (a) 0.405 5. 1 7. −3/2 9. 32/3
11. (a) y = 0 (b) none (c) y = 2 13. 1 15. 3 − k 17. 0
19. e−3 21. $2001.60, $2009.66, $2013.62, $2013.75
23. (a) 2x/(x − 1) is one example.
25. (a) lim

x→2
f(x) = 5 (b) δ = 0.0045

27. (a) δ = 0.0025 (b) δ = 0.0025 (c) δ = 1/9000
(Some larger values also work.)

31. (a) −1, 1 (b) none (c) −3, 0 33. no; not continuous at x = 2
35. Consider f(x) = x for x %= 0, f(0) = 1, a = −1, b = 1, k = 0.

! Chapter 1 Making Connections (Page XX)
Where correct answers to a Making Connections exercise may vary, no
answer is listed. Sample answers for these questions are available on the
Book Companion Site.

4. (a) The circle through the origin with center
(
0, 1

8

)

(b) The circle through the origin with center
(
0, 1

2

)

(c) The circle does not exist.
(d) The circle through the origin with center

(
0, 1

2

)

(e) The circle through (0, 1) with center at the origin.

(f ) The circle through the origin with center
(

0,
1

2g(0)

)

(g) The circle does not exist.

! Exercise Set 2.1 (Page 000)
1. (a) 4 m/s (b)

50 10 15 20

1
2
3
4
5

Time (s)

V
el

oc
ity

 (m
/s

)

3. (a) 0 cm/s (b) t = 0, t = 2, and t = 4.2 (c) maximum: t = 1;
minimum: t = 3 (d) −7.5 cm/s

5. straight line with slope equal to the velocity
7. Answers may vary.

x

y

L

y = f(x)

9. Answers may vary.

x

y

L

y = f(x)

11. (a) 2 (b) 0 (c) 4x0
(d)

−2 −1 1 2
−1

1
2
3

x

y

Secant

Tangent
(x-axis)

13. (a) − 1
6 (b) − 1

4 (c) −1/x2
0

(d)

Tangent

Secant 4

4

x

y

15. (a) 2x0 (b) −2 17. (a) 1 + 1
2
√

x0
(b) 3

2

Responses to True–False questions may be abridged to save space.
19. True; set h = x − 1, so x = 1 + h and h→0 is equivalent to x→1.
21. False; velocity is a ratio of change in position to change in time.
23. (a) 72◦ F at about 4:30 p.m. (b) 4◦ F/h (c) −7◦ F/h at about 9 p.m.
25. (a) first year

(b) 6 cm/year
(c) 10 cm/year at about age 14

(d) Growth rate (cm/year)

5 10 15 20

10

20

30

40

t (yr)

27. (a) 19,200 ft (b) 480 ft/s (c) 66.94 ft/s (d) 1440 ft/s
29. (a) 720 ft/min (b) 192 ft/min

! Exercise Set 2.2 (Page 000)
1. 2, 0, −2, −1
3. (b) 3 (c) 3

5.

x

y

−1

1

7. y = 5x − 16
9. 4x, y = 4x − 2

11. 3x2; y = 0

13.
1

2
√

x + 1
; y = 1

6 x + 5
3 15. −1/x2 17. 2x − 1

19. −1/(2x3/2) 21. 8t + 1
23. (a) D (b) F (c) B (d) C (e) A (f ) E
25. (a)

x

y (b)

x

y

−1

2. At t = 4 s, mtan ≈ (90− 0)/(10− 2) = 90/8 = 11.25 m/s. At t = 8 s, mtan ≈ (140− 0)/(10− 4) = 140/6 ≈ 23.33
m/s.

3. (a) (10− 10)/(3− 0) = 0 cm/s.

(b) t = 0, t = 2, t = 4.2, and t = 8 (horizontal tangent line).

(c) maximum: t = 1 (slope > 0), minimum: t = 3 (slope < 0).

(d) (3− 18)/(4− 2) = −7.5 cm/s (slope of estimated tangent line to curve at t = 3).

4. (a) decreasing (slope of tangent line decreases with increasing time)

(b) increasing (slope of tangent line increases with increasing time)

(c) increasing (slope of tangent line increases with increasing time)

(d) decreasing (slope of tangent line decreases with increasing time)

5. It is a straight line with slope equal to the velocity.

6. The velocity increases from time 0 to time t0, so the slope of the curve increases during that time. From time t0 to
time t1, the velocity, and the slope, decrease. At time t1, the velocity, and hence the slope, instantaneously drop
to zero, so there is a sharp bend in the curve at that point.

t

s

t t0 1

71
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7.

8.

9.

10.

11. (a) msec =
f(1)− f(0)

1− 0
=

2

1
= 2

(b) mtan = lim
x1→0

f(x1)− f(0)

x1 − 0
= lim
x1→0

2x2
1 − 0

x1 − 0
= lim
x1→0

2x1 = 0

(c) mtan = lim
x1→x0

f(x1)− f(x0)

x1 − x0
= lim
x1→x0

2x2
1 − 2x2

0

x1 − x0
= lim
x1→x0

(2x1 + 2x0) = 4x0

(d) The tangent line is the x-axis.

1

2

x

y

Tangent

Secant

12. (a) msec =
f(2)− f(1)

2− 1
=

23 − 13

1
= 7

(b) mtan = lim
x1→1

f(x1)− f(1)

x1 − 1
= lim
x1→1

x3
1 − 1

x1 − 1
= lim
x1→1

(x1 − 1)(x2
1 + x1 + 1)

x1 − 1
= lim
x1→1

(x2
1 + x1 + 1) = 3
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(c) mtan = lim
x1→x0

f(x1)− f(x0)

x1 − x0
= lim
x1→x0

x3
1 − x3

0

x1 − x0
= lim
x1→x0

(x2
1 + x1x0 + x2

0) = 3x2
0

(d)

x

y

Secant

Tangent

5

9

13. (a) msec =
f(3)− f(2)

3− 2
=

1/3− 1/2

1
= − 1

6

(b) mtan = lim
x1→2

f(x1)− f(2)

x1 − 2
= lim
x1→2

1/x1 − 1/2

x1 − 2
= lim
x1→2

2− x1

2x1(x1 − 2)
= lim
x1→2

−1

2x1
= − 1

4

(c) mtan = lim
x1→x0

f(x1)− f(x0)

x1 − x0
= lim
x1→x0

1/x1 − 1/x0

x1 − x0
= lim
x1→x0

x0 − x1

x0x1(x1 − x0)
= lim
x1→x0

−1

x0x1
= − 1

x2
0

(d)

x

y

Secant

Tangent1

4

14. (a) msec =
f(2)− f(1)

2− 1
=

1/4− 1

1
= − 3

4

(b) mtan = lim
x1→1

f(x1)− f(1)

x1 − 1
= lim
x1→1

1/x2
1 − 1

x1 − 1
= lim
x1→1

1− x2
1

x2
1(x1 − 1)

= lim
x1→1

−(x1 + 1)

x2
1

= −2

(c) mtan = lim
x1→x0

f(x1)− f(x0)

x1 − x0
= lim
x1→x0

1/x2
1 − 1/x2

0

x1 − x0
= lim
x1→x0

x2
0 − x2

1

x2
0x

2
1(x1 − x0)

= lim
x1→x0

−(x1 + x0)

x2
0x

2
1

= − 2

x3
0

(d)

x

y

Tangent Secant

1

2

15. (a) mtan = lim
x1→x0

f(x1)− f(x0)

x1 − x0
= lim
x1→x0

(x2
1 − 1)− (x2

0 − 1)

x1 − x0
= lim
x1→x0

(x2
1 − x2

0)

x1 − x0
= lim
x1→x0

(x1 + x0) = 2x0

(b) mtan = 2(−1) = −2
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16. (a) mtan = lim
x1→x0

f(x1)− f(x0)

x1 − x0
= lim
x1→x0

(x2
1 + 3x1 + 2)− (x2

0 + 3x0 + 2)

x1 − x0
= lim
x1→x0

(x2
1 − x2

0) + 3(x1 − x0)

x1 − x0
=

= lim
x1→x0

(x1 + x0 + 3) = 2x0 + 3

(b) mtan = 2(2) + 3 = 7

17. (a) mtan = lim
x1→x0

f(x1)− f(x0)

x1 − x0
= lim
x1→x0

(x1 +
√
x1 )− (x0 +

√
x0 )

x1 − x0
= lim
x1→x0

(
1 +

1√
x1 +

√
x0

)
= 1 +

1

2
√
x0

(b) mtan = 1 +
1

2
√

1
=

3

2

18. (a) mtan = lim
x1→x0

f(x1)− f(x0)

x1 − x0
= lim
x1→x0

1/
√
x1 − 1/

√
x0

x1 − x0
= lim
x1→x0

√
x0 −

√
x1√

x0
√
x1 (x1 − x0)

=

= lim
x1→x0

−1√
x0
√
x1 (
√
x1 +

√
x0 )

= − 1

2x
3/2
0

(b) mtan = − 1

2(4)3/2
= − 1

16

19. True. Let x = 1 + h.

20. False. A secant line meets the curve in at least two places, but a tangent line might meet it only once.

21. False. Velocity represents the rate at which position changes.

22. True. The units of the rate of change are obtained by dividing the units of f(x) (inches) by the units of x (tons).

23. (a) 72◦F at about 4:30 P.M. (b) About (67− 43)/6 = 4◦F/h.

(c) Decreasing most rapidly at about 9 P.M.; rate of change of temperature is about −7◦F/h (slope of estimated
tangent line to curve at 9 P.M.).

24. For V = 10 the slope of the tangent line is about (0− 5)/(20− 0) = −0.25 atm/L, for V = 25 the slope is about
(1− 2)/(25− 0) = −0.04 atm/L.

25. (a) During the first year after birth.

(b) About 6 cm/year (slope of estimated tangent line at age 5).

(c) The growth rate is greatest at about age 14; about 10 cm/year.

(d)

t (yrs)

Growth rate
(cm/year)

5 10 15 20

10

20

30

40

26. (a) The object falls until s = 0. This happens when 1250 − 16t2 = 0, so t =
√

1250/16 =
√

78.125 >
√

25 = 5;
hence the object is still falling at t = 5 sec.

(b)
f(6)− f(5)

6− 5
=

674− 850

1
= −176. The average velocity is −176 ft/s.
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(c) vinst = lim
h→0

f(5 + h)− f(5)

h
= lim

h→0

[1250− 16(5 + h)2]− 850

h
= lim

h→0

−160h− 16h2

h
= lim

h→0
(−160 − 16h) =

−160 ft/s.

27. (a) 0.3 · 403 = 19,200 ft (b) vave = 19,200/40 = 480 ft/s

(c) Solve s = 0.3t3 = 1000; t ≈ 14.938 so vave ≈ 1000/14.938 ≈ 66.943 ft/s.

(d) vinst = lim
h→0

0.3(40 + h)3 − 0.3 · 403

h
= lim
h→0

0.3(4800h+ 120h2 + h3)

h
= lim
h→0

0.3(4800 + 120h+ h2) = 1440 ft/s

28. (a) vave =
4.5(12)2 − 4.5(0)2

12− 0
= 54 ft/s

(b) vinst = lim
t1→6

4.5t21 − 4.5(6)2

t1 − 6
= lim
t1→6

4.5(t21 − 36)

t1 − 6
= lim
t1→6

4.5(t1 + 6)(t1 − 6)

t1 − 6
= lim
t1→6

4.5(t1 + 6) = 54 ft/s

29. (a) vave =
6(4)4 − 6(2)4

4− 2
= 720 ft/min

(b) vinst = lim
t1→2

6t41 − 6(2)4

t1 − 2
= lim
t1→2

6(t41 − 16)

t1 − 2
= lim
t1→2

6(t21 + 4)(t21 − 4)

t1 − 2
= lim
t1→2

6(t21 + 4)(t1 + 2) = 192 ft/min

30. See the discussion before Definition 2.1.1.

31. The instantaneous velocity at t = 1 equals the limit as h→ 0 of the average velocity during the interval between
t = 1 and t = 1 + h.

Exercise Set 2.2

1. f ′(1) = 2.5, f ′(3) = 0, f ′(5) = −2.5, f ′(6) = −1.

2. f ′(4) < f ′(0) < f ′(2) < 0 < f ′(−3).

3. (a) f ′(a) is the slope of the tangent line. (b) f ′(2) = m = 3 (c) The same, f ′(2) = 3.

4. f ′(1) =
2− (−1)

1− (−1)
=

3

2

5.

-1

x

y
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6.

x

y

7. y − (−1) = 5(x− 3), y = 5x− 16

8. y − 3 = −4(x+ 2), y = −4x− 5

9. f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim
h→0

2(x+ h)2 − 2x2

h
= lim
h→0

4xh+ 2h2

h
= 4x; f ′(1) = 4 so the tangent line is given

by y − 2 = 4(x− 1), y = 4x− 2.

10. f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim
h→0

1/(x+ h)2 − 1/x2

h
= lim
h→0

x2 − (x+ h)2

hx2(x+ h)2
= lim
h→0

−2xh− h2

hx2(x+ h)2
= lim
h→0

−2x− h
x2(x+ h)2

=

− 2

x3
; f ′(−1) = 2 so the tangent line is given by y − 1 = 2(x+ 1), y = 2x+ 3.

11. f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)3 − x3

h
= lim

h→0
(3x2 + 3xh + h2) = 3x2; f ′(0) = 0 so the tangent line is

given by y − 0 = 0(x− 0), y = 0.

12. f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim
h→0

[2(x+ h)3 + 1]− [2x3 + 1]

h
= lim
h→0

(6x2 + 6xh+ 2h2) = 6x2; f(−1) = 2(−1)3 +

1 = −1 and f ′(−1) = 6 so the tangent line is given by y + 1 = 6(x+ 1), y = 6x+ 5.

13. f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

√
x+ 1 + h−

√
x+ 1

h
= lim

h→0

√
x+ 1 + h−

√
x+ 1

h

√
x+ 1 + h+

√
x+ 1√

x+ 1 + h+
√
x+ 1

=

lim
h→0

h

h(
√
x+ 1 + h+

√
x+ 1)

=
1

2
√
x+ 1

; f(8) =
√

8 + 1 = 3 and f ′(8) =
1

6
so the tangent line is given by

y − 3 =
1

6
(x− 8), y =

1

6
x+

5

3
.

14. f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim
h→0

√
2x+ 2h+ 1−

√
2x+ 1

h

√
2x+ 2h+ 1 +

√
2x+ 1√

2x+ 2h+ 1 +
√

2x+ 1
=

= lim
h→0

2h

h(
√

2x+ 2h+ 1 +
√

2x+ 1)
= lim

h→0

2√
2x+ 2h+ 1 +

√
2x+ 1

=
1√

2x+ 1
; f(4) =

√
2 · 4 + 1 =

√
9 = 3 and

f ′(4) = 1/3 so the tangent line is given by y − 3 =
1

3
(x− 4), y =

1

3
x+

5

3
.

15. f ′(x) = lim
∆x→0

1

x+ ∆x
− 1

x
∆x

= lim
∆x→0

x− (x+ ∆x)

x(x+ ∆x)

∆x
= lim

∆x→0

−∆x

x∆x(x+ ∆x)
= lim

∆x→0
− 1

x(x+ ∆x)
= − 1

x2
.

16. f ′(x) = lim
∆x→0

1

(x+ ∆x) + 1
− 1

x+ 1

∆x
= lim

∆x→0

(x+ 1)− (x+ ∆x+ 1)

(x+ 1)(x+ ∆x+ 1)

∆x
= lim

∆x→0

x+ 1− x−∆x− 1

∆x(x+ 1)(x+ ∆x+ 1)
=

= lim∆x→0
−∆x

∆x(x+1)(x+∆x+1) = lim
∆x→0

−1

(x+ 1)(x+ ∆x+ 1)
= − 1

(x+ 1)2
.

17. f ′(x) = lim
∆x→0

(x+ ∆x)2 − (x+ ∆x)− (x2 − x)

∆x
= lim

∆x→0

2x∆x+ (∆x)2 −∆x

∆x
= lim

∆x→0
(2x− 1 + ∆x) = 2x− 1.
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18. f ′(x) = lim
∆x→0

(x+ ∆x)4 − x4

∆x
= lim

∆x→0

4x3∆x+ 6x2(∆x)2 + 4x(∆x)3 + (∆x)4

∆x
=

= lim
∆x→0

(4x3 + 6x2∆x+ 4x(∆x)2 + (∆x)3) = 4x3.

19. f ′(x) = lim
∆x→0

1√
x+ ∆x

− 1√
x

∆x
= lim

∆x→0

√
x−
√
x+ ∆x

∆x
√
x
√
x+ ∆x

= lim
∆x→0

x− (x+ ∆x)

∆x
√
x
√
x+ ∆x(

√
x+
√
x+ ∆x)

=

= lim
∆x→0

−1√
x
√
x+ ∆x(

√
x+
√
x+ ∆x)

= − 1

2x3/2
.

20. f ′(x) = lim
∆x→0

1√
x+ ∆x− 1

− 1√
x− 1

∆x
= lim

∆x→0

√
x− 1−

√
x+ ∆x− 1

∆x
√
x− 1

√
x+ ∆x− 1

√
x− 1 +

√
x+ ∆x− 1√

x− 1 +
√
x+ ∆x− 1

=

= lim
∆x→0

−∆x

∆x
√
x− 1

√
x+ ∆x− 1(

√
x− 1 +

√
x+ ∆x− 1)

= lim
∆x→0

−1√
x− 1

√
x+ ∆x− 1(

√
x− 1 +

√
x+ ∆x− 1)

=

− 1

2(x− 1)3/2
.

21. f ′(t) = lim
h→0

f(t+ h)− f(t)

h
= lim

h→0

[4(t+ h)2 + (t+ h)]− [4t2 + t]

h
= lim

h→0

4t2 + 8th+ 4h2 + t+ h− 4t2 − t
h

=

lim
h→0

8th+ 4h2 + h

h
= lim
h→0

(8t+ 4h+ 1) = 8t+ 1.

22.
dV

dr
= lim
h→0

4

3
π(r + h)3 − 4

3
πr3

h
= lim
h→0

4

3
π(r3 + 3r2h+ 3rh2 + h3 − r3)

h
= lim
h→0

4

3
π(3r2 + 3rh+ h2) = 4πr2.

23. (a) D (b) F (c) B (d) C (e) A (f) E

24. f ′(
√

2/2) is the slope of the tangent line to the unit circle at (
√

2/2,
√

2/2). This line is perpendicular to the line
y = x, so its slope is -1.

x

m = –1

y

1

25. (a)

x

y

(b)

x

y

–1

(c)

x

y

1 2

26. (a)

x

y

(b)

x

y

(c)

x

y
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27. False. If the tangent line is horizontal then f ′(a) = 0.

28. True. f ′(−2) equals the slope of the tangent line.

29. False. E.g. |x| is continuous but not differentiable at x = 0.

30. True. See Theorem 2.2.3.

31. (a) f(x) =
√
x and a = 1 (b) f(x) = x2 and a = 3

32. (a) f(x) = cosx and a = π (b) f(x) = x7 and a = 1

33.
dy

dx
= lim
h→0

(1− (x+ h)2)− (1− x2)

h
= lim
h→0

−2xh− h2

h
= lim
h→0

(−2x− h) = −2x, and
dy

dx

∣∣∣∣
x=1

= −2.

34.
dy

dx
= lim
h→0

x+ 2 + h

x+ h
− x+ 2

x
h

= lim
h→0

x(x+ 2 + h)− (x+ 2)(x+ h)

hx(x+ h)
= lim
h→0

−2

x(x+ h)
=
−2

x2
, and

dy

dx

∣∣∣∣
x=−2

= −1

2
.

35. y = −2x+ 1

5

–2 2

–3

36.

1.5

0
0 2.5

37. (b) w 1.5 1.1 1.01 1.001 1.0001 1.00001

f(w)− f(1)

w − 1
1.6569 1.4355 1.3911 1.3868 1.3863 1.3863

w 0.5 0.9 0.99 0.999 0.9999 0.99999

f(w)− f(1)

w − 1
1.1716 1.3393 1.3815 1.3858 1.3863 1.3863

38. (b)
w

π

4
+ 0.5

π

4
+ 0.1

π

4
+ 0.01

π

4
+ 0.001

π

4
+ 0.0001

π

4
+ 0.00001

f(w)− f(π/4)

w − π/4 0.50489 0.67060 0.70356 0.70675 0.70707 0.70710

w
π

4
− 0.5

π

4
− 0.1

π

4
− 0.01

π

4
− 0.001

π

4
− 0.0001

π

4
− 0.00001

f(w)− f(π/4)

w − π/4 0.85114 0.74126 0.71063 0.70746 0.70714 0.70711
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39. (a)
f(3)− f(1)

3− 1
=

2.2− 2.12

2
= 0.04;

f(2)− f(1)

2− 1
=

2.34− 2.12

1
= 0.22;

f(2)− f(0)

2− 0
=

2.34− 0.58

2
= 0.88.

(b) The tangent line at x = 1 appears to have slope about 0.8, so
f(2)− f(0)

2− 0
gives the best approximation and

f(3)− f(1)

3− 1
gives the worst.

40. (a) f ′(0.5) ≈ f(1)− f(0)

1− 0
=

2.12− 0.58

1
= 1.54.

(b) f ′(2.5) ≈ f(3)− f(2)

3− 2
=

2.2− 2.34

1
= −0.14.

41. (a) dollars/ft

(b) f ′(x) is roughly the price per additional foot.

(c) If each additional foot costs extra money (this is to be expected) then f ′(x) remains positive.

(d) From the approximation 1000 = f ′(300) ≈ f(301)− f(300)

301− 300
we see that f(301) ≈ f(300) + 1000, so the extra

foot will cost around $1000.

42. (a)
gallons

dollars/gallon
= gallons2/dollar

(b) The increase in the amount of paint that would be sold for one extra dollar per gallon.

(c) It should be negative since an increase in the price of paint would decrease the amount of paint sold.

(d) From −100 = f ′(10) ≈ f(11)− f(10)

11− 10
we see that f(11) ≈ f(10)−100, so an increase of one dollar per gallon

would decrease the amount of paint sold by around 100 gallons.

43. (a) F ≈ 200 lb, dF/dθ ≈ 50 (b) µ = (dF/dθ)/F ≈ 50/200 = 0.25

44. The derivative at time t = 100 of the velocity with respect to time is equal to the slope of the tangent line, which

is approximately m ≈ 12500− 0

140− 40
= 125 ft/s2. Thus the mass is approximately M(100) ≈ T

dv/dt
=

7680982 lb

125 ft/s
2 ≈

61000 slugs.

45. (a) T ≈ 115◦F, dT/dt ≈ −3.35◦F/min (b) k = (dT/dt)/(T − T0) ≈ (−3.35)/(115− 75) = −0.084

46. (a) lim
x→0

f(x) = lim
x→0

3
√
x = 0 = f(0), so f is continuous at x = 0. lim

h→0

f(0 + h)− f(0)

h
= lim

h→0

3
√
h− 0

h
=

lim
h→0

1

h2/3
= +∞, so f ′(0) does not exist.

x

y

2–2

2
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(b) lim
x→2

f(x) = lim
x→2

(x − 2)2/3 = 0 = f(2) so f is continuous at x = 2. lim
h→0

f(2 + h)− f(2)

h
= lim

h→0

h2/3 − 0

h
=

lim
h→0

1

h1/3
which does not exist so f ′(2) does not exist.

x

y

2

5

47. lim
x→1−

f(x) = lim
x→1+

f(x) = f(1), so f is continuous at x = 1. lim
h→0−

f(1 + h)− f(1)

h
= lim

h→0−

[(1 + h)2 + 1]− 2

h
=

lim
h→0−

(2 + h) = 2; lim
h→0+

f(1 + h)− f(1)

h
= lim
h→0+

2(1 + h)− 2

h
= lim
h→0+

2 = 2, so f ′(1) = 2.

x

y

3–3

5

48. lim
x→1−

f(x) = lim
x→1+

f(x) = f(1) so f is continuous at x = 1. lim
h→0−

f(1 + h)− f(1)

h
= lim

h→0−

[(1 + h)2 + 2]− 3

h
=

lim
h→0−

(2 + h) = 2; lim
h→0+

f(1 + h)− f(1)

h
= lim
h→0+

[(1 + h) + 2]− 3

h
= lim
h→0+

1 = 1, so f ′(1) does not exist.

x

y

3–3

5

49. Since −|x| ≤ x sin(1/x) ≤ |x| it follows by the Squeezing Theorem (Theorem 1.6.4) that lim
x→0

x sin(1/x) = 0. The

derivative cannot exist: consider
f(x)− f(0)

x
= sin(1/x). This function oscillates between −1 and +1 and does

not tend to any number as x tends to zero.

x

y

50. For continuity, compare with ±x2 to establish that the limit is zero. The difference quotient is x sin(1/x) and (see
Exercise 49) this has a limit of zero at the origin.
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x

y

51. Let ε = |f ′(x0)/2|. Then there exists δ > 0 such that if 0 < |x− x0| < δ, then

∣∣∣∣
f(x)− f(x0)

x− x0
− f ′(x0)

∣∣∣∣ < ε. Since

f ′(x0) > 0 and ε = f ′(x0)/2 it follows that
f(x)− f(x0)

x− x0
> ε > 0. If x = x1 < x0 then f(x1) < f(x0) and if

x = x2 > x0 then f(x2) > f(x0).

52. g′(x1) = lim
h→0

g(x1 + h)− g(x1)

h
= lim
h→0

f(m(x1 + h) + b)− f(mx1 + b)

h
= m lim

h→0

f(x0 +mh)− f(x0)

mh
= mf ′(x0).

53. (a) Let ε = |m|/2. Since m 6= 0, ε > 0. Since f(0) = f ′(0) = 0 we know there exists δ > 0 such that∣∣∣∣
f(0 + h)− f(0)

h

∣∣∣∣ < ε whenever 0 < |h| < δ. It follows that |f(h)| < 1
2 |hm| for 0 < |h| < δ. Replace h with x to

get the result.

(b) For 0 < |x| < δ, |f(x)| < 1
2 |mx|. Moreover |mx| = |mx − f(x) + f(x)| ≤ |f(x) −mx| + |f(x)|, which yields

|f(x)−mx| ≥ |mx| − |f(x)| > 1
2 |mx| > |f(x)|, i.e. |f(x)−mx| > |f(x)|.

(c) If any straight line y = mx + b is to approximate the curve y = f(x) for small values of x, then b = 0 since
f(0) = 0. The inequality |f(x) −mx| > |f(x)| can also be interpreted as |f(x) −mx| > |f(x) − 0|, i.e. the line
y = 0 is a better approximation than is y = mx.

54. Let g(x) = f(x)− [f(x0)+f ′(x0)(x−x0)] and h(x) = f(x)− [f(x0)+m(x−x0)]; note that h(x)−g(x) = (f ′(x0)−
m)(x − x0). If m 6= f ′(x0) then there exists δ > 0 such that if 0 < |x − x0| < δ then

∣∣∣∣
f(x)− f(x0)

x− x0
− f ′(x0)

∣∣∣∣ <
1

2
|f ′(x0) − m|. Multiplying by |x − x0| gives |g(x)| < 1

2
|h(x) − g(x)|. Hence 2|g(x)| < |h(x) + (−g(x))| ≤

|h(x)|+ |g(x)|, so |g(x)| < |h(x)|. In words, f(x) is closer to f(x0) + f ′(x0)(x−x0) than it is to f(x0) +m(x−x0).
So the tangent line gives a better approximation to f(x) than any other line through (x0, f(x0)). Clearly any line
not passing through that point gives an even worse approximation for x near x0, so the tangent line gives the best
linear approximation.

55. See discussion around Definition 2.2.2.

56. See Theorem 2.2.3.

Exercise Set 2.3

1. 28x6, by Theorems 2.3.2 and 2.3.4.

2. −36x11, by Theorems 2.3.2 and 2.3.4.

3. 24x7 + 2, by Theorems 2.3.1, 2.3.2, 2.3.4, and 2.3.5.

4. 2x3, by Theorems 2.3.1, 2.3.2, 2.3.4, and 2.3.5.
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5. 0, by Theorem 2.3.1.

6.
√

2, by Theorems 2.3.1, 2.3.2, 2.3.4, and 2.3.5.

7. −1

3
(7x6 + 2), by Theorems 2.3.1, 2.3.2, 2.3.4, and 2.3.5.

8.
2

5
x, by Theorems 2.3.1, 2.3.2, 2.3.4, and 2.3.5.

9. −3x−4 − 7x−8, by Theorems 2.3.3 and 2.3.5.

10.
1

2
√
x
− 1

x2
, by Theorems 2.3.3 and 2.3.5.

11. 24x−9 + 1/
√
x, by Theorems 2.3.3, 2.3.4, and 2.3.5.

12. −42x−7 − 5

2
√
x

, by Theorems 2.3.3, 2.3.4, and 2.3.5.

13. f ′(x) = exe−1 −
√

10 x−1−
√

10, by Theorems 2.3.3 and 2.3.5.

14. f ′(x) = −2

3
x−4/3, by Theorems 2.3.3 and 2.3.4.

15. (3x2 + 1)2 = 9x4 + 6x2 + 1, so f ′(x) = 36x3 + 12x, by Theorems 2.3.1, 2.3.2, 2.3.4, and 2.3.5.

16. 3ax2 + 2bx+ c, by Theorems 2.3.1, 2.3.2, 2.3.4, and 2.3.5.

17. y′ = 10x− 3, y′(1) = 7.

18. y′ =
1

2
√
x
− 2

x2
, y′(1) = −3/2.

19. 2t− 1, by Theorems 2.3.2 and 2.3.5.

20.
1

3
− 1

3t2
, by Theorems 2.3.3, 2.3.4, and 2.3.5.

21. dy/dx = 1 + 2x+ 3x2 + 4x3 + 5x4, dy/dx|x=1 = 15.

22.
dy

dx
=
−3

x4
− 2

x3
− 1

x2
+ 1 + 2x+ 3x2,

dy

dx

∣∣∣∣
x=1

= 0.

23. y = (1− x2)(1 + x2)(1 + x4) = (1− x4)(1 + x4) = 1− x8,
dy

dx
= −8x7, dy/dx|x=1 = −8.

24. dy/dx = 24x23 + 24x11 + 24x7 + 24x5, dy/dx|x=1 = 96.

25. f ′(1) ≈ f(1.01)− f(1)

0.01
=
−0.999699− (−1)

0.01
= 0.0301, and by differentiation, f ′(1) = 3(1)2 − 3 = 0.

26. f ′(1) ≈ f(1.01)− f(1)

0.01
≈ 0.980296− 1

0.01
≈ −1.9704, and by differentiation, f ′(1) = −2/13 = −2.

27. The estimate will depend on your graphing utility and on how far you zoom in. Since f ′(x) = 1 − 1

x2
, the exact

value is f ′(1) = 0.
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28. The estimate will depend on your graphing utility and on how far you zoom in. Since f ′(x) =
1

2
√
x

+ 2, the exact

value is f ′(1) = 5/2.

29. 32t, by Theorems 2.3.2 and 2.3.4.

30. 2π, by Theorems 2.3.2 and 2.3.4.

31. 3πr2, by Theorems 2.3.2 and 2.3.4.

32. −2α−2 + 1, by Theorems 2.3.2, 2.3.4, and 2.3.5.

33. True. By Theorems 2.3.4 and 2.3.5,
d

dx
[f(x)− 8g(x)] = f ′(x)− 8g′(x); substitute x = 2 to get the result.

34. True.
d

dx
[ax3 + bx2 + cx+ d] = 3ax2 + 2bx+ c.

35. False.
d

dx
[4f(x) + x3]

∣∣∣∣
x=2

= (4f ′(x) + 3x2)
∣∣
x=2

= 4f ′(2) + 3 · 22 = 32

36. False. f(x) = x6 − x3 so f ′(x) = 6x5 − 3x2 and f ′′(x) = 30x4 − 6x, which is not equal to 2x(4x3 − 1) = 8x4 − 2x.

37. (a)
dV

dr
= 4πr2 (b)

dV

dr

∣∣∣∣
r=5

= 4π(5)2 = 100π

38.
d

dλ

[
λλ0 + λ6

2− λ0

]
=

1

2− λ0

d

dλ
(λλ0 + λ6) =

1

2− λ0
(λ0 + 6λ5) =

λ0 + 6λ5

2− λ0
.

39. y − 2 = 5(x+ 3), y = 5x+ 17.

40. y + 2 = −(x− 2), y = −x.

41. (a) dy/dx = 21x2 − 10x+ 1, d2y/dx2 = 42x− 10 (b) dy/dx = 24x− 2, d2y/dx2 = 24

(c) dy/dx = −1/x2, d2y/dx2 = 2/x3 (d) dy/dx = 175x4 − 48x2 − 3, d2y/dx2 = 700x3 − 96x

42. (a) y′ = 28x6 − 15x2 + 2, y′′ = 168x5 − 30x (b) y′ = 3, y′′ = 0

(c) y′ =
2

5x2
, y′′ = − 4

5x3
(d) y′ = 8x3 + 9x2 − 10, y′′ = 24x2 + 18x

43. (a) y′ = −5x−6 + 5x4, y′′ = 30x−7 + 20x3, y′′′ = −210x−8 + 60x2

(b) y = x−1, y′ = −x−2, y′′ = 2x−3, y′′′ = −6x−4

(c) y′ = 3ax2 + b, y′′ = 6ax, y′′′ = 6a

44. (a) dy/dx = 10x− 4, d2y/dx2 = 10, d3y/dx3 = 0

(b) dy/dx = −6x−3 − 4x−2 + 1, d2y/dx2 = 18x−4 + 8x−3, d3y/dx3 = −72x−5 − 24x−4

(c) dy/dx = 4ax3 + 2bx, d2y/dx2 = 12ax2 + 2b, d3y/dx3 = 24ax

45. (a) f ′(x) = 6x, f ′′(x) = 6, f ′′′(x) = 0, f ′′′(2) = 0
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(b)
dy

dx
= 30x4 − 8x,

d2y

dx2
= 120x3 − 8,

d2y

dx2

∣∣∣∣
x=1

= 112

(c)
d

dx

[
x−3

]
= −3x−4,

d2

dx2

[
x−3

]
= 12x−5,

d3

dx3

[
x−3

]
= −60x−6,

d4

dx4

[
x−3

]
= 360x−7,

d4

dx4

[
x−3

]∣∣∣∣
x=1

= 360

46. (a) y′ = 16x3 + 6x2, y′′ = 48x2 + 12x, y′′′ = 96x+ 12, y′′′(0) = 12

(b) y = 6x−4,
dy

dx
= −24x−5,

d2y

dx2
= 120x−6,

d3y

dx3
= −720x−7,

d4y

dx4
= 5040x−8,

d4y

dx4

∣∣∣∣
x=1

= 5040

47. y′ = 3x2 + 3, y′′ = 6x, and y′′′ = 6 so y′′′ + xy′′ − 2y′ = 6 + x(6x)− 2(3x2 + 3) = 6 + 6x2 − 6x2 − 6 = 0.

48. y = x−1, y′ = −x−2, y′′ = 2x−3 so x3y′′ + x2y′ − xy = x3(2x−3) + x2(−x−2)− x(x−1) = 2− 1− 1 = 0.

49. The graph has a horizontal tangent at points where
dy

dx
= 0, but

dy

dx
= x2− 3x+ 2 = (x− 1)(x− 2) = 0 if x = 1, 2.

The corresponding values of y are 5/6 and 2/3 so the tangent line is horizontal at (1, 5/6) and (2, 2/3).

1.5

0
0 3

50. Find where f ′(x) = 0 : f ′(x) = 1−9/x2 = 0, x2 = 9, x = ±3. The tangent line is horizontal at (3, 6) and (−3,−6).

14

–7 7

–14

51. The y-intercept is −2 so the point (0,−2) is on the graph; −2 = a(0)2 + b(0) + c, c = −2. The x-intercept is 1 so
the point (1,0) is on the graph; 0 = a + b − 2. The slope is dy/dx = 2ax + b; at x = 0 the slope is b so b = −1,
thus a = 3. The function is y = 3x2 − x− 2.

52. Let P (x0, y0) be the point where y = x2 + k is tangent to y = 2x. The slope of the curve is
dy

dx
= 2x and the slope

of the line is 2 thus at P , 2x0 = 2 so x0 = 1. But P is on the line, so y0 = 2x0 = 2. Because P is also on the curve
we get y0 = x2

0 + k so k = y0 − x2
0 = 2− (1)2 = 1.

53. The points (−1, 1) and (2, 4) are on the secant line so its slope is (4 − 1)/(2 + 1) = 1. The slope of the tangent
line to y = x2 is y′ = 2x so 2x = 1, x = 1/2.

54. The points (1, 1) and (4, 2) are on the secant line so its slope is 1/3. The slope of the tangent line to y =
√
x is

y′ = 1/(2
√
x) so 1/(2

√
x) = 1/3, 2

√
x = 3, x = 9/4.

55. y′ = −2x, so at any point (x0, y0) on y = 1− x2 the tangent line is y− y0 = −2x0(x− x0), or y = −2x0x+ x2
0 + 1.

The point (2, 0) is to be on the line, so 0 = −4x0 + x2
0 + 1, x2

0 − 4x0 + 1 = 0. Use the quadratic formula to get

x0 =
4±
√

16− 4

2
= 2±

√
3. The points are (2 +

√
3,−6− 4

√
3) and (2−

√
3,−6 + 4

√
3).
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56. Let P1(x1, ax
2
1) and P2(x2, ax

2
2) be the points of tangency. y′ = 2ax so the tangent lines at P1 and P2 are

y − ax2
1 = 2ax1(x− x1) and y − ax2

2 = 2ax2(x− x2). Solve for x to get x = 1
2 (x1 + x2) which is the x-coordinate

of a point on the vertical line halfway between P1 and P2.

57. y′ = 3ax2 + b; the tangent line at x = x0 is y − y0 = (3ax2
0 + b)(x − x0) where y0 = ax3

0 + bx0. Solve with
y = ax3 + bx to get

(ax3 + bx)− (ax3
0 + bx0) = (3ax2

0 + b)(x− x0)

ax3 + bx− ax3
0 − bx0 = 3ax2

0x− 3ax3
0 + bx− bx0

x3 − 3x2
0x+ 2x3

0 = 0

(x− x0)(x2 + xx0 − 2x2
0) = 0

(x− x0)2(x+ 2x0) = 0, so x = −2x0.

58. Let (x0, y0) be the point of tangency. Note that y0 = 1/x0. Since y′ = −1/x2, the tangent line has the equation

y − y0 = (−1/x2
0)(x− x0), or y − 1

x0
= − 1

x2
0

x+
1

x0
or y = − 1

x2
0

x+
2

x0
, with intercepts at

(
0,

2

x0

)
= (0, 2y0) and

(2x0, 0). The distance from the y-intercept to the point of tangency is
√

(x0 − 0)2 + (y0 − 2y0)2, and the distance

from the x-intercept to the point of tangency is
√

(x0 − 2x0)2 + (y0 − 0)2 so that they are equal (and equal the

distance
√
x2

0 + y2
0 from the point of tangency to the origin).

59. y′ = − 1

x2
; the tangent line at x = x0 is y − y0 = − 1

x2
0

(x − x0), or y = − x

x2
0

+
2

x0
. The tangent line crosses the

x-axis at 2x0, the y-axis at 2/x0, so that the area of the triangle is
1

2
(2/x0)(2x0) = 2.

60. f ′(x) = 3ax2+2bx+c; there is a horizontal tangent where f ′(x) = 0. Use the quadratic formula on 3ax2+2bx+c = 0
to get x = (−b±

√
b2 − 3ac)/(3a) which gives two real solutions, one real solution, or none if

(a) b2 − 3ac > 0 (b) b2 − 3ac = 0 (c) b2 − 3ac < 0

61. F = GmMr−2,
dF

dr
= −2GmMr−3 = −2GmM

r3

62. dR/dT = 0.04124 − 3.558 × 10−5T which decreases as T increases from 0 to 700. When T = 0, dR/dT =
0.04124 Ω/◦C; when T = 700, dR/dT = 0.01633 Ω/◦C. The resistance is most sensitive to temperature changes at
T = 0◦C, least sensitive at T = 700◦C.

63. f ′(x) = 1 + 1/x2 > 0 for all x 6= 0

6

–6 6

–6

64. f ′(x) = 3x2 − 3 = 0 when x = ±1; f ′(x) > 0 for −∞ < x < −1 and 1 < x < +∞

–2 –1 1 2

–2

2

x

y

(1, –2)

(–1, 2)
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65. f is continuous at 1 because lim
x→1−

f(x) = lim
x→1+

f(x) = f(1); also lim
x→1−

f ′(x) = lim
x→1−

(2x+ 1) = 3 and lim
x→1+

f ′(x) =

lim
x→1+

3 = 3 so f is differentiable at 1, and the derivative equals 3.

-1 1

3

x

y

66. f is not continuous at x = 9 because lim
x→9−

f(x) = −63 and lim
x→9+

f(x) = 3. f cannot be differentiable at x = 9,

for if it were, then f would also be continuous, which it is not.

67. f is continuous at 1 because lim
x→1−

f(x) = lim
x→1+

f(x) = f(1). Also, lim
x−>1−

f(x)− f(1)

x− 1
equals the derivative of x2 at

x = 1, namely 2x|x=1 = 2, while lim
x−>1+

f(x)− f(1)

x− 1
equals the derivative of

√
x at x = 1, namely

1

2
√
x

∣∣∣∣
x=1

=
1

2
.

Since these are not equal, f is not differentiable at x = 1.

68. f is continuous at 1/2 because lim
x→1/2−

f(x) = lim
x→1/2+

f(x) = f(1/2); also lim
x→1/2−

f ′(x) = lim
x→1/2−

3x2 = 3/4 and

lim
x→1/2+

f ′(x) = lim
x→1/2+

3x/2 = 3/4 so f ′(1/2) = 3/4, and f is differentiable at x = 1/2.

69. (a) f(x) = 3x − 2 if x ≥ 2/3, f(x) = −3x + 2 if x < 2/3 so f is differentiable everywhere except perhaps at
2/3. f is continuous at 2/3, also lim

x→2/3−
f ′(x) = lim

x→2/3−
(−3) = −3 and lim

x→2/3+
f ′(x) = lim

x→2/3+
(3) = 3 so f is not

differentiable at x = 2/3.

(b) f(x) = x2 − 4 if |x| ≥ 2, f(x) = −x2 + 4 if |x| < 2 so f is differentiable everywhere except perhaps at ±2.
f is continuous at −2 and 2, also lim

x→2−
f ′(x) = lim

x→2−
(−2x) = −4 and lim

x→2+
f ′(x) = lim

x→2+
(2x) = 4 so f is not

differentiable at x = 2. Similarly, f is not differentiable at x = −2.

70. (a) f ′(x) = −(1)x−2, f ′′(x) = (2 · 1)x−3, f ′′′(x) = −(3 · 2 · 1)x−4; f (n)(x) = (−1)n
n(n− 1)(n− 2) · · · 1

xn+1

(b) f ′(x) = −2x−3, f ′′(x) = (3 · 2)x−4, f ′′′(x) = −(4 · 3 · 2)x−5; f (n)(x) = (−1)n
(n+ 1)(n)(n− 1) · · · 2

xn+2

71. (a)
d2

dx2
[cf(x)] =

d

dx

[
d

dx
[cf(x)]

]
=

d

dx

[
c
d

dx
[f(x)]

]
= c

d

dx

[
d

dx
[f(x)]

]
= c

d2

dx2
[f(x)]

d2

dx2
[f(x) + g(x)] =

d

dx

[
d

dx
[f(x) + g(x)]

]
=

d

dx

[
d

dx
[f(x)] +

d

dx
[g(x)]

]
=

d2

dx2
[f(x)] +

d2

dx2
[g(x)]

(b) Yes, by repeated application of the procedure illustrated in part (a).

72. lim
w→2

f ′(w)− f ′(2)

w − 2
= f ′′(2); f ′(x) = 8x7 − 2, f ′′(x) = 56x6, so f ′′(2) = 56(26) = 3584.

73. (a) f ′(x) = nxn−1, f ′′(x) = n(n− 1)xn−2, f ′′′(x) = n(n− 1)(n− 2)xn−3, . . ., f (n)(x) = n(n− 1)(n− 2) · · · 1

(b) From part (a), f (k)(x) = k(k − 1)(k − 2) · · · 1 so f (k+1)(x) = 0 thus f (n)(x) = 0 if n > k.

(c) From parts (a) and (b), f (n)(x) = ann(n− 1)(n− 2) · · · 1.
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74. (a) If a function is differentiable at a point then it is continuous at that point, thus f ′ is continuous on (a, b) and
consequently so is f .

(b) f and all its derivatives up to f (n−1)(x) are continuous on (a, b).

75. Let g(x) = xn, f(x) = (mx + b)n. Use Exercise 52 in Section 2.2, but with f and g permuted. If x0 = mx1 + b
then Exercise 52 says that f is differentiable at x1 and f ′(x1) = mg′(x0). Since g′(x0) = nxn−1

0 , the result follows.

76. f(x) = 4x2 + 12x+ 9 so f ′(x) = 8x+ 12 = 2 · 2(2x+ 3), as predicted by Exercise 75.

77. f(x) = 27x3 − 27x2 + 9x− 1 so f ′(x) = 81x2 − 54x+ 9 = 3 · 3(3x− 1)2, as predicted by Exercise 75.

78. f(x) = (x− 1)−1 so f ′(x) = (−1) · 1(x− 1)−2 = −1/(x− 1)2.

79. f(x) = 3(2x+ 1)−2 so f ′(x) = 3(−2)2(2x+ 1)−3 = −12/(2x+ 1)3.

80. f(x) =
x+ 1− 1

x+ 1
= 1− (x+ 1)−1, and f ′(x) = −(−1)(x+ 1)−2 = 1/(x+ 1)2.

81. f(x) =
2x2 + 4x+ 2 + 1

(x+ 1)2
= 2 + (x+ 1)−2, so f ′(x) = −2(x+ 1)−3 = −2/(x+ 1)3.

82. (a) If n = 0 then f(x) = x0 = 1 so f ′(x) = 0 by Theorem 2.3.1. This equals 0x0−1, so the Extended Power Rule
holds in this case.

(b) f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim
h→0

1/(x+ h)m − 1/xm

h
= lim
h→0

xm − (x+ h)m

hxm(x+ h)m
=

= lim
h→0

(x+ h)m − xm
h

· lim
h→0

(
− 1

xm(x+ h)m

)
=

d

dx
(xm) ·

(
− 1

x2m

)
= mxm−1 ·

(
− 1

x2m

)
= −mx−m−1 = nxn−1.

Exercise Set 2.4

1. (a) f(x) = 2x2 + x− 1, f ′(x) = 4x+ 1 (b) f ′(x) = (x+ 1) · (2) + (2x− 1) · (1) = 4x+ 1

2. (a) f(x) = 3x4 + 5x2 − 2, f ′(x) = 12x3 + 10x (b) f ′(x) = (3x2 − 1) · (2x) + (x2 + 2) · (6x) = 12x3 + 10x

3. (a) f(x) = x4 − 1, f ′(x) = 4x3 (b) f ′(x) = (x2 + 1) · (2x) + (x2 − 1) · (2x) = 4x3

4. (a) f(x) = x3 + 1, f ′(x) = 3x2 (b) f ′(x) = (x+ 1)(2x− 1) + (x2 − x+ 1) · (1) = 3x2

5. f ′(x) = (3x2 + 6)
d

dx

(
2x− 1

4

)
+

(
2x− 1

4

)
d

dx
(3x2 + 6) = (3x2 + 6)(2) +

(
2x− 1

4

)
(6x) = 18x2 − 3

2
x+ 12

6. f ′(x) = (2 − x − 3x3)
d

dx
(7 + x5) + (7 + x5)

d

dx
(2 − x − 3x3) = (2 − x − 3x3)(5x4) + (7 + x5)(−1 − 9x2) =

−24x7 − 6x5 + 10x4 − 63x2 − 7

7. f ′(x) = (x3 + 7x2 − 8)
d

dx
(2x−3 + x−4) + (2x−3 + x−4)

d

dx
(x3 + 7x2 − 8) = (x3 + 7x2 − 8)(−6x−4 − 4x−5)+

+(2x−3 + x−4)(3x2 + 14x) = −15x−2 − 14x−3 + 48x−4 + 32x−5

8. f ′(x) = (x−1 + x−2)
d

dx
(3x3 + 27) + (3x3 + 27)

d

dx
(x−1 + x−2) = (x−1 + x−2)(9x2) + (3x3 + 27)(−x−2 − 2x−3) =

3 + 6x− 27x−2 − 54x−3

9. f ′(x) = 1 · (x2 + 2x+ 4) + (x− 2) · (2x+ 2) = 3x2
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10. f ′(x) = (2x+ 1)(x2 − x) + (x2 + x)(2x− 1) = 4x3 − 2x

11. f ′(x) =
(x2 + 1) d

dx (3x+ 4)− (3x+ 4) d
dx (x2 + 1)

(x2 + 1)2
=

(x2 + 1) · 3− (3x+ 4) · 2x
(x2 + 1)2

=
−3x2 − 8x+ 3

(x2 + 1)2

12. f ′(x) =
(x4 + x+ 1) d

dx (x− 2)− (x− 2) d
dx (x4 + x+ 1)

(x4 + x+ 1)2
=

(x4 + x+ 1) · 1− (x− 2) · (4x3 + 1)

(x4 + x+ 1)2
=
−3x4 + 8x3 + 3

(x4 + x+ 1)2

13. f ′(x) =
(3x− 4) d

dx (x2)− x2 d
dx (3x− 4)

(3x− 4)2
=

(3x− 4) · 2x− x2 · 3
(3x− 4)2

=
3x2 − 8x

(3x− 4)2

14. f ′(x) =
(3x− 4) d

dx (2x2 + 5)− (2x2 + 5) d
dx (3x− 4)

(3x− 4)2
=

(3x− 4) · 4x− (2x2 + 5) · 3
(3x− 4)2

=
6x2 − 16x− 15

(3x− 4)2

15. f(x) =
2x3/2 + x− 2x1/2 − 1

x+ 3
, so

f ′(x) =
(x+ 3) d

dx (2x3/2 + x− 2x1/2 − 1)− (2x3/2 + x− 2x1/2 − 1) d
dx (x+ 3)

(x+ 3)2
=

=
(x+ 3) · (3x1/2 + 1− x−1/2)− (2x3/2 + x− 2x1/2 − 1) · 1

(x+ 3)2
=
x3/2 + 10x1/2 + 4− 3x−1/2

(x+ 3)2

16. f(x) =
−2x3/2 − x+ 4x1/2 + 2

x2 + 3x
, so

f ′(x) =
(x2 + 3x) d

dx (−2x3/2 − x+ 4x1/2 + 2)− (−2x3/2 − x+ 4x1/2 + 2) d
dx (x2 + 3x)

(x2 + 3x)2
=

=
(x2 + 3x) · (−3x1/2 − 1 + 2x−1/2)− (−2x3/2 − x+ 4x1/2 + 2) · (2x+ 3)

(x2 + 3x)2
=

=
x5/2 + x2 − 9x3/2 − 4x− 6x1/2 − 6

(x2 + 3x)2

17. This could be computed by two applications of the product rule, but it’s simpler to expand f(x): f(x) = 14x +
21 + 7x−1 + 2x−2 + 3x−3 + x−4, so f ′(x) = 14− 7x−2 − 4x−3 − 9x−4 − 4x−5.

18. This could be computed by two applications of the product rule, but it’s simpler to expand f(x): f(x) = −6x7 −
4x6 + 16x5 − 3x−2 − 2x−3 + 8x−4, so f ′(x) = −42x6 − 24x5 + 80x4 + 6x−3 + 6x−4 − 32x−5.

19. In general,
d

dx

[
g(x)2

]
= 2g(x)g′(x) and

d

dx

[
g(x)3

]
=

d

dx

[
g(x)2g(x)

]
= g(x)2g′(x) + g(x)

d

dx

[
g(x)2

]
= g(x)2g′(x) +

g(x) · 2g(x)g′(x) = 3g(x)2g′(x).

Letting g(x) = x7 + 2x− 3, we have f ′(x) = 3(x7 + 2x− 3)2(7x6 + 2).

20. In general,
d

dx

[
g(x)2

]
= 2g(x)g′(x), so

d

dx

[
g(x)4

]
=

d

dx

[(
g(x)2

)2]
= 2g(x)2 · d

dx

[
g(x)2

]
= 2g(x)2 · 2g(x)g′(x) =

4g(x)3g′(x)

Letting g(x) = x2 + 1, we have f ′(x) = 4(x2 + 1)3 · 2x = 8x(x2 + 1)3.

21.
dy

dx
=

(x+ 3) · 2− (2x− 1) · 1
(x+ 3)2

=
7

(x+ 3)2
, so

dy

dx

∣∣∣∣
x=1

=
7

16
.

22.
dy

dx
=

(x2 − 5) · 4− (4x+ 1) · (2x)

(x2 − 5)2
=
−4x2 − 2x− 20

(x2 − 5)2
, so

dy

dx

∣∣∣∣
x=1

= −26

16
= −13

8
.
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23.
dy

dx
=

(
3x+ 2

x

)
d

dx

(
x−5 + 1

)
+
(
x−5 + 1

) d

dx

(
3x+ 2

x

)
=

(
3x+ 2

x

)(
−5x−6

)
+
(
x−5 + 1

) [x(3)− (3x+ 2)(1)

x2

]
=

(
3x+ 2

x

)(
−5x−6

)
+
(
x−5 + 1

)(
− 2

x2

)
; so

dy

dx

∣∣∣∣
x=1

= 5(−5) + 2(−2) = −29.

24.
dy

dx
= (2x7 − x2)

d

dx

(
x− 1

x+ 1

)
+

(
x− 1

x+ 1

)
d

dx
(2x7 − x2) = (2x7 − x2)

[
(x+ 1)(1)− (x− 1)(1)

(x+ 1)2

]
+

+

(
x− 1

x+ 1

)
(14x6 − 2x) = (2x7 − x2) · 2

(x+ 1)2
+

(
x− 1

x+ 1

)
(14x6 − 2x); so

dy

dx

∣∣∣∣
x=1

= (2− 1)
2

4
+ 0(14− 2) =

1

2
.

25. f ′(x) =
(x2 + 1) · 1− x · 2x

(x2 + 1)2
=

1− x2

(x2 + 1)2
, so f ′(1) = 0.

26. f ′(x) =
(x2 + 1) · 2x− (x2 − 1) · 2x

(x2 + 1)2
=

4x

(x2 + 1)2
, so f ′(1) = 1.

27. (a) g′(x) =
√
xf ′(x) +

1

2
√
x
f(x), g′(4) = (2)(−5) +

1

4
(3) = −37/4.

(b) g′(x) =
xf ′(x)− f(x)

x2
, g′(4) =

(4)(−5)− 3

16
= −23/16.

28. (a) g′(x) = 6x− 5f ′(x), g′(3) = 6(3)− 5(4) = −2.

(b) g′(x) =
2f(x)− (2x+ 1)f ′(x)

f2(x)
, g′(3) =

2(−2)− 7(4)

(−2)2
= −8.

29. (a) F ′(x) = 5f ′(x) + 2g′(x), F ′(2) = 5(4) + 2(−5) = 10.

(b) F ′(x) = f ′(x)− 3g′(x), F ′(2) = 4− 3(−5) = 19.

(c) F ′(x) = f(x)g′(x) + g(x)f ′(x), F ′(2) = (−1)(−5) + (1)(4) = 9.

(d) F ′(x) = [g(x)f ′(x)− f(x)g′(x)]/g2(x), F ′(2) = [(1)(4)− (−1)(−5)]/(1)2 = −1.

30. (a) F ′(x) = 6f ′(x)− 5g′(x), F ′(π) = 6(−1)− 5(2) = −16.

(b) F ′(x) = f(x) + g(x) + x(f ′(x) + g′(x)), F ′(π) = 10− 3 + π(−1 + 2) = 7 + π.

(c) F ′(x) = 2f(x)g′(x) + 2f ′(x)g(x) = 2(20) + 2(3) = 46.

(d) F ′(x) =
(4 + g(x))f ′(x)− f(x)g′(x)

(4 + g(x))2
=

(4− 3)(−1)− 10(2)

(4− 3)2
= −21.

31.
dy

dx
=

2x(x+ 2)− (x2 − 1)

(x+ 2)2
,
dy

dx
= 0 if x2 + 4x+ 1 = 0. By the quadratic formula, x =

−4±
√

16− 4

2
= −2±

√
3.

The tangent line is horizontal at x = −2±
√

3.

32.
dy

dx
=

2x(x− 1)− (x2 + 1)

(x− 1)2
=
x2 − 2x− 1

(x− 1)2
. The tangent line is horizontal when it has slope 0, i.e. x2− 2x− 1 = 0

which, by the quadratic formula, has solutions x =
2±
√

4 + 4

2
= 1 ±

√
2, the tangent line is horizontal when

x = 1±
√

2.
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33. The tangent line is parallel to the line y = x when it has slope 1.
dy

dx
=

2x(x+ 1)− (x2 + 1)

(x+ 1)2
=
x2 + 2x− 1

(x+ 1)2
= 1

if x2 + 2x − 1 = (x + 1)2, which reduces to −1 = +1, impossible. Thus the tangent line is never parallel to the
line y = x.

34. The tangent line is perpendicular to the line y = x when the tangent line has slope −1. y =
x+ 2 + 1

x+ 2
= 1+

1

x+ 2
,

hence
dy

dx
= − 1

(x+ 2)2
= −1 when (x+2)2 = 1, x2 +4x+3 = 0, (x+1)(x+3) = 0, x = −1,−3. Thus the tangent

line is perpendicular to the line y = x at the points (−1, 2), (−3, 0).

35. Fix x0. The slope of the tangent line to the curve y =
1

x+ 4
at the point (x0, 1/(x0 + 4)) is given by

dy

dx
=

−1

(x+ 4)2

∣∣∣∣
x=x0

=
−1

(x0 + 4)2
. The tangent line to the curve at (x0, y0) thus has the equation y − y0 =

−(x− x0)

(x0 + 4)2
,

and this line passes through the origin if its constant term y0 − x0
−1

(x0 + 4)2
is zero. Then

1

x0 + 4
=

−x0

(x0 + 4)2
, so

x0 + 4 = −x0, x0 = −2.

36. y =
2x+ 5

x+ 2
=

2x+ 4 + 1

x+ 2
= 2 +

1

x+ 2
, and hence

dy

dx
=

−1

(x+ 2)2
, thus the tangent line at the point (x0, y0)

is given by y − y0 =
−1

(x0 + 2)2
(x − x0) , where y0 = 2 +

1

x0 + 2
. If this line is to pass through (0, 2), then

2− y0 =
−1

(x0 + 2)2
(−x0),

−1

x0 + 2
=

x0

(x0 + 2)2
, −x0 − 2 = x0, so x0 = −1.

37. (a) Their tangent lines at the intersection point must be perpendicular.

(b) They intersect when
1

x
=

1

2− x, x = 2 − x, x = 1, y = 1. The first curve has derivative y = − 1

x2
, so the

slope when x = 1 is −1. Second curve has derivative y =
1

(2− x)2
so the slope when x = 1 is 1. Since the two

slopes are negative reciprocals of each other, the tangent lines are perpendicular at the point (1, 1).

38. The curves intersect when a/(x − 1) = x2 − 2x + 1, or (x − 1)3 = a, x = 1 + a1/3. They are perpendicular when

their slopes are negative reciprocals of each other, i.e.
−a

(x− 1)2
(2x− 2) = −1, which has the solution x = 2a+ 1.

Solve x = 1 + a1/3 = 2a + 1, 2a2/3 = 1, a = 2−3/2. Thus the curves intersect and are perpendicular at the point
(2a+ 1, 1/2) provided a = 2−3/2.

39. F ′(x) = xf ′(x) + f(x), F ′′(x) = xf ′′(x) + f ′(x) + f ′(x) = xf ′′(x) + 2f ′(x).

40. (a) F ′′′(x) = xf ′′′(x) + 3f ′′(x).

(b) Assume that F (n)(x) = xf (n)(x) + nf (n−1)(x) for some n (for instance n = 3, as in part (a)). Then
F (n+1)(x) = xf (n+1)(x) + (1 + n)f (n)(x) = xf (n+1)(x) + (n+ 1)f (n)(x), which is an inductive proof.

41. R′(p) = p · f ′(p) + f(p) · 1 = f(p) + pf ′(p), so R′(120) = 9000 + 120 · (−60) = 1800. Increasing the price by a small
amount ∆p dollars would increase the revenue by about 1800∆p dollars.

42. R′(p) = p · f ′(p) + f(p) · 1 = f(p) + pf ′(p), so R′(120) = 9000 + 120 · (−80) = −600. Increasing the price by a
small amount ∆p dollars would decrease the revenue by about 600∆p dollars.

43. f(x) =
1

xn
so f ′(x) =

xn · (0)− 1 · (nxn−1)

x2n
= − n

xn+1
= −nx−n−1.
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Exercise Set 2.5

1. f ′(x) = −4 sinx+ 2 cosx

2. f ′(x) =
−10

x3
+ cosx

3. f ′(x) = 4x2 sinx− 8x cosx

4. f ′(x) = 4 sinx cosx

5. f ′(x) =
sinx(5 + sinx)− cosx(5− cosx)

(5 + sinx)2
=

1 + 5(sinx− cosx)

(5 + sinx)2

6. f ′(x) =
(x2 + sinx) cosx− sinx(2x+ cosx)

(x2 + sinx)2
=
x2 cosx− 2x sinx

(x2 + sinx)2

7. f ′(x) = secx tanx−
√

2 sec2 x

8. f ′(x) = (x2 + 1) secx tanx+ (secx)(2x) = (x2 + 1) secx tanx+ 2x secx

9. f ′(x) = −4 cscx cotx+ csc2 x

10. f ′(x) = − sinx− cscx+ x cscx cotx

11. f ′(x) = secx(sec2 x) + (tanx)(secx tanx) = sec3 x+ secx tan2 x

12. f ′(x) = (cscx)(− csc2 x) + (cotx)(− cscx cotx) = − csc3 x− cscx cot2 x

13. f ′(x) =
(1 + cscx)(− csc2 x)− cotx(0− cscx cotx)

(1 + cscx)2
=

cscx(− cscx− csc2 x+ cot2 x)

(1 + cscx)2
, but 1 + cot2 x = csc2 x

(identity), thus cot2 x− csc2 x = −1, so f ′(x) =
cscx(− cscx− 1)

(1 + cscx)2
= − cscx

1 + cscx
.

14. f ′(x) =
(1 + tanx)(secx tanx)− (secx)(sec2 x)

(1 + tanx)2
=

secx tanx+ secx tan2 x− sec3 x

(1 + tanx)2
=

=
secx(tanx+ tan2 x− sec2 x)

(1 + tanx)2
=

secx(tanx− 1)

(1 + tanx)2

15. f(x) = sin2 x+ cos2 x = 1 (identity), so f ′(x) = 0.

16. f ′(x) = 2 secx tanx secx − 2 tanx sec2 x =
2 sinx

cos3 x
− 2

sinx

cos3 x
= 0; also, f(x) = sec2 x − tan2 x = 1 (identity), so

f ′(x) = 0.

17. f(x) =
tanx

1 + x tanx
(because sinx secx = (sinx)(1/ cosx) = tanx), so

f ′(x) =
(1 + x tanx)(sec2 x)− tanx[x(sec2 x) + (tanx)(1)]

(1 + x tanx)2
=

sec2 x− tan2 x

(1 + x tanx)2
=

1

(1 + x tanx)2
(because sec2 x −

tan2 x = 1).

18. f(x) =
(x2 + 1) cotx

3− cotx
(because cosx cscx = (cosx)(1/ sinx) = cotx), so

f ′(x) =
(3− cotx)[2x cotx− (x2 + 1) csc2 x]− (x2 + 1) cotx csc2 x

(3− cotx)2
=

6x cotx− 2x cot2 x− 3(x2 + 1) csc2 x

(3− cotx)2
.
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19. dy/dx = −x sinx+ cosx, d2y/dx2 = −x cosx− sinx− sinx = −x cosx− 2 sinx

20. dy/dx = − cscx cotx, d2y/dx2 = −[(cscx)(− csc2 x) + (cotx)(− cscx cotx)] = csc3 x+ cscx cot2 x

21. dy/dx = x(cosx) + (sinx)(1)− 3(− sinx) = x cosx+ 4 sinx,

d2y/dx2 = x(− sinx) + (cosx)(1) + 4 cosx = −x sinx+ 5 cosx

22. dy/dx = x2(− sinx) + (cosx)(2x) + 4 cosx = −x2 sinx+ 2x cosx+ 4 cosx,

d2y/dx2 = −[x2(cosx) + (sinx)(2x)] + 2[x(− sinx) + cosx]− 4 sinx = (2− x2) cosx− 4(x+ 1) sinx

23. dy/dx = (sinx)(− sinx) + (cosx)(cosx) = cos2 x− sin2 x,

d2y/dx2 = (cosx)(− sinx) + (cosx)(− sinx)− [(sinx)(cosx) + (sinx)(cosx)] = −4 sinx cosx

24. dy/dx = sec2 x, d2y/dx2 = 2 sec2 x tanx

25. Let f(x) = tanx, then f ′(x) = sec2 x.

(a) f(0) = 0 and f ′(0) = 1, so y − 0 = (1)(x− 0), y = x.

(b) f
(π

4

)
= 1 and f ′

(π
4

)
= 2, so y − 1 = 2

(
x− π

4

)
, y = 2x− π

2
+ 1.

(c) f
(
−π

4

)
= −1 and f ′

(
−π

4

)
= 2, so y + 1 = 2

(
x+

π

4

)
, y = 2x+

π

2
− 1.

26. Let f(x) = sinx, then f ′(x) = cosx.

(a) f(0) = 0 and f ′(0) = 1, so y − 0 = (1)(x− 0), y = x.

(b) f(π) = 0 and f ′(π) = −1, so y − 0 = (−1)(x− π), y = −x+ π.

(c) f
(π

4

)
=

1√
2

and f ′
(π

4

)
=

1√
2

, so y − 1√
2

=
1√
2

(
x− π

4

)
, y =

1√
2
x− π

4
√

2
+

1√
2

.

27. (a) If y = x sinx then y′ = sinx+ x cosx and y′′ = 2 cosx− x sinx so y′′ + y = 2 cosx.

(b) Differentiate the result of part (a) twice more to get y(4) + y′′ = −2 cosx.

28. (a) If y = cosx then y′ = − sinx and y′′ = − cosx, so y′′+ y = (− cosx) + (cosx) = 0; if y = sinx then y′ = cosx
and y′′ = − sinx so y′′ + y = (− sinx) + (sinx) = 0.

(b) y′ = A cosx−B sinx, y′′ = −A sinx−B cosx, so y′′ + y = (−A sinx−B cosx) + (A sinx+B cosx) = 0.

29. (a) f ′(x) = cosx = 0 at x = ±π/2,±3π/2.

(b) f ′(x) = 1− sinx = 0 at x = −3π/2, π/2.

(c) f ′(x) = sec2 x ≥ 1 always, so no horizontal tangent line.

(d) f ′(x) = secx tanx = 0 when sinx = 0, x = ±2π,±π, 0.
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30. (a)

0.5

-0.5

0 2c

(b) y = sinx cosx = (1/2) sin 2x and y′ = cos 2x. So y′ = 0 when 2x = (2n + 1)π/2 for n = 0, 1, 2, 3 or
x = π/4, 3π/4, 5π/4, 7π/4.

31. x = 10 sin θ, dx/dθ = 10 cos θ; if θ = 60◦, then dx/dθ = 10(1/2) = 5 ft/rad = π/36 ft/deg ≈ 0.087 ft/deg.

32. s = 3800 csc θ, ds/dθ = −3800 csc θ cot θ; if θ = 30◦, then ds/dθ = −3800(2)(
√

3) = −7600
√

3 ft/rad = −380
√

3π/9
ft/deg ≈ −230 ft/deg.

33. D = 50 tan θ, dD/dθ = 50 sec2 θ; if θ = 45◦, then dD/dθ = 50(
√

2)2 = 100 m/rad = 5π/9 m/deg ≈ 1.75 m/deg.

34. (a) From the right triangle shown, sin θ = r/(r + h) so r + h = r csc θ, h = r(csc θ − 1).

(b) dh/dθ = −r csc θ cot θ; if θ = 30◦, then dh/dθ = −6378(2)(
√

3) ≈ −22, 094 km/rad ≈ −386 km/deg.

35. False. g′(x) = f(x) cosx+ f ′(x) sinx

36. True, if f(x) is continuous at x = 0, then g′(0) = lim
h→0

g(h)− g(0)

h
= lim

h→0

f(h) sinh

h
= lim

h→0
f(h) · lim

h→0

sinh

h
=

f(0) · 1 = f(0).

37. True. f(x) =
sinx

cosx
= tanx, so f ′(x) = sec2 x.

38. False. g′(x) = f(x) · d
dx

(secx)+f ′(x) secx = f(x) secx tanx+f ′(x) secx, so g′(0) = f(0) sec 0 tan 0+f ′(0) sec 0 =

8 · 1 · 0 + (−2) · 1 = −2. The second equality given in the problem is wrong: lim
h→0

f(h) sech− f(0)

h
= −2 but

lim
h→0

8(sech− 1)

h
= 0.

39.
d4

dx4
sinx = sinx, so

d4k

dx4k
sinx = sinx;

d87

dx87
sinx =

d3

dx3

d4·21

dx4·21
sinx =

d3

dx3
sinx = − cosx.

40.
d100

dx100
cosx =

d4k

dx4k
cosx = cosx.

41. f ′(x) = − sinx, f ′′(x) = − cosx, f ′′′(x) = sinx, and f (4)(x) = cosx with higher order derivatives repeating this
pattern, so f (n)(x) = sinx for n = 3, 7, 11, . . .

42. f(x) = sinx, f ′(x) = cosx, f ′′(x) = − sinx, f ′′′(x) = − cosx, f (4)(x) = sinx, and the right-hand sides continue
with a period of 4, so that f (n)(x) = sinx when n = 4k for some k.

43. (a) all x (b) all x (c) x 6= π/2 + nπ, n = 0,±1,±2, . . .

(d) x 6= nπ, n = 0,±1,±2, . . . (e) x 6= π/2 + nπ, n = 0,±1,±2, . . . (f) x 6= nπ, n = 0,±1,±2, . . .

(g) x 6= (2n+ 1)π, n = 0,±1,±2, . . . (h) x 6= nπ/2, n = 0,±1,±2, . . . (i) all x



94 Chapter 2

44. (a)
d

dx
[cosx] = lim

h→0

cos(x+ h)− cosx

h
= lim
h→0

cosx cosh− sinx sinh− cosx

h
=

= lim
h→0

[
cosx

(
cosh− 1

h

)
− sinx

(
sinh

h

)]
= (cosx)(0)− (sinx)(1) = − sinx.

(b)
d

dx
[cotx] =

d

dx

[cosx

sinx

]
=

sinx(− sinx)− cosx(cosx)

sin2 x
=
− sin2 x− cos2 x

sin2 x
=
−1

sin2 x
= − csc2 x.

(c)
d

dx
[secx] =

d

dx

[
1

cosx

]
=

0 · cosx− (1)(− sinx)

cos2 x
=

sinx

cos2 x
= secx tanx.

(d)
d

dx
[cscx] =

d

dx

[
1

sinx

]
=

(sinx)(0)− (1)(cosx)

sin2 x
= − cosx

sin2 x
= − cscx cotx.

45.
d

dx
sinx = lim

w→x
sinw − sinx

w − x = lim
w→x

2 sin w−x
2 cos w+x

2

w − x = lim
w→x

sin w−x
2

w−x
2

cos
w + x

2
= 1 · cosx = cosx.

46.
d

dx
[cosx] = lim

w→x
cosw − cosx

w − x = lim
w→x

−2 sin(w−x2 ) sin(w+x
2 )

w − x = − lim
w→x

sin

(
w + x

2

)
lim
w→x

sin(w−x2 )
w−x

2

= − sinx.

47. (a) lim
h→0

tanh

h
= lim
h→0

(
sinh

cosh

)

h
= lim
h→0

(
sinh

h

)

cosh
=

1

1
= 1.

(b)
d

dx
[tanx] = lim

h→0

tan(x+ h)− tanx

h
= lim
h→0

tanx+ tanh

1− tanx tanh
− tanx

h
= lim
h→0

tanx+ tanh− tanx+ tan2 x tanh

h(1− tanx tanh)
=

lim
h→0

tanh(1 + tan2 x)

h(1− tanx tanh)
= lim
h→0

tanh sec2 x

h(1− tanx tanh)
= sec2 x lim

h→0

tanh

h
1− tanx tanh

= sec2 x
lim
h→0

tanh

h
lim
h→0

(1− tanx tanh)
= sec2 x.

48. lim
x→0

tan(x+ y)− tan y

x
= lim
h→0

tan(y + h)− tan y

h
=

d

dy
(tan y) = sec2 y.

49. By Exercises 49 and 50 of Section 1.6, we have lim
h→0

sinh

h
=

π

180
and lim

h→0

cosh− 1

h
= 0. Therefore:

(a)
d

dx
[sinx] = lim

h→0

sin(x+ h)− sinx

h
= sinx lim

h→0

cosh− 1

h
+ cosx lim

h→0

sinh

h
= (sinx)(0) + (cosx)(π/180) =

π

180
cosx.

(b)
d

dx
[cosx] = lim

h→0

cos(x+ h)− cosx

h
= lim
h→0

cosx cosh− sinx sinh− cosx

h
= cosx lim

h→0

cosh− 1

h
−sinx lim

h→0

sinh

h
=

0 · cosx− π

180
· sinx = − π

180
sinx.

50. If f is periodic, then so is f ′. Proof: Suppose f(x+p) = f(x) for all x. Then f ′(x+p) = lim
h→0

f(x+ p+ h)− f(x+ p)

h
=

lim
h→0

f(x+ h)− f(x)

h
= f ′(x). However, f ′ may be periodic even if f is not. For example, f(x) = x+ sinx is not

periodic, but f ′(x) = 1 + cosx has period 2π.

Exercise Set 2.6

1. (f ◦ g)′(x) = f ′(g(x))g′(x), so (f ◦ g)′(0) = f ′(g(0))g′(0) = f ′(0)(3) = (2)(3) = 6.
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2. (f ◦ g)′(2) = f ′(g(2))g′(2) = 5(−3) = −15.

3. (a) (f ◦ g)(x) = f(g(x)) = (2x− 3)5 and (f ◦ g)′(x) = f ′(g(x))g′(x) = 5(2x− 3)4(2) = 10(2x− 3)4.

(b) (g ◦ f)(x) = g(f(x)) = 2x5 − 3 and (g ◦ f)′(x) = g′(f(x))f ′(x) = 2(5x4) = 10x4.

4. (a) (f ◦ g)(x) = 5
√

4 + cosx and (f ◦ g)′(x) = f ′(g(x))g′(x) =
5

2
√

4 + cosx
(− sinx).

(b) (g ◦ f)(x) = 4 + cos(5
√
x) and (g ◦ f)′(x) = g′(f(x))f ′(x) = − sin(5

√
x)

5

2
√
x

.

5. (a) F ′(x) = f ′(g(x))g′(x), F ′(3) = f ′(g(3))g′(3) = −1(7) = −7.

(b) G′(x) = g′(f(x))f ′(x), G′(3) = g′(f(3))f ′(3) = 4(−2) = −8.

6. (a) F ′(x) = f ′(g(x))g′(x), F ′(−1) = f ′(g(−1))g′(−1) = f ′(2)(−3) = (4)(−3) = −12.

(b) G′(x) = g′(f(x))f ′(x), G′(−1) = g′(f(−1))f ′(−1) = −5(3) = −15.

7. f ′(x) = 37(x3 + 2x)36 d

dx
(x3 + 2x) = 37(x3 + 2x)36(3x2 + 2).

8. f ′(x) = 6(3x2 + 2x− 1)5 d

dx
(3x2 + 2x− 1) = 6(3x2 + 2x− 1)5(6x+ 2) = 12(3x2 + 2x− 1)5(3x+ 1).

9. f ′(x) = −2

(
x3 − 7

x

)−3
d

dx

(
x3 − 7

x

)
= −2

(
x3 − 7

x

)−3(
3x2 +

7

x2

)
.

10. f(x) = (x5 − x+ 1)−9, f ′(x) = −9(x5 − x+ 1)−10 d

dx
(x5 − x+ 1) = −9(x5 − x+ 1)−10(5x4 − 1) =

−9(5x4 − 1)

(x5 − x+ 1)10
.

11. f(x) = 4(3x2 − 2x + 1)−3, f ′(x) = −12(3x2 − 2x + 1)−4 d

dx
(3x2 − 2x + 1) = −12(3x2 − 2x + 1)−4(6x − 2) =

24(1− 3x)

(3x2 − 2x+ 1)4
.

12. f ′(x) =
1

2
√
x3 − 2x+ 5

d

dx
(x3 − 2x+ 5) =

3x2 − 2

2
√
x3 − 2x+ 5

.

13. f ′(x) =
1

2
√

4 +
√

3x

d

dx
(4 +

√
3x) =

√
3

4
√
x
√

4 +
√

3x
.

14. f ′(x) =
1

3

(
12 +

√
x
)−2/3 · 1

2

1√
x

=
1

6(12 +
√
x)2/3

√
x

.

15. f ′(x) = cos(1/x2)
d

dx
(1/x2) = − 2

x3
cos(1/x2).

16. f ′(x) =
(
sec2
√
x
) d

dx

√
x =

(
sec2
√
x
) 1

2
√
x

.

17. f ′(x) = 20 cos4 x
d

dx
(cosx) = 20 cos4 x(− sinx) = −20 cos4 x sinx.

18. f ′(x) = 4 + 20(sin3 x)
d

dx
(sinx) = 4 + 20 sin3 x cosx.
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19. f ′(x) = 2 cos(3
√
x)

d

dx
[cos(3

√
x)] = −2 cos(3

√
x) sin(3

√
x)

d

dx
(3
√
x) = −3 cos(3

√
x) sin(3

√
x)√

x
.

20. f ′(x) = 4 tan3(x3)
d

dx
[tan(x3)] = 4 tan3(x3) sec2(x3)

d

dx
(x3) = 12x2 tan3(x3) sec2(x3).

21. f ′(x) = 4 sec(x7)
d

dx
[sec(x7)] = 4 sec(x7) sec(x7) tan(x7)

d

dx
(x7) = 28x6 sec2(x7) tan(x7).

22. f ′(x) = 3 cos2

(
x

x+ 1

)
d

dx
cos

(
x

x+ 1

)
= 3 cos2

(
x

x+ 1

)[
− sin

(
x

x+ 1

)]
(x+ 1)(1)− x(1)

(x+ 1)2
=

= − 3

(x+ 1)2
cos2

(
x

x+ 1

)
sin

(
x

x+ 1

)
.

23. f ′(x) =
1

2
√

cos(5x)

d

dx
[cos(5x)] = − 5 sin(5x)

2
√

cos(5x)
.

24. f ′(x) =
1

2
√

3x− sin2(4x)

d

dx
[3x− sin2(4x)] =

3− 8 sin(4x) cos(4x)

2
√

3x− sin2(4x)
.

25. f ′(x) = −3
[
x+ csc(x3 + 3)

]−4 d

dx

[
x+ csc(x3 + 3)

]
=

= −3
[
x+ csc(x3 + 3)

]−4
[
1− csc(x3 + 3) cot(x3 + 3)

d

dx
(x3 + 3)

]
=

= −3
[
x+ csc(x3 + 3)

]−4 [
1− 3x2 csc(x3 + 3) cot(x3 + 3)

]
.

26. f ′(x) = −4
[
x4 − sec(4x2 − 2)

]−5 d

dx

[
x4 − sec(4x2 − 2)

]
=

= −4
[
x4 − sec(4x2 − 2)

]−5
[
4x3 − sec(4x2 − 2) tan(4x2 − 2)

d

dx
(4x2 − 2)

]
=

= −16x
[
x4 − sec(4x2 − 2)

]−5 [
x2 − 2 sec(4x2 − 2) tan(4x2 − 2)

]
.

27.
dy

dx
= x3(2 sin 5x)

d

dx
(sin 5x) + 3x2 sin2 5x = 10x3 sin 5x cos 5x+ 3x2 sin2 5x.

28.
dy

dx
=
√
x

[
3 tan2(

√
x) sec2(

√
x)

1

2
√
x

]
+

1

2
√
x

tan3(
√
x) =

3

2
tan2(

√
x) sec2(

√
x) +

1

2
√
x

tan3(
√
x).

29.
dy

dx
= x5 sec

(
1

x

)
tan

(
1

x

)
d

dx

(
1

x

)
+ sec

(
1

x

)
(5x4) = x5 sec

(
1

x

)
tan

(
1

x

)(
− 1

x2

)
+ 5x4 sec

(
1

x

)
=

= −x3 sec

(
1

x

)
tan

(
1

x

)
+ 5x4 sec

(
1

x

)
.

30.
dy

dx
=

sec(3x+ 1) cosx− 3 sinx sec(3x+ 1) tan(3x+ 1)

sec2(3x+ 1)
= cosx cos(3x+ 1)− 3 sinx sin(3x+ 1).

31.
dy

dx
= − sin(cosx)

d

dx
(cosx) = − sin(cosx)(− sinx) = sin(cosx) sinx.

32.
dy

dx
= cos(tan 3x)

d

dx
(tan 3x) = 3 sec2 3x cos(tan 3x).

33.
dy

dx
= 3 cos2(sin 2x)

d

dx
[cos(sin 2x)] = 3 cos2(sin 2x)[− sin(sin 2x)]

d

dx
(sin 2x) = −6 cos2(sin 2x) sin(sin 2x) cos 2x.
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34.
dy

dx
=

(1− cotx2)(−2x cscx2 cotx2)− (1 + cscx2)(2x csc2 x2)

(1− cotx2)2
= −2x cscx2 1 + cotx2 + cscx2

(1− cotx2)2
, since csc2 x2 =

1 + cot2 x2.

35.
dy

dx
= (5x + 8)7 d

dx
(1 − √x)6 + (1 − √x)6 d

dx
(5x + 8)7 = 6(5x + 8)7(1 − √x)5 −1

2
√
x

+ 7 · 5(1 − √x)6(5x + 8)6 =

−3√
x

(5x+ 8)7(1−√x)5 + 35(1−√x)6(5x+ 8)6.

36.
dy

dx
= (x2 + x)5 d

dx
sin8 x+ (sin8 x)

d

dx
(x2 + x)5 = 8(x2 + x)5 sin7 x cosx+ 5(sin8 x)(x2 + x)4(2x+ 1).

37.
dy

dx
= 3

[
x− 5

2x+ 1

]2
d

dx

[
x− 5

2x+ 1

]
= 3

[
x− 5

2x+ 1

]2

· 11

(2x+ 1)2
=

33(x− 5)2

(2x+ 1)4
.

38.
dy

dx
= 17

(
1 + x2

1− x2

)16
d

dx

(
1 + x2

1− x2

)
= 17

(
1 + x2

1− x2

)16
(1− x2)(2x)− (1 + x2)(−2x)

(1− x2)2
= 17

(
1 + x2

1− x2

)16
4x

(1− x2)2
=

68x(1 + x2)16

(1− x2)18
.

39.
dy

dx
=

(4x2 − 1)8(3)(2x+ 3)2(2)− (2x+ 3)3(8)(4x2 − 1)7(8x)

(4x2 − 1)16
=

2(2x+ 3)2(4x2 − 1)7[3(4x2 − 1)− 32x(2x+ 3)]

(4x2 − 1)16
=

−2(2x+ 3)2(52x2 + 96x+ 3)

(4x2 − 1)9
.

40.
dy

dx
= 12[1 + sin3(x5)]11 d

dx
[1 + sin3(x5)] = 12[1 + sin3(x5)]113 sin2(x5)

d

dx
sin(x5) =

= 180x4[1 + sin3(x5)]11 sin2(x5) cos(x5).

41.
dy

dx
= 5

[
x sin 2x+ tan4(x7)

]4 d

dx

[
x sin 2x tan4(x7)

]
=

= 5
[
x sin 2x+ tan4(x7)

]4
[
x cos 2x

d

dx
(2x) + sin 2x+ 4 tan3(x7)

d

dx
tan(x7)

]
=

= 5
[
x sin 2x+ tan4(x7)

]4 [
2x cos 2x+ sin 2x+ 28x6 tan3(x7) sec2(x7)

]
.

42.
dy

dx
= 4 tan3

(
2 +

(7− x)
√

3x2 + 5

x3 + sinx

)
sec2

(
2 +

(7− x)
√

3x2 + 5

x3 + sinx

)

×
(
−
√

3x2 + 5

x3 + sinx
+ 3

(7− x)x√
3x2 + 5 (x3 + sinx)

− (7− x)
√

3x2 + 5 (3x2 + cosx)

(x3 + sinx)2

)

43.
dy

dx
= cos 3x−3x sin 3x; if x = π then

dy

dx
= −1 and y = −π, so the equation of the tangent line is y+π = −(x−π),

or y = −x.

44.
dy

dx
= 3x2 cos(1 + x3); if x = −3 then y = − sin 26,

dy

dx
= 27 cos 26, so the equation of the tangent line is

y + sin 26 = 27(cos 26)(x+ 3), or y = 27(cos 26)x+ 81 cos 26− sin 26.

45.
dy

dx
= −3 sec3(π/2 − x) tan(π/2 − x); if x = −π/2 then

dy

dx
= 0, y = −1, so the equation of the tangent line is

y + 1 = 0, or y = −1
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46.
dy

dx
= 3

(
x− 1

x

)2(
1 +

1

x2

)
; if x = 2 then y =

27

8
,
dy

dx
= 3

9

4

5

4
=

135

16
, so the equation of the tangent line is

y − 27/8 = (135/16)(x− 2), or y =
135

16
x− 27

2
.

47.
dy

dx
= sec2(4x2)

d

dx
(4x2) = 8x sec2(4x2),

dy

dx

∣∣∣
x=
√
π

= 8
√
π sec2(4π) = 8

√
π. When x =

√
π, y = tan(4π) = 0, so

the equation of the tangent line is y = 8
√
π(x−√π) = 8

√
πx− 8π.

48.
dy

dx
= 12 cot3 x

d

dx
cotx = −12 cot3 x csc2 x,

dy

dx

∣∣∣
x=π/4

= −24. When x = π/4, y = 3, so the equation of the

tangent line is y − 3 = −24(x− π/4), or y = −24x+ 3 + 6π.

49.
dy

dx
= 2x

√
5− x2 +

x2

2
√

5− x2
(−2x),

dy

dx

∣∣∣
x=1

= 4− 1/2 = 7/2. When x = 1, y = 2, so the equation of the tangent

line is y − 2 = (7/2)(x− 1), or y =
7

2
x− 3

2
.

50.
dy

dx
=

1√
1− x2

− x
2

(1−x2)3/2(−2x),
dy

dx

∣∣∣
x=0

= 1. When x = 0, y = 0, so the equation of the tangent line is y = x.

51.
dy

dx
= x(− sin(5x))

d

dx
(5x) + cos(5x)− 2 sinx

d

dx
(sinx) = −5x sin(5x) + cos(5x)− 2 sinx cosx =

= −5x sin(5x) + cos(5x)− sin(2x),

d2y

dx2
= −5x cos(5x)

d

dx
(5x)− 5 sin(5x)− sin(5x)

d

dx
(5x)− cos(2x)

d

dx
(2x) = −25x cos(5x)− 10 sin(5x)− 2 cos(2x).

52.
dy

dx
= cos(3x2)

d

dx
(3x2) = 6x cos(3x2),

d2y

dx2
= 6x(− sin(3x2))

d

dx
(3x2) + 6 cos(3x2) = −36x2 sin(3x2) + 6 cos(3x2).

53.
dy

dx
=

(1− x) + (1 + x)

(1− x)2
=

2

(1− x)2
= 2(1− x)−2 and

d2y

dx2
= −2(2)(−1)(1− x)−3 = 4(1− x)−3.

54.
dy

dx
= x sec2

(
1

x

)
d

dx

(
1

x

)
+ tan

(
1

x

)
= − 1

x
sec2

(
1

x

)
+ tan

(
1

x

)
,

d2y

dx2
= − 2

x
sec

(
1

x

)
d

dx
sec

(
1

x

)
+

1

x2
sec2

(
1

x

)
+ sec2

(
1

x

)
d

dx

(
1

x

)
=

2

x3
sec2

(
1

x

)
tan

(
1

x

)
.

55. y = cot3(π − θ) = − cot3 θ so dy/dx = 3 cot2 θ csc2 θ.

56. 6

(
au+ b

cu+ d

)5
ad− bc

(cu+ d)2
.

57.
d

dω
[a cos2 πω + b sin2 πω] = −2πa cosπω sinπω + 2πb sinπω cosπω = π(b− a)(2 sinπω cosπω) = π(b− a) sin 2πω.

58. 2 csc2(π/3− y) cot(π/3− y).

59. (a)

2

–2 2

–2
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(c) f ′(x) = x
−x√

4− x2
+
√

4− x2 =
4− 2x2

√
4− x2

.

2

–2 2

–6

(d) f(1) =
√

3 and f ′(1) =
2√
3

so the tangent line has the equation y −
√

3 =
2√
3

(x− 1).

3

0
0 2

60. (a)

0.5

0
^ 6

(c) f ′(x) = 2x cos(x2) cosx− sinx sin(x2).

1.2

–1.2

^ 6

(d) f(1) = sin 1 cos 1 and f ′(1) = 2 cos2 1− sin2 1, so the tangent line has the equation
y − sin 1 cos 1 = (2 cos2 1− sin2 1)(x− 1).

0.8

0
^ 6

61. False.
d

dx
[
√
y ] =

1

2
√
y

dy

dx
=

f ′(x)

2
√
f(x)

.

62. False. dy/dx = f ′(u)g′(x) = f ′(g(x)) g′(x).

63. False. dy/dx = − sin[g(x)] g′(x).
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64. True. Let u = 3x3 and v = sinu, so y = v3. Then
dy

dx
=
dy

dv

dv

du

du

dx
= 3v2 ·(cosu) ·9x2 = 3 sin2(3x3) ·cos(3x3) ·9x2 =

27x2 sin2(3x3) cos(3x3).

65. (a) dy/dt = −Aω sinωt, d2y/dt2 = −Aω2 cosωt = −ω2y

(b) One complete oscillation occurs when ωt increases over an interval of length 2π, or if t increases over an
interval of length 2π/ω.

(c) f = 1/T

(d) Amplitude = 0.6 cm, T = 2π/15 s/oscillation, f = 15/(2π) oscillations/s.

66. dy/dt = 3A cos 3t, d2y/dt2 = −9A sin 3t, so −9A sin 3t + 2A sin 3t = 4 sin 3t, −7A sin 3t = 4 sin 3t,−7A = 4, and
A = −4/7

67. By the chain rule,
d

dx

[√
x+ f(x)

]
=

1 + f ′(x)

2
√
x+ f(x)

. From the graph, f(x) =
4

3
x + 5 for x < 0, so f(−1) =

11

3
,

f ′(−1) =
4

3
, and

d

dx

[√
x+ f(x)

]∣∣∣∣
x=−1

=
7/3

2
√

8/3
=

7
√

6

24
.

68. 2 sin(π/6) = 1, so we can assume f(x) = − 5
2x + 5. Thus for sufficiently small values of |x − π/6| we have

d

dx
[f(2 sinx)]

∣∣∣∣
x=π/6

= f ′(2 sinx)
d

dx
2 sinx

∣∣∣∣
x=π/6

= −5

2
2 cosx

∣∣∣∣
x=π/6

= −5

2
2

√
3

2
= −5

2

√
3.

69. (a) p ≈ 10 lb/in2, dp/dh ≈ −2 lb/in2/mi. (b)
dp

dt
=
dp

dh

dh

dt
≈ (−2)(0.3) = −0.6 lb/in2/s.

70. (a) F =
45

cos θ + 0.3 sin θ
,
dF

dθ
= −45(− sin θ + 0.3 cos θ)

(cos θ + 0.3 sin θ)2
; if θ = 30◦, then dF/dθ ≈ 10.5 lb/rad ≈ 0.18 lb/deg.

(b)
dF

dt
=
dF

dθ

dθ

dt
≈ (0.18)(−0.5) = −0.09 lb/s.

71. With u = sinx,
d

dx
(| sinx|) =

d

dx
(|u|) =

d

du
(|u|)du

dx
=

d

du
(|u|) cosx =

{
cosx, u > 0
− cosx, u < 0

=

{
cosx, sinx > 0
− cosx, sinx < 0

=

{
cosx, 0 < x < π
− cosx, −π < x < 0

72.
d

dx
(cosx) =

d

dx
[sin(π/2− x)] = − cos(π/2− x) = − sinx.

73. (a) For x 6= 0, |f(x)| ≤ |x|, and lim
x→0
|x| = 0, so by the Squeezing Theorem, lim

x→0
f(x) = 0.

(b) If f ′(0) were to exist, then the limit (as x approaches 0)
f(x)− f(0)

x− 0
= sin(1/x) would have to exist, but it

doesn’t.

(c) For x 6= 0, f ′(x) = x

(
cos

1

x

)(
− 1

x2

)
+ sin

1

x
= − 1

x
cos

1

x
+ sin

1

x
.

(d) If x =
1

2πn
for an integer n 6= 0, then f ′(x) = −2πn cos(2πn) + sin(2πn) = −2πn. This approaches +∞ as

n→ −∞, so there are points x arbitrarily close to 0 where f ′(x) becomes arbitrarily large. Hence lim
x→0

f ′(x) does

not exist.



Exercise Set 2.6 101

74. (a) −x2 ≤ x2 sin(1/x) ≤ x2, so by the Squeezing Theorem lim
x→0

f(x) = 0.

(b) f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim
x→0

x sin(1/x) = 0 by Exercise 73, part (a).

(c) For x 6= 0, f ′(x) = 2x sin(1/x) + x2 cos(1/x)(−1/x2) = 2x sin(1/x)− cos(1/x).

(d) If f ′(x) were continuous at x = 0 then so would cos(1/x) = 2x sin(1/x) − f ′(x) be, since 2x sin(1/x) is
continuous there. But cos(1/x) oscillates at x = 0.

75. (a) g′(x) = 3[f(x)]2f ′(x), g′(2) = 3[f(2)]2f ′(2) = 3(1)2(7) = 21.

(b) h′(x) = f ′(x3)(3x2), h′(2) = f ′(8)(12) = (−3)(12) = −36.

76. F ′(x) = f ′(g(x))g′(x) =
√

3(x2 − 1) + 4 · 2x = 2x
√

3x2 + 1.

77. F ′(x) = f ′(g(x))g′(x) = f ′(
√

3x− 1)
3

2
√

3x− 1
=

√
3x− 1

(3x− 1) + 1

3

2
√

3x− 1
=

1

2x
.

78.
d

dx
[f(x2)] = f ′(x2)(2x), thus f ′(x2)(2x) = x2 so f ′(x2) = x/2 if x 6= 0.

79.
d

dx
[f(3x)] = f ′(3x)

d

dx
(3x) = 3f ′(3x) = 6x, so f ′(3x) = 2x. Let u = 3x to get f ′(u) =

2

3
u;

d

dx
[f(x)] = f ′(x) =

2

3
x.

80. (a) If f(−x) = f(x), then
d

dx
[f(−x)] =

d

dx
[f(x)], f ′(−x)(−1) = f ′(x), f ′(−x) = −f ′(x) so f ′ is odd.

(b) If f(−x) = −f(x), then
d

dx
[f(−x)] = − d

dx
[f(x)], f ′(−x)(−1) = −f ′(x), f ′(−x) = f ′(x) so f ′ is even.

81. For an even function, the graph is symmetric about the y-axis; the slope of the tangent line at (a, f(a)) is the
negative of the slope of the tangent line at (−a, f(−a)). For an odd function, the graph is symmetric about the
origin; the slope of the tangent line at (a, f(a)) is the same as the slope of the tangent line at (−a, f(−a)).

y

x

f (x )

f ' (x )

y

x

f (x )

f ' (x )

82.
dy

dx
=
dy

du

du

dv

dv

dw

dw

dx
.

83.
d

dx
[f(g(h(x)))] =

d

dx
[f(g(u))], u = h(x),

d

du
[f(g(u))]

du

dx
= f ′(g(u))g′(u)

du

dx
= f ′(g(h(x)))g′(h(x))h′(x).

84. g′(x) = f ′
(π

2
− x
)
· d
dx

(π
2
− x
)

= −f ′
(π

2
− x
)

, so g′ is the negative of the co-function of f ′.

The derivatives of sinx, tanx, and secx are cosx, sec2 x, and secx tanx, respectively. The negatives of the
co-functions of these are − sinx, − csc2 x, and − cscx cotx, which are the derivatives of cosx, cotx, and cscx,
respectively.
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Chapter 2 Review Exercises

2. (a) msec =
f(4)− f(3)

4− 3
=

(4)2/2− (3)2/2

1
=

7

2

(b) mtan = lim
w→3

f(w)− f(3)

w − 3
= lim
w→3

w2/2− 9/2

w − 3
= lim
w→3

w2 − 9

2(w − 3)
= lim
w→3

(w + 3)(w − 3)

2(w − 3)
= lim
w→3

w + 3

2
= 3.

(c) mtan = lim
w→x

f(w)− f(x)

w − x = lim
w→x

w2/2− x2/2

w − x = lim
w→x

w2 − x2

2(w − x)
= lim
w→x

w + x

2
= x.

(d)

x

y

Tangent

Secant

5

10

3. (a) mtan = lim
w→x

f(w)− f(x)

w − x = lim
w→x

(w2 + 1)− (x2 + 1)

w − x = lim
w→x

w2 − x2

w − x = lim
w→x

(w + x) = 2x.

(b) mtan = 2(2) = 4.

4. To average 60 mi/h one would have to complete the trip in two hours. At 50 mi/h, 100 miles are completed after
two hours. Thus time is up, and the speed for the remaining 20 miles would have to be infinite.

5. vinst = lim
h→0

3(h+ 1)2.5 + 580h− 3

10h
= 58 +

1

10

d

dx
3x2.5

∣∣∣∣
x=1

= 58 +
1

10
(2.5)(3)(1)1.5 = 58.75 ft/s.

6. 164 ft/s

2500

0
1 20

7. (a) vave =
[3(3)2 + 3]− [3(1)2 + 1]

3− 1
= 13 mi/h.

(b) vinst = lim
t1→1

(3t21 + t1)− 4

t1 − 1
= lim
t1→1

(3t1 + 4)(t1 − 1)

t1 − 1
= lim
t1→1

(3t1 + 4) = 7 mi/h.

9. (a)
dy

dx
= lim
h→0

√
9− 4(x+ h)−

√
9− 4x

h
= lim
h→0

9− 4(x+ h)− (9− 4x)

h(
√

9− 4(x+ h) +
√

9− 4x)
=

= lim
h→0

−4h

h(
√

9− 4(x+ h) +
√

9− 4x)
=

−4

2
√

9− 4x
=

−2√
9− 4x

.

(b)
dy

dx
= lim
h→0

x+ h

x+ h+ 1
− x

x+ 1
h

= lim
h→0

(x+ h)(x+ 1)− x(x+ h+ 1)

h(x+ h+ 1)(x+ 1)
= lim
h→0

h

h(x+ h+ 1)(x+ 1)
=

1

(x+ 1)2
.
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10. f(x) is continuous and differentiable at any x 6= 1, so we consider x = 1.

(a) lim
x→1−

(x2 − 1) = lim
x→1+

k(x− 1) = 0 = f(1), so any value of k gives continuity at x = 1.

(b) lim
x→1−

f ′(x) = lim
x→1−

2x = 2, and lim
x→1+

f ′(x) = lim
x→1+

k = k, so only if k = 2 is f(x) differentiable at x = 1.

11. (a) x = −2,−1, 1, 3 (b) (−∞,−2), (−1, 1), (3,+∞) (c) (−2,−1), (1, 3)

(d) g′′(x) = f ′′(x) sinx+ 2f ′(x) cosx− f(x) sinx; g′′(0) = 2f ′(0) cos 0 = 2(2)(1) = 4

12.

y

x
1

13. (a) The slope of the tangent line ≈ 10− 2.2

2050− 1950
= 0.078 billion, so in 2000 the world population was increasing

at the rate of about 78 million per year.

(b)
dN/dt

N
≈ 0.078

6
= 0.013 = 1.3 %/year

14. When x4−x−1 > 0, f(x) = x4−2x−1; when x4−x−1 < 0, f(x) = −x4 +1, and f is differentiable in both cases.
The roots of x4 − x − 1 = 0 are x1 ≈ −0.724492, x2 ≈ 1.220744. So x4 − x − 1 > 0 on (−∞, x1) and (x2,+∞),
and x4−x− 1 < 0 on (x1, x2). Then lim

x→x−1
f ′(x) = lim

x→x−1
(4x3− 2) = 4x3

1− 2 and lim
x→x+

1

f ′(x) = lim
x→x+

1

−4x3 = −4x3
1

which is not equal to 4x3
1 − 2, so f is not differentiable at x = x1; similarly f is not differentiable at x = x2.

1.5

–1.5

–1.5 2

15. (a) f ′(x) = 2x sinx+ x2 cosx (c) f ′′(x) = 4x cosx+ (2− x2) sinx

16. (a) f ′(x) =
1− 2

√
x sin 2x

2
√
x

(c) f ′′(x) =
−1− 8x3/2 cos 2x

4x3/2

17. (a) f ′(x) =
6x2 + 8x− 17

(3x+ 2)2
(c) f ′′(x) =

118

(3x+ 2)3

18. (a) f ′(x) =
(1 + x2) sec2 x− 2x tanx

(1 + x2)2

(c) f ′′(x) =
(2 + 4x2 + 2x4) sec2 x tanx− (4x+ 4x3) sec2 x+ (−2 + 6x2) tanx

(1 + x2)3
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19. (a)
dW

dt
= 200(t− 15); at t = 5,

dW

dt
= −2000; the water is running out at the rate of 2000 gal/min.

(b)
W (5)−W (0)

5− 0
=

10000− 22500

5
= −2500; the average rate of flow out is 2500 gal/min.

20. (a)
43 − 23

4− 2
=

56

2
= 28 (b) (dV/d`)|`=5 = 3`2

∣∣
`=5

= 3(5)2 = 75

21. (a) f ′(x) = 2x, f ′(1.8) = 3.6 (b) f ′(x) = (x2 − 4x)/(x− 2)2, f ′(3.5) = −7/9 ≈ −0.777778

22. (a) f ′(x) = 3x2 − 2x, f ′(2.3) = 11.27 (b) f ′(x) = (1− x2)/(x2 + 1)2, f ′(−0.5) = 0.48

23. f is continuous at x = 1 because it is differentiable there, thus lim
h→0

f(1 + h) = f(1) and so f(1) = 0 because

lim
h→0

f(1 + h)

h
exists; f ′(1) = lim

h→0

f(1 + h)− f(1)

h
= lim
h→0

f(1 + h)

h
= 5.

24. Multiply the given equation by lim
x→2

(x− 2) = 0 to get 0 = lim
x→2

(x3f(x)− 24). Since f is continuous at x = 2, this

equals 23f(2)− 24, so f(2) = 3. Now let g(x) = x3f(x). Then g′(2) = lim
x→2

g(x)− g(2)

x− 2
= lim

x→2

x3f(x)− 23f(2)

x− 2
=

lim
x→2

x3f(x)− 24

x− 2
= 28. But g′(x) = x3f ′(x) + 3x2f(x), so 28 = g′(2) = 23f ′(2) + 3 · 22f(2) = 8f ′(2) + 36, and

f ′(2) = −1.

25. The equation of such a line has the form y = mx. The points (x0, y0) which lie on both the line and the parabola
and for which the slopes of both curves are equal satisfy y0 = mx0 = x3

0−9x2
0−16x0, so that m = x2

0−9x0−16. By
differentiating, the slope is also given by m = 3x2

0−18x0−16. Equating, we have x2
0−9x0−16 = 3x2

0−18x0−16,
or 2x2

0 − 9x0 = 0. The root x0 = 0 corresponds to m = −16, y0 = 0 and the root x0 = 9/2 corresponds to
m = −145/4, y0 = −1305/8. So the line y = −16x is tangent to the curve at the point (0, 0), and the line
y = −145x/4 is tangent to the curve at the point (9/2,−1305/8).

26. The slope of the line x+4y = 10 is m1 = −1/4, so we set the negative reciprocal 4 = m2 =
d

dx
(2x3−x2) = 6x2−2x

and obtain 6x2 − 2x− 4 = 0 with roots x =
1±
√

1 + 24

6
= 1,−2/3.

27. The slope of the tangent line is the derivative y′ = 2x
∣∣∣
x= 1

2 (a+b)
= a+ b. The slope of the secant is

a2 − b2
a− b = a+ b,

so they are equal.

y

x

a ba+b
2

(a, a2)

(b, b2)

28. (a) f ′(1)g(1) + f(1)g′(1) = 3(−2) + 1(−1) = −7 (b)
g(1)f ′(1)− f(1)g′(1)

g(1)2
=
−2(3)− 1(−1)

(−2)2
= −5

4

(c)
1

2
√
f(1)

f ′(1) =
1

2
√

1
(3) =

3

2
(d) 0 (because f(1)g′(1) is constant)
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29. (a) 8x7− 3

2
√
x
− 15x−4 (b) 2 · 101(2x+ 1)100(5x2− 7) + 10x(2x+ 1)101 = (2x+ 1)100(1030x2 + 10x− 1414)

30. (a) cosx− 6 cos2 x sinx (b) (1 + secx)(2x− sec2 x) + (x2 − tanx) secx tanx

31. (a) 2(x− 1)
√

3x+ 1 +
3

2
√

3x+ 1
(x− 1)2 =

(x− 1)(15x+ 1)

2
√

3x+ 1

(b) 3

(
3x+ 1

x2

)2
x2(3)− (3x+ 1)(2x)

x4
= −3(3x+ 1)2(3x+ 2)

x7

32. (a) − csc2

(
csc 2x

x3 + 5

) −2(x3 + 5) csc 2x cot 2x− 3x2 csc 2x

(x3 + 5)2
(b) −2 + 3 sin2 x cosx

(2x+ sin3 x)2

33. Set f ′(x) = 0: f ′(x) = 6(2)(2x+ 7)5(x− 2)5 + 5(2x+ 7)6(x− 2)4 = 0, so 2x+ 7 = 0 or x− 2 = 0 or, factoring out
(2x + 7)5(x − 2)4, 12(x − 2) + 5(2x + 7) = 0. This reduces to x = −7/2, x = 2, or 22x + 11 = 0, so the tangent
line is horizontal at x = −7/2, 2,−1/2.

34. Set f ′(x) = 0: f ′(x) =
4(x2 + 2x)(x− 3)3 − (2x+ 2)(x− 3)4

(x2 + 2x)2
, and a fraction can equal zero only if its numerator

equals zero. So either x−3 = 0 or, after factoring out (x−3)3, 4(x2 + 2x)− (2x+ 2)(x−3) = 0, 2x2 + 12x+ 6 = 0,

whose roots are (by the quadratic formula) x =
−6±

√
36− 4 · 3
2

= −3±
√

6. So the tangent line is horizontal at

x = 3,−3±
√

6.

35. Suppose the line is tangent to y = x2 + 1 at (x0, y0) and tangent to y = −x2 − 1 at (x1, y1). Since it’s tangent to
y = x2 + 1, its slope is 2x0; since it’s tangent to y = −x2 − 1, its slope is −2x1. Hence x1 = −x0 and y1 = −y0.

Since the line passes through both points, its slope is
y1 − y0

x1 − x0
=
−2y0

−2x0
=
y0

x0
=
x2

0 + 1

x0
. Thus 2x0 =

x2
0 + 1

x0
, so

2x2
0 = x2

0 + 1, x2
0 = 1, and x0 = ±1. So there are two lines which are tangent to both graphs, namely y = 2x and

y = −2x.

36. (a) Suppose y = mx + b is tangent to y = xn + n − 1 at (x0, y0) and to y = −xn − n + 1 at (x1, y1). Then
m = nxn−1

0 = −nxn−1
1 ; since n is even this implies that x1 = −x0. Again since n is even, y1 = −xn1 − n + 1 =

−xn0 − n + 1 = −(xn0 + n − 1) = −y0. Thus the points (x0, y0) and (x1, y1) are symmetric with respect to
the origin and both lie on the tangent line and thus b = 0. The slope m is given by m = nxn−1

0 and by
m = y0/x0 = (xn0 + n − 1)/x0, hence nxn0 = xn0 + n − 1, (n − 1)xn0 = n − 1, xn0 = 1. Since n is even, x0 = ±1.
One easily checks that y = nx is tangent to y = xn + n − 1 at (1, n) and to y = −xn − n + 1 at (−1,−n), while
y = −nx is tangent to y = xn + n− 1 at (−1, n) and to y = −xn − n+ 1 at (1,−n).

(b) Suppose there is such a common tangent line with slope m. The function y = xn +n− 1 is always increasing,
so m ≥ 0. Moreover the function y = −xn − n + 1 is always decreasing, so m ≤ 0. Thus the tangent line has
slope 0, which only occurs on the curves for x = 0. This would require the common tangent line to pass through
(0, n− 1) and (0,−n+ 1) and do so with slope m = 0, which is impossible.

37. The line y − x = 2 has slope m1 = 1 so we set m2 =
d

dx
(3x− tanx) = 3− sec2 x = 1, or sec2 x = 2, secx = ±

√
2

so x = nπ ± π/4 where n = 0,±1,±2, . . . .

38. Solve 3x2 − cosx = 0 to get x = ±0.535428.

39. 3 = f(π/4) = (M+N)
√

2/2 and 1 = f ′(π/4) = (M−N)
√

2/2. Add these two equations to get 4 =
√

2M,M = 23/2.

Subtract to obtain 2 =
√

2N,N =
√

2. Thus f(x) = 2
√

2 sinx +
√

2 cosx. f ′
(

3π

4

)
= −3, so the tangent line is

y − 1 = −3

(
x− 3π

4

)
.
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40. f(x) = M tanx+N secx, f ′(x) = M sec2 x+N secx tanx. At x = π/4, 2M +
√

2N, 0 = 2M +
√

2N . Add to get
M = −2, subtract to get N =

√
2 + M/

√
2 = 2

√
2, f(x) = −2 tanx + 2

√
2 secx. f ′(0) = −2, so the tangent line

is y − 2
√

2 = −2x.

41. f ′(x) = 2xf(x), f(2) = 5

(a) g(x) = f(secx), g′(x) = f ′(secx) secx tanx = 2 · 2f(2) · 2 ·
√

3 = 40
√

3.

(b) h′(x) = 4

[
f(x)

x− 1

]3
(x− 1)f ′(x)− f(x)

(x− 1)2
, h′(2) = 4

53

1

f ′(2)− f(2)

1
= 4 · 53 2 · 2f(2)− f(2)

1
= 4 · 53 · 3 · 5 = 7500

Chapter 2 Making Connections

1. (a) By property (ii), f(0) = f(0 + 0) = f(0)f(0), so f(0) = 0 or 1. By property (iii), f(0) 6= 0, so f(0) = 1.

(b) By property (ii), f(x) = f
(x

2
+
x

2

)
= f

(x
2

)2

≥ 0. If f(x) = 0, then 1 = f(0) = f(x+(−x)) = f(x)f(−x) =

0 · f(−x) = 0, a contradiction. Hence f(x) > 0.

(c) f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim
h→0

f(x)f(h)− f(x)

h
= lim
h→0

f(x)
f(h)− 1

h
= f(x) lim

h→0

f(h)− f(0)

h
=

f(x)f ′(0) = f(x)

2. (a) By the chain rule and Exercise 1(c), y′ = f ′(2x) · d
dx

(2x) = f(2x) · 2 = 2y.

(b) By the chain rule and Exercise 1(c), y′ = f ′(kx) · d
dx

(kx) = kf ′(kx) = kf(kx).

(c) By the product rule and Exercise 1(c), y′ = f(x)g′(x) + g(x)f ′(x) = f(x)g(x) + g(x)f(x) = 2f(x)g(x) = 2y,
so k = 2.

(d) By the quotient rule and Exercise 1(c), h′(x) =
g(x)f ′(x)− f(x)g′(x)

g(x)2
=
g(x)f(x)− f(x)g(x)

g(x)2
= 0. As we

will see in Theorem 4.1.2(c), this implies that h(x) is a constant. Since h(0) = f(0)/g(0) = 1/1 = 1 by Exercise
1(a), h(x) = 1 for all x, so f(x) = g(x).

3. (a) For brevity, we omit the “(x)” throughout.

(f · g · h)′ =
d

dx
[(f · g) · h] = (f · g) · dh

dx
+ h · d

dx
(f · g) = f · g · h′ + h ·

(
f · dg

dx
+ g · df

dx

)

= f ′ · g · h+ f · g′ · h+ f · g · h′

(b) (f · g · h · k)′ =
d

dx
[(f · g · h) · k] = (f · g · h) · dk

dx
+ k · d

dx
(f · g · h)

= f · g · h · k′ + k · (f ′ · g · h+ f · g′ · h+ f · g · h′) = f ′ · g · h · k + f · g′ · h · k + f · g · h′ · k + f · g · h · k′

(c) Theorem: If n ≥ 1 and f1, · · · , fn are differentiable functions of x, then

(f1 · f2 · · · · · fn)′ =
n∑

i=1

f1 · · · · · fi−1 · f ′i · fi+1 · · · · · fn.

Proof: For n = 1 the statement is obviously true: f ′1 = f ′1. If the statement is true for n− 1, then

(f1 · f2 · · · · · fn)′ =
d

dx
[(f1 · f2 · · · · · fn−1) · fn] = (f1 · f2 · · · · · fn−1) · f ′n + fn · (f1 · f2 · · · · · fn−1)′

= f1 · f2 · · · · · fn−1 · f ′n + fn ·
n−1∑

i=1

f1 · · · · · fi−1 · f ′i · fi+1 · · · · · fn−1 =
n∑

i=1

f1 · · · · · fi−1 · f ′i · fi+1 · · · · · fn
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so the statement is true for n. By induction, it’s true for all n.

4. (a) [(f/g)/h]′ =
h · (f/g)′ − (f/g) · h′

h2
=
h · g·f ′−f ·g′g2 − f ·h′

g

h2
=
f ′ · g · h− f · g′ · h− f · g · h′

g2h2

(b) [(f/g)/h]′ = [f/(g · h)]′ =
(g · h) · f ′ − f · (g · h)′

(g · h)2
=
f ′ · g · h− f · (g · h′ + h · g′)

g2h2
=

=
f ′ · g · h− f · g′ · h− f · g · h′

g2h2

(c) [f/(g/h)]′ =
(g/h) · f ′ − f · (g/h)′

(g/h)2
=

f ′·g
h − f ·

h·g′−g·h′
h2

(g/h)2
=
f ′ · g · h− f · g′ · h+ f · g · h′

g2

(d) [f/(g/h)]′ = [(f · h)/g]′ =
g · (f · h)′ − (f · h) · g′

g2
=
g · (f · h′ + h · f ′)− f · g′ · h

g2
=

=
f ′ · g · h− f · g′ · h+ f · g · h′

g2

5. (a) By the chain rule,
d

dx

(
[g(x)]−1

)
= −[g(x)]−2g′(x) = − g′(x)

[g(x)]2
. By the product rule,

h′(x) = f(x).
d

dx

(
[g(x)]−1

)
+ [g(x)]−1.

d

dx
[f(x)] = −f(x)g′(x)

[g(x)]2
+
f ′(x)

g(x)
=
g(x)f ′(x)− f(x)g′(x)

[g(x)]2
.

(b) By the product rule, f ′(x) =
d

dx
[h(x)g(x)] = h(x)g′(x) + g(x)h′(x). So

h′(x) =
1

g(x)
[f ′(x)− h(x)g′(x)] =

1

g(x)

[
f ′(x)− f(x)

g(x)
g′(x)

]
=
g(x)f ′(x)− f(x)g′(x)

[g(x)]2
.
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Topics in Differentiation

Exercise Set 3.1

1. (a) 1 + y + x
dy

dx
− 6x2 = 0,

dy

dx
=

6x2 − y − 1

x
.

(b) y =
2 + 2x3 − x

x
=

2

x
+ 2x2 − 1,

dy

dx
= − 2

x2
+ 4x.

(c) From part (a),
dy

dx
= 6x− 1

x
− 1

x
y = 6x− 1

x
− 1

x

(
2

x
+ 2x2 − 1

)
= 4x− 2

x2
.

2. (a)
1

2
y−1/2 dy

dx
− cosx = 0 or

dy

dx
= 2
√
y cosx.

(b) y = (2 + sinx)2 = 4 + 4 sinx+ sin2 x so
dy

dx
= 4 cosx+ 2 sinx cosx.

(c) From part (a),
dy

dx
= 2
√
y cosx = 2 cosx(2 + sinx) = 4 cosx+ 2 sinx cosx.

3. 2x+ 2y
dy

dx
= 0 so

dy

dx
= −x

y
.

4. 3x2 + 3y2 dy

dx
= 3y2 + 6xy

dy

dx
,
dy

dx
=

3y2 − 3x2

3y2 − 6xy
=

y2 − x2

y2 − 2xy
.

5. x2 dy

dx
+ 2xy + 3x(3y2)

dy

dx
+ 3y3 − 1 = 0, (x2 + 9xy2)

dy

dx
= 1− 2xy − 3y3, so

dy

dx
=

1− 2xy − 3y3

x2 + 9xy2
.

6. x3(2y)
dy

dx
+ 3x2y2 − 5x2 dy

dx
− 10xy + 1 = 0, (2x3y − 5x2)

dy

dx
= 10xy − 3x2y2 − 1, so

dy

dx
=

10xy − 3x2y2 − 1

2x3y − 5x2
.

7. − 1

2x3/2
−

dy
dx

2y3/2
= 0, so

dy

dx
= −y

3/2

x3/2
.

8. 2x =
(x− y)(1 + dy/dx)− (x+ y)(1− dy/dx)

(x− y)2
, 2x(x− y)2 = −2y + 2x

dy

dx
, so

dy

dx
=
x(x− y)2 + y

x
.

9. cos(x2y2)

[
x2(2y)

dy

dx
+ 2xy2

]
= 1, so

dy

dx
=

1− 2xy2 cos(x2y2)

2x2y cos(x2y2)
.

10. − sin(xy2)

[
y2 + 2xy

dy

dx

]
=
dy

dx
, so

dy

dx
= − y2 sin(xy2)

2xy sin(xy2) + 1
.
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11. 3 tan2(xy2 + y) sec2(xy2 + y)

(
2xy

dy

dx
+ y2 +

dy

dx

)
= 1, so

dy

dx
=

1− 3y2 tan2(xy2 + y) sec2(xy2 + y)

3(2xy + 1) tan2(xy2 + y) sec2(xy2 + y)
.

12.
(1 + sec y)[3xy2(dy/dx) + y3]− xy3(sec y tan y)(dy/dx)

(1 + sec y)2
= 4y3 dy

dx
, multiply through by (1 + sec y)2 and solve for

dy

dx
to get

dy

dx
=

y(1 + sec y)

4y(1 + sec y)2 − 3x(1 + sec y) + xy sec y tan y
.

13. 4x− 6y
dy

dx
= 0,

dy

dx
=

2x

3y
, 4− 6

(
dy

dx

)2

− 6y
d2y

dx2
= 0, so

d2y

dx2
= −

3
(
dy
dx

)2

− 2

3y
=

2(3y2 − 2x2)

9y3
= − 8

9y3
.

14.
dy

dx
= −x

2

y2
,
d2y

dx2
= −y

2(2x)− x2(2ydy/dx)

y4
= −2xy2 − 2x2y(−x2/y2)

y4
= −2x(y3 + x3)

y5
, but x3 + y3 = 1, so

d2y

dx2
= −2x

y5
.

15.
dy

dx
= −y

x
,
d2y

dx2
= −x(dy/dx)− y(1)

x2
= −x(−y/x)− y

x2
=

2y

x2
.

16. y + x
dy

dx
+ 2y

dy

dx
= 0,

dy

dx
= − y

x+ 2y
, 2
dy

dx
+ x

d2y

dx2
+ 2

(
dy

dx

)2

+ 2y
d2y

dx2
= 0,

d2y

dx2
=

2y(x+ y)

(x+ 2y)3
.

17.
dy

dx
= (1 + cos y)−1,

d2y

dx2
= −(1 + cos y)−2(− sin y)

dy

dx
=

sin y

(1 + cos y)3
.

18.
dy

dx
=

cos y

1 + x sin y
,
d2y

dx2
=

(1 + x sin y)(− sin y)(dy/dx)− (cos y)[(x cos y)(dy/dx) + sin y]

(1 + x sin y)2
=

−2 sin y cos y + (x cos y)(2 sin2 y + cos2 y)

(1 + x sin y)3
, but x cos y = y, 2 sin y cos y = sin 2y, and sin2 y + cos2 y = 1, so

d2y

dx2
= − sin 2y + y(sin2 y + 1)

(1 + x sin y)3
.

19. By implicit differentiation, 2x + 2y(dy/dx) = 0,
dy

dx
= −x

y
; at (1/2,

√
3/2),

dy

dx
= −

√
3/3; at (1/2,−

√
3/2),

dy

dx
= +
√

3/3. Directly, at the upper point y =
√

1− x2,
dy

dx
=

−x√
1− x2

= − 1/2√
3/4

= −1/
√

3 and at the lower

point y = −
√

1− x2,
dy

dx
=

x√
1− x2

= +1/
√

3.

20. If y2 − x + 1 = 0, then y =
√
x− 1 goes through the point (10, 3) so dy/dx = 1/(2

√
x− 1). By implicit

differentiation dy/dx = 1/(2y). In both cases, dy/dx|(10,3) = 1/6. Similarly y = −
√
x− 1 goes through (10,−3)

so dy/dx = −1/(2
√
x− 1) = −1/6 which yields dy/dx = 1/(2y) = −1/6.

21. False; x = y2 defines two functions y = ±√x. See Definition 3.1.1.

22. True.

23. False; the equation is equivalent to x2 = y2 which is satisfied by y = |x|.

24. True.

25. 4x3 + 4y3 dy

dx
= 0, so

dy

dx
= −x

3

y3
= − 1

153/4
≈ −0.1312.
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26. 3y2 dy

dx
+ x2 dy

dx
+ 2xy + 2x− 6y

dy

dx
= 0, so

dy

dx
= −2x

y + 1

3y2 + x2 − 6y
= 0 at x = 0.

27. 4(x2 + y2)

(
2x+ 2y

dy

dx

)
= 25

(
2x− 2y

dy

dx

)
,
dy

dx
=
x[25− 4(x2 + y2)]

y[25 + 4(x2 + y2)]
; at (3, 1)

dy

dx
= −9/13.

28.
2

3

(
x−1/3 + y−1/3 dy

dx

)
= 0,

dy

dx
= −y

1/3

x1/3
=
√

3 at (−1, 3
√

3).

29. 4a3 da

dt
− 4t3 = 6

(
a2 + 2at

da

dt

)
, solve for

da

dt
to get

da

dt
=

2t3 + 3a2

2a3 − 6at
.

30.
1

2
u−1/2 du

dv
+

1

2
v−1/2 = 0, so

du

dv
= −
√
u√
v

.

31. 2a2ω
dω

dλ
+ 2b2λ = 0, so

dω

dλ
= − b

2λ

a2ω
.

32. 1 = (cosx)
dx

dy
, so

dx

dy
=

1

cosx
= secx.

33. 2x + x
dy

dx
+ y + 2y

dy

dx
= 0. Substitute y = −2x to obtain −3x

dy

dx
= 0. Since x = ±1 at the indicated points,

dy

dx
= 0 there.

34. (a) The equation and the point (1, 1) are both symmetric in x and y (if you interchange the two variables you get
the same equation and the same point). Therefore the outcome ”horizontal tangent at (1, 1)” could be replaced
by ”vertical tangent at (1, 1)”, and these cannot both be the case.

(b) Implicit differentiation yields
dy

dx
=

2x− y
x− 2y

, which is zero only if y = 2x; coupled with the equation x2−xy+

y2 = 1 we obtain x2 − 2x2 + 4x2 = 1, or 3x2 = 1, x = (
√

3/3, 2
√

3/3) and (−
√

3/3,−2
√

3/3).

35. (a)

–4 4

–2

2

x

y

(b) Implicit differentiation of the curve yields (4y3 + 2y)
dy

dx
= 2x− 1, so

dy

dx
= 0 only if x = 1/2 but y4 + y2 ≥ 0

so x = 1/2 is impossible.

(c) x2 − x− (y4 + y2) = 0, so by the Quadratic Formula, x =
−1±

√
(2y2 + 1)2

2
= 1 + y2 or −y2, and we have

the two parabolas x = −y2, x = 1 + y2.

36. By implicit differentiation, 2y(2y2 + 1)
dy

dx
= 2x− 1,

dx

dy
=

2y(2y2 + 1)

2x− 1
= 0 only if 2y(2y2 + 1) = 0, which can only

hold if y = 0. From y4 + y2 = x(x− 1), if y = 0 then x = 0 or 1, and so (0, 0) and (1, 0) are the two points where
the tangent is vertical.
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37. The point (1,1) is on the graph, so 1 + a = b. The slope of the tangent line at (1,1) is −4/3; use implicit

differentiation to get
dy

dx
= − 2xy

x2 + 2ay
so at (1,1), − 2

1 + 2a
= −4

3
, 1 + 2a = 3/2, a = 1/4 and hence b = 1 + 1/4 =

5/4.

38. The slope of the line x+ 2y−2 = 0 is m1 = −1/2, so the line perpendicular has slope m = 2 (negative reciprocal).

The slope of the curve y3 = 2x2 can be obtained by implicit differentiation: 3y2 dy

dx
= 4x,

dy

dx
=

4x

3y2
. Set

dy

dx
= 2;

4x

3y2
= 2, x = (3/2)y2. Use this in the equation of the curve: y3 = 2x2 = 2((3/2)y2)2 = (9/2)y4, y =

2/9, x =
3

2

(
2

9

)2

=
2

27
.

39. By implicit differentiation, 0 =
1

p

dp

dt
+

0.0046

2.3− 0.0046p

dp

dt
− 2.3, after solving for

dp

dt
we get

dp

dt
= 0.0046p(500− p).

40. By implicit differentiation, 0 =
1

p

dp

dt
+

4.2381

2225− 4.2381p

dp

dt
− 0.02225, after solving for

dp

dt
we obtain that

dp

dt
=

10−5p(2225− 4.2381p).

41. We shall find when the curves intersect and check that the slopes are negative reciprocals. For the intersection

solve the simultaneous equations x2 + (y− c)2 = c2 and (x− k)2 + y2 = k2 to obtain cy = kx =
1

2
(x2 + y2). Thus

x2 + y2 = cy + kx, or y2 − cy = −x2 + kx, and
y − c
x

= −x− k
y

. Differentiating the two families yields (black)

dy

dx
= − x

y − c , and (gray)
dy

dx
= −x− k

y
. But it was proven that these quantities are negative reciprocals of each

other.

42. Differentiating, we get the equations (black) x
dy

dx
+ y = 0 and (gray) 2x − 2y

dy

dx
= 0. The first says the (black)

slope is −y
x

and the second says the (gray) slope is
x

y
, and these are negative reciprocals of each other.

43. (a)

–3 –1 2

–3

–1

2

x

y

(b) x ≈ 0.84

(c) Use implicit differentiation to get dy/dx = (2y − 3x2)/(3y2 − 2x), so dy/dx = 0 if y = (3/2)x2. Substitute
this into x3 − 2xy + y3 = 0 to obtain 27x6 − 16x3 = 0, x3 = 16/27, x = 24/3/3 and hence y = 25/3/3.
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44. (a)

–3 –1 2

–3

–1

2

x

y

(b) Evidently (by symmetry) the tangent line at the point x = 1, y = 1 has slope −1.

(c) Use implicit differentiation to get dy/dx = (2y − 3x2)/(3y2 − 2x), so dy/dx = −1 if 2y − 3x2 = −3y2 +
2x, 2(y − x) + 3(y − x)(y + x) = 0. One solution is y = x; this together with x3 + y3 = 2xy yields x = y = 1.
For these values dy/dx = −1, so that (1, 1) is a solution. To prove that there is no other solution, suppose y 6= x.
From dy/dx = −1 it follows that 2(y − x) + 3(y − x)(y + x) = 0. But y 6= x, so x + y = −2/3, which is not true
for any point in the first quadrant.

45. By the chain rule,
dy

dx
=
dy

dt

dt

dx
. Using implicit differentiation for 2y3t + t3y = 1 we get

dy

dt
= −2y3 + 3t2y

6ty2 + t3
, but

dt

dx
=

1

cos t
, so

dy

dx
= − 2y3 + 3t2y

(6ty2 + t3) cos t
.

46. Let P (x0, y0) be a point where a line through the origin is tangent to the curve 2x2 − 4x + y2 + 1 = 0. Implicit
differentiation applied to the equation of the curve gives dy/dx = (2−2x)/y. At P the slope of the curve must equal
the slope of the line so (2−2x0)/y0 = y0/x0, or y2

0 = 2x0(1−x0). But 2x2
0−4x0 +y2

0 +1 = 0 because (x0, y0) is on
the curve, and elimination of y2

0 in the latter two equations gives 2x0 = 4x0− 1, x0 = 1/2 which when substituted
into y2

0 = 2x0(1 − x0) yields y2
0 = 1/2, so y0 = ±

√
2/2. The slopes of the lines are (±

√
2/2)/(1/2) = ±

√
2 and

their equations are y =
√

2x and y = −
√

2x.

Exercise Set 3.2

1.
1

5x
(5) =

1

x
.

2.
1

x/3

1

3
=

1

x
.

3.
1

1 + x
.

4.
1

2 +
√
x

(
1

2
√
x

)
=

1

2
√
x(2 +

√
x)

.

5.
1

x2 − 1
(2x) =

2x

x2 − 1
.

6.
3x2 − 14x

x3 − 7x2 − 3
.

7.
d

dx
lnx− d

dx
ln(1 + x2) =

1

x
− 2x

1 + x2
=

1− x2

x(1 + x2)
.

8.
d

dx
(ln |1 + x| − ln |1− x|) =

1

1 + x
− −1

1− x =
2

1− x2
.
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9.
d

dx
(2 lnx) = 2

d

dx
lnx =

2

x
.

10. 3 (lnx)
2 1

x
.

11.
1

2
(lnx)−1/2

(
1

x

)
=

1

2x
√

lnx
.

12.
d

dx

1

2
lnx =

1

2x
.

13. lnx+ x
1

x
= 1 + lnx.

14. x3

(
1

x

)
+ (3x2) lnx = x2(1 + 3 lnx).

15. 2x log2(3− 2x) +
−2x2

(ln 2)(3− 2x)
.

16.
[
log2(x2 − 2x)

]3
+ 3x

[
log2(x2 − 2x)

]2 2x− 2

(x2 − 2x) ln 2
.

17.
2x(1 + log x)− x/(ln 10)

(1 + log x)2
.

18. 1/[x(ln 10)(1 + log x)2].

19.
1

lnx

(
1

x

)
=

1

x lnx
.

20.
1

ln(ln(x))

1

lnx

1

x
.

21.
1

tanx
(sec2 x) = secx cscx.

22.
1

cosx
(− sinx) = − tanx.

23. − sin(lnx)
1

x
.

24. 2 sin(lnx) cos(lnx)
1

x
=

sin(2 lnx)

x
=

sin(lnx2)

x
.

25.
1

ln 10 sin2 x
(2 sinx cosx) = 2

cotx

ln 10
.

26.
1

ln 10

d

dx
ln cos2 x =

1

ln 10

−2 sinx cosx

cos2 x
= −2 tanx

ln 10
.

27.
d

dx

[
3 ln(x− 1) + 4 ln(x2 + 1)

]
=

3

x− 1
+

8x

x2 + 1
=

11x2 − 8x+ 3

(x− 1)(x2 + 1)
.

28.
d

dx
[2 ln cosx+

1

2
ln(1 + x4)] = −2 tanx+

2x3

1 + x4
.
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29.
d

dx

[
ln cosx− 1

2
ln(4− 3x2)

]
= − tanx+

3x

4− 3x2

30.
d

dx

(
1

2
[ln(x− 1)− ln(x+ 1)]

)
=

1

2

(
1

x− 1
− 1

x+ 1

)
.

31. True, because
dy

dx
=

1

x
, so as x = a→ 0+, the slope approaches infinity.

32. False, e.g. f(x) =
√
x.

33. True; if x > 0 then
d

dx
ln |x| = 1/x; if x < 0 then

d

dx
ln |x| = 1/x.

34. False;
d

dx
(lnx)2 = 2

1

x
lnx 6= 2

x
.

35. ln |y| = ln |x|+ 1

3
ln |1 + x2|, so

dy

dx
= x

3
√

1 + x2

[
1

x
+

2x

3(1 + x2)

]
.

36. ln |y| = 1

5
[ln |x− 1| − ln |x+ 1|], so

dy

dx
=

1

5
5

√
x− 1

x+ 1

[
1

x− 1
− 1

x+ 1

]
.

37. ln |y| = 1

3
ln |x2 − 8|+ 1

2
ln |x3 + 1| − ln |x6 − 7x+ 5|, so

dy

dx
=

(x2 − 8)1/3
√
x3 + 1

x6 − 7x+ 5

[
2x

3(x2 − 8)
+

3x2

2(x3 + 1)
− 6x5 − 7

x6 − 7x+ 5

]
.

38. ln |y| = ln | sinx|+ ln | cosx|+ 3 ln | tanx| − 1

2
ln |x|, so

dy

dx
=

sinx cosx tan3 x√
x

[
cotx− tanx+

3 sec2 x

tanx
− 1

2x

]

39. (a) logx e =
ln e

lnx
=

1

lnx
, so

d

dx
[logx e] = − 1

x(lnx)2
.

(b) logx 2 =
ln 2

lnx
, so

d

dx
[logx 2] = − ln 2

x(lnx)2
.

40. (a) From loga b =
ln b

ln a
for a, b > 0 it follows that log(1/x) e =

ln e

ln(1/x)
= − 1

lnx
, so

d

dx

[
log(1/x) e

]
=

1

x(lnx)2
.

(b) log(ln x) e =
ln e

ln(lnx)
=

1

ln(lnx)
, so

d

dx
log(ln x) e = − 1

(ln(lnx))2

1

x lnx
= − 1

x(lnx)(ln(lnx))2
.

41. f ′(x0) =
1

x0
= e, y − (−1) = e(x− x0) = ex− 1, y = ex− 2.

42. y = log x =
lnx

ln 10
, y′ =

1

x ln 10
, y0 = log 10 = 1, y − 1 =

1

10 ln 10
(x− 10).

43. f(x0) = f(−e) = 1, f ′(x)|x=−e = −1

e
, y − 1 = −1

e
(x+ e), y = −1

e
x.

44. y − ln 2 = −1

2
(x+ 2), y = −1

2
x+ ln 2− 1.
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45. (a) Let the equation of the tangent line be y = mx and suppose that it meets the curve at (x0, y0). Then

m =
1

x

∣∣∣∣
x=x0

=
1

x0
and y0 = mx0 + b = lnx0. So m =

1

x0
=

lnx0

x0
and lnx0 = 1, x0 = e,m =

1

e
and the equation

of the tangent line is y =
1

e
x.

(b) Let y = mx + b be a line tangent to the curve at (x0, y0). Then b is the y-intercept and the slope of the

tangent line is m =
1

x0
. Moreover, at the point of tangency, mx0 + b = lnx0 or

1

x0
x0 + b = lnx0, b = lnx0 − 1, as

required.

46. Let y(x) = u(x)v(x), then ln y = lnu + ln v, so y′/y = u′/u + v′/v, or y′ = uv′ + vu′. Let y = u/v, then
ln y = lnu − ln v, so y′/y = u′/u − v′/v, or y′ = u′/v − uv′/v2 = (u′v − uv′)/v2. The logarithm of a product
(quotient) is the sum (difference) of the logarithms.

47. The area of the triangle PQR is given by the formula |PQ||QR|/2. |PQ| = w, and, by Exercise 45 part (b),
|QR| = 1, so the area is w/2.

2

–2

1

x

y

P (w, ln w)
Q

R

w

48. Since y = 2 lnx, let y = 2z; then z = lnx and we apply the result of Exercise 45 to find that the area is, in the
x-z plane, w/2. In the x-y plane, since y = 2z, the vertical dimension gets doubled, so the area is w.

49. If x = 0 then y = ln e = 1, and
dy

dx
=

1

x+ e
. But ey = x+ e, so

dy

dx
=

1

ey
= e−y.

50. If x = 0 then y = − ln e2 = −2, and
dy

dx
=

1

e2 − x . But ey =
1

e2 − x , so
dy

dx
= ey.

51. Let y = ln(x+ a). Following Exercise 49 we get
dy

dx
=

1

x+ a
= e−y, and when x = 0, y = ln(a) = 0 if a = 1, so let

a = 1, then y = ln(x+ 1).

52. Let y = − ln(a− x), then
dy

dx
=

1

a− x . But ey =
1

a− x , so
dy

dx
= ey. If x = 0 then y = − ln(a) = − ln 2 provided

a = 2, so y = − ln(2− x).

53. (a) Set f(x) = ln(1 + 3x). Then f ′(x) =
3

1 + 3x
, f ′(0) = 3. But f ′(0) = lim

x→0

f(x)− f(0)

x
= lim
x→0

ln(1 + 3x)

x
.

(b) Set f(x) = ln(1− 5x). Then f ′(x) =
−5

1− 5x
, f ′(0) = −5. But f ′(0) = lim

x→0

f(x)− f(0)

x
= lim
x→0

ln(1− 5x)

x
.

54. (a) f(x) = lnx; f ′(e2) = lim
∆x→0

ln(e2 + ∆x)− 2

∆x
=

d

dx
(lnx)

∣∣∣∣
x=e2

=
1

x

∣∣∣∣
x=e2

= e−2.

(b) f(w) = lnw; f ′(1) = lim
w→1

lnw − ln 1

w − 1
= lim
w→1

lnw

w − 1
=

1

w

∣∣∣∣
w=1

= 1.
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55. (a) Let f(x) = ln(cosx), then f(0) = ln(cos 0) = ln 1 = 0, so f ′(0) = lim
x→0

f(x)− f(0)

x
= lim

x→0

ln(cosx)

x
, and

f ′(0) = − tan 0 = 0.

(b) Let f(x) = x
√

2, then f(1) = 1, so f ′(1) = lim
h→0

f(1 + h)− f(1)

h
= lim

h→0

(1 + h)
√

2 − 1

h
, and f ′(x) =

√
2x
√

2−1, f ′(1) =
√

2.

56.
d

dx
[logb x] = lim

h→0

logb(x+ h)− logb(x)

h

= lim
h→0

1

h
logb

(
x+ h

x

)
Theorem 0.5.2(b)

= lim
h→0

1

h
logb

(
1 +

h

x

)

= lim
v→0

1

vx
logb(1 + v) Let v = h/x and note that v → 0 as h→ 0

=
1

x
lim
v→0

1

v
logb(1 + v) h and v are variable, whereas x is constant

=
1

x
lim
v→0

logb(1 + v)1/v Theorem 0.5.2.(c)

=
1

x
logb lim

v→0
(1 + v)1/v Theorem 1.5.5

=
1

x
logb e =

1

x
· ln e

ln b
=

1

x ln b
. Formula 7 of Section 1.3

Exercise Set 3.3

1. (a) f ′(x) = 5x4 + 3x2 + 1 ≥ 1 so f is increasing and one-to-one on −∞ < x < +∞.

(b) f(1) = 3 so 1 = f−1(3);
d

dx
f−1(x) =

1

f ′(f−1(x))
, (f−1)′(3) =

1

f ′(1)
=

1

9
.

2. (a) f ′(x) = 3x2 + 2ex; f ′(x) > 0 for all x (since 3x2 ≥ 0 and 2ex > 0), so f is increasing and one-to-one on
−∞ < x < +∞.

(b) f(0) = 2 so 0 = f−1(2);
d

dx
f−1(x) =

1

f ′(f−1(x))
, (f−1)′(2) =

1

f ′(0)
=

1

2
.

3. f−1(x) =
2

x
− 3, so directly

d

dx
f−1(x) = − 2

x2
. Using Formula (2), f ′(x) =

−2

(x+ 3)2
, so

1

f ′(f−1(x))
=

−(1/2)(f−1(x) + 3)2, and
d

dx
f−1(x) = −(1/2)

(
2

x

)2

= − 2

x2
.

4. f−1(x) =
ex − 1

2
, so directly,

d

dx
f−1(x) =

ex

2
. Next, f ′(x) =

2

2x+ 1
, and using Formula (2),

d

dx
f−1(x) =

2f−1(x) + 1

2
=
ex

2
.

5. (a) f ′(x) = 2x + 8; f ′ < 0 on (−∞,−4) and f ′ > 0 on (−4,+∞); not enough information. By inspection,
f(1) = 10 = f(−9), so not one-to-one.

(b) f ′(x) = 10x4 + 3x2 + 3 ≥ 3 > 0; f ′(x) is positive for all x, so f is one-to-one.
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(c) f ′(x) = 2 + cosx ≥ 1 > 0 for all x, so f is one-to-one.

(d) f ′(x) = −(ln 2)
(

1
2

)x
< 0 because ln 2 > 0, so f is one-to-one for all x.

6. (a) f ′(x) = 3x2 + 6x = x(3x + 6) changes sign at x = −2, 0, so not enough information; by observation (of the
graph, and using some guesswork), f(0) = −8 = f(−3), so f is not one-to-one.

(b) f ′(x) = 5x4 + 24x2 + 2 ≥ 2 > 0; f ′ is positive for all x, so f is one-to-one.

(c) f ′(x) =
1

(x+ 1)2
; f is one-to-one because:

if x1 < x2 < −1 then f ′ > 0 on [x1, x2], so f(x1) 6= f(x2)

if −1 < x1 < x2 then f ′ > 0 on [x1, x2], so f(x1) 6= f(x2)

if x1 < −1 < x2 then f(x1) > 1 > f(x2) since f(x) > 1 on (−∞,−1) and f(x) < 1 on (−1,+∞)

(d) Note that f(x) is only defined for x > 0.
d

dx
logb x =

1

x ln b
, which is always negative (0 < b < 1), so f is

one-to-one.

7. y = f−1(x), x = f(y) = 5y3 + y − 7,
dx

dy
= 15y2 + 1,

dy

dx
=

1

15y2 + 1
; check: 1 = 15y2 dy

dx
+
dy

dx
,
dy

dx
=

1

15y2 + 1
.

8. y = f−1(x), x = f(y) = 1/y2,
dx

dy
= −2y−3,

dy

dx
= −y3/2; check: 1 = −2y−3 dy

dx
,
dy

dx
= −y3/2.

9. y = f−1(x), x = f(y) = 2y5 + y3 + 1,
dx

dy
= 10y4 + 3y2,

dy

dx
=

1

10y4 + 3y2
; check: 1 = 10y4 dy

dx
+ 3y2 dy

dx
,

dy

dx
=

1

10y4 + 3y2
.

10. y = f−1(x), x = f(y) = 5y − sin 2y,
dx

dy
= 5 − 2 cos 2y,

dy

dx
=

1

5− 2 cos 2y
; check: 1 = (5 − 2 cos 2y)

dy

dx
,

dy

dx
=

1

5− 2 cos 2y
.

11. Let P (a, b) be given, not on the line y = x. Let Q1 be its reflection across the line y = x, yet to be determined.
Let Q have coordinates (b, a).

(a) Since P does not lie on y = x, we have a 6= b, i.e. P 6= Q since they have different abscissas. The line ~PQ
has slope (b− a)/(a− b) = −1 which is the negative reciprocal of m = 1 and so the two lines are perpendicular.

(b) Let (c, d) be the midpoint of the segment PQ. Then c = (a + b)/2 and d = (b + a)/2 so c = d and the
midpoint is on y = x.

(c) Let Q(c, d) be the reflection of P through y = x. By definition this means P and Q lie on a line perpendicular
to the line y = x and the midpoint of P and Q lies on y = x.

(d) Since the line through P and Q is perpendicular to the line y = x it is parallel to the line through P and Q1;
since both pass through P they are the same line. Finally, since the midpoints of P and Q1 and of P and Q both
lie on y = x, they are the same point, and consequently Q = Q1.

12. Let (a, b) and (A,B) be points on a line with slope m. Then m = (B− b)/(A− a). Consider the associated points
(B,A) and (b, a). The line through these two points has slope (A− a)/(B− b), which is the reciprocal of m. Thus
(B,A) and (b, a) define the line with slope 1/m.
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13. If x < y then f(x) ≤ f(y) and g(x) ≤ g(y); thus f(x) + g(x) ≤ f(y) + g(y). Moreover, g(x) ≤ g(y), so
f(g(x)) ≤ f(g(y)). Note that f(x)g(x) need not be increasing, e.g. f(x) = g(x) = x, both increasing for all x, yet
f(x)g(x) = x2, not an increasing function.

14. On [0, 1] let f(x) = x−2, g(x) = 2−x, then f and g are one-to-one but f+g is not. If f(x) = x+1, g(x) = 1/(x+1)
then f and g are one-to-one but fg is not. Finally, if f and g are one-to-one and if f(g(x)) = f(g(y)) then, because
f is one-to-one, g(x) = g(y), and since g is one-to-one, x = y, so f(g(x)) is one-to-one.

15.
dy

dx
= 7e7x.

16.
dy

dx
= −10xe−5x2

.

17.
dy

dx
= x3ex + 3x2ex = x2ex(x+ 3).

18.
dy

dx
= − 1

x2
e1/x.

19.
dy

dx
=

(ex + e−x)(ex + e−x)− (ex − e−x)(ex − e−x)

(ex + e−x)2
=

(e2x + 2 + e−2x)− (e2x − 2 + e−2x)

(ex + e−x)2
= 4/(ex + e−x)2.

20.
dy

dx
= ex cos(ex).

21.
dy

dx
= (x sec2 x+ tanx)ex tan x.

22.
dy

dx
=

(lnx)ex − ex(1/x)

(lnx)2
=
ex(x lnx− 1)

x(lnx)2
.

23.
dy

dx
= (1− 3e3x)e(x−e3x).

24.
dy

dx
=

1

2

1√
1 + 5x3

15x2 exp(
√

1 + 5x3) =
15

2
x2(1 + 5x3)−1/2 exp(

√
1 + 5x3).

25.
dy

dx
=

(x− 1)e−x

1− xe−x =
x− 1

ex − x .

26.
dy

dx
=

1

cos(ex)
[− sin(ex)]ex = −ex tan(ex).

27. f ′(x) = 2x ln 2; y = 2x, ln y = x ln 2,
1

y
y′ = ln 2, y′ = y ln 2 = 2x ln 2.

28. f ′(x) = −3−x ln 3; y = 3−x, ln y = −x ln 3,
1

y
y′ = − ln 3, y′ = −y ln 3 = −3−x ln 3.

29. f ′(x) = πsin x(lnπ) cosx; y = πsin x, ln y = (sinx) lnπ,
1

y
y′ = (lnπ) cosx, y′ = πsin x(lnπ) cosx.

30. f ′(x) = πx tan x(lnπ)(x sec2 x + tanx); y = πx tan x, ln y = (x tanx) lnπ,
1

y
y′ = (lnπ)(x sec2 x + tanx), y′ =

πx tan x(lnπ)(x sec2 x+ tanx).
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31. ln y = (lnx) ln(x3 − 2x),
1

y

dy

dx
=

3x2 − 2

x3 − 2x
lnx+

1

x
ln(x3 − 2x),

dy

dx
= (x3 − 2x)ln x

[
3x2 − 2

x3 − 2x
lnx+

1

x
ln(x3 − 2x)

]
.

32. ln y = (sinx) lnx,
1

y

dy

dx
=

sinx

x
+ (cosx) lnx,

dy

dx
= xsin x

[
sinx

x
+ (cosx) lnx

]
.

33. ln y = (tanx) ln(lnx),
1

y

dy

dx
=

1

x lnx
tanx+ (sec2 x) ln(lnx),

dy

dx
= (lnx)tan x

[
tanx

x lnx
+ (sec2 x) ln(lnx)

]
.

34. ln y = (lnx) ln(x2 + 3),
1

y

dy

dx
=

2x

x2 + 3
lnx+

1

x
ln(x2 + 3),

dy

dx
= (x2 + 3)ln x

[
2x

x2 + 3
lnx+

1

x
ln(x2 + 3)

]
.

35. ln y = (lnx)(ln(lnx)),
dy/dx

y
= (1/x)(ln(lnx)) + (lnx)

1/x

lnx
= (1/x)(1 + ln(lnx)), dy/dx =

1

x
(lnx)ln x(1 + ln lnx).

36. (a) Because xx is not of the form ax where a is constant.

(b) y = xx, ln y = x lnx,
1

y
y′ = 1 + lnx, y′ = xx(1 + lnx).

37.
dy

dx
= (3x2 − 4x)ex + (x3 − 2x2 + 1)ex = (x3 + x2 − 4x+ 1)ex.

38.
dy

dx
= (4x− 2)e2x + (2x2 − 2x+ 1)2e2x = 4x2e2x.

39.
dy

dx
= (2x+

1

2
√
x

)3x + (x2 +
√
x)3x ln 3.

40.
dy

dx
= (3x2 +

1

3
x−2/3)5x + (x3 + 3

√
x)5x ln 5.

41.
dy

dx
= 43 sin x−ex ln 4(3 cosx− ex).

42.
dy

dx
= 2cos x+ln x ln 2(− sinx+

1

x
).

43.
dy

dx
=

3√
1− (3x)2

=
3√

1− 9x2
.

44.
dy

dx
= − 1/2√

1−
(
x+1

2

)2 = − 1√
4− (x+ 1)2

.

45.
dy

dx
=

1√
1− 1/x2

(−1/x2) = − 1

|x|
√
x2 − 1

.

46.
dy

dx
=

sinx√
1− cos2 x

=
sinx

| sinx| =

{
1, sinx > 0
−1, sinx < 0

.

47.
dy

dx
=

3x2

1 + (x3)2
=

3x2

1 + x6
.

48.
dy

dx
=

5x4

|x5|
√

(x5)2 − 1
=

5

|x|
√
x10 − 1

.
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49. y = 1/ tanx = cotx, dy/dx = − csc2 x.

50. y = (tan−1 x)−1, dy/dx = −(tan−1 x)−2

(
1

1 + x2

)
.

51.
dy

dx
=

ex

|x|
√
x2 − 1

+ ex sec−1 x.

52.
dy

dx
= − 1

(cos−1 x)
√

1− x2
.

53.
dy

dx
= 0.

54.
dy

dx
=

3x2(sin−1 x)2

√
1− x2

+ 2x(sin−1 x)3.

55.
dy

dx
= 0.

56.
dy

dx
= −1/

√
e2x − 1.

57.
dy

dx
= − 1

1 + x

(
1

2
x−1/2

)
= − 1

2(1 + x)
√
x

.

58.
dy

dx
= − 1

2
√

cot−1 x (1 + x2)
.

59. False; y = Aex also satisfies
dy

dx
= y.

60. False; dy/dx = 1/x is rational, but y = lnx is not.

61. True; examine the cases x > 0 and x < 0 separately.

62. True;
d

dx
sin−1 x+

d

dx
cos−1 x = 0.

63. (a) Let x = f(y) = cot y, 0 < y < π, −∞ < x < +∞. Then f is differentiable and one-to-one and f ′(f−1(x)) =

− csc2(cot−1 x) = −x2 − 1 6= 0, and
d

dx
[cot−1 x]

∣∣∣∣
x=0

= lim
x→0

1

f ′(f−1(x))
= − lim

x→0

1

x2 + 1
= −1.

(b) If x 6= 0 then, from Exercise 48(a) of Section 0.4,
d

dx
cot−1 x =

d

dx
tan−1 1

x
= − 1

x2

1

1 + (1/x)2
= − 1

x2 + 1
.

For x = 0, part (a) shows the same; thus for −∞ < x < +∞, d

dx
[cot−1 x] = − 1

x2 + 1
.

(c) For −∞ < u < +∞, by the chain rule it follows that
d

dx
[cot−1 u] = − 1

u2 + 1

du

dx
.

64. (a) By the chain rule,
d

dx
[csc−1 x] =

d

dx
sin−1 1

x
= − 1

x2

1√
1− (1/x)2

=
−1

|x|
√
x2 − 1

.

(b) By the chain rule,
d

dx
[csc−1 u] =

du

dx

d

du
[csc−1 u] =

−1

|u|
√
u2 − 1

du

dx
.
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(c) From Section 0.4 equation (11), sec−1 x+ csc−1 x = π/2, so
d

dx
sec−1 x = − d

dx
csc−1 x =

1

|x|
√
x2 − 1

by part

(a).

(d) By the chain rule,
d

dx
[sec−1 u] =

du

dx

d

du
[sec−1 u] =

1

|u|
√
u2 − 1

du

dx
.

65. x3 + x tan−1 y = ey, 3x2 +
x

1 + y2
y′ + tan−1 y = eyy′, y′ =

(3x2 + tan−1 y)(1 + y2)

(1 + y2)ey − x .

66. sin−1(xy) = cos−1(x− y),
1√

1− x2y2
(xy′ + y) = − 1√

1− (x− y)2
(1− y′), y′ =

y
√

1− (x− y)2 +
√

1− x2y2

√
1− x2y2 − x

√
1− (x− y)2

.

67. (a) f(x) = x3 − 3x2 + 2x = x(x− 1)(x− 2) so f(0) = f(1) = f(2) = 0 thus f is not one-to-one.

(b) f ′(x) = 3x2−6x+2, f ′(x) = 0 when x =
6±
√

36− 24

6
= 1±

√
3/3. f ′(x) > 0 (f is increasing) if x < 1−

√
3/3,

f ′(x) < 0 (f is decreasing) if 1 −
√

3/3 < x < 1 +
√

3/3, so f(x) takes on values less than f(1 −
√

3/3) on both
sides of 1−

√
3/3 thus 1−

√
3/3 is the largest value of k.

68. (a) f(x) = x3(x− 2) so f(0) = f(2) = 0 thus f is not one-to-one.

(b) f ′(x) = 4x3 − 6x2 = 4x2(x− 3/2), f ′(x) = 0 when x = 0 or 3/2; f is decreasing on (−∞, 3/2] and increasing
on [3/2,+∞) so 3/2 is the smallest value of k.

69. (a) f ′(x) = 4x3 + 3x2 = (4x+ 3)x2 = 0 only at x = 0. But on [0, 2], f ′ has no sign change, so f is one-to-one.

(b) F ′(x) = 2f ′(2g(x))g′(x) so F ′(3) = 2f ′(2g(3))g′(3). By inspection f(1) = 3, so g(3) = f−1(3) = 1 and
g′(3) = (f−1)′(3) = 1/f ′(f−1(3)) = 1/f ′(1) = 1/7 because f ′(x) = 4x3 + 3x2. Thus F ′(3) = 2f ′(2)(1/7) =
2(44)(1/7) = 88/7. F (3) = f(2g(3)) = f(2 · 1) = f(2) = 25, so the line tangent to F (x) at (3, 25) has the equation
y − 25 = (88/7)(x− 3), y = (88/7)x− 89/7.

70. (a) f ′(x) = −e4−x2

(
2 +

1

x2

)
< 0 for all x > 0, so f is one-to-one.

(b) By inspection, f(2) = 1/2, so 2 = f−1(1/2) = g(1/2). By inspection, f ′(2) = −
(

2 +
1

4

)
= −9

4
, and

F ′(1/2) = f ′([g(x)]2)
d

dx
[g(x)2]

∣∣∣∣
x=1/2

= f ′([g(x)]2)2g(x)g′(x)

∣∣∣∣
x=1/2

= f ′(22)2 · 2
1

f ′(g(x))

∣∣∣∣
x=1/2

= 4
f ′(4)

f ′(2)
=

4
e−12(2 + 1

16 )

(2 + 1
4 )

=
33

9e12
=

11

3e12
.

71. y = Aekt, dy/dt = kAekt = k(Aekt) = ky.

72. y = Ae2x+Be−4x, y′ = 2Ae2x−4Be−4x, y′′ = 4Ae2x+16Be−4x so y′′+2y′−8y = (4Ae2x+16Be−4x)+2(2Ae2x−
4Be−4x)− 8(Ae2x +Be−4x) = 0.

73. (a) y′ = −xe−x + e−x = e−x(1− x), xy′ = xe−x(1− x) = y(1− x).

(b) y′ = −x2e−x
2/2 + e−x

2/2 = e−x
2/2(1− x2), xy′ = xe−x

2/2(1− x2) = y(1− x2).

74.
dy

dx
= 100(−0.2)e−0.2x = −20e−0.2x = −0.2y, k = −0.2.



Exercise Set 3.3 123

75. (a)

(b) The percentage converges to 100%, full coverage of broadband internet access. The limit of the expression in
the denominator is clearly 53 as t→∞.

(c) The rate converges to 0 according to the graph.

76. (a)

12

0
0 9

(b) P tends to 12 as t gets large; lim
t→+∞

P (t) = lim
t→+∞

60

5 + 7e−t
=

60

5 + 7 lim
t→+∞

e−t
=

60

5
= 12.

(c) The rate of population growth tends to zero.

3.2

0
0 9

77. f(x) = e3x, f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= 3e3x

∣∣
x=0

= 3.

78. f(x) = ex
2

, f ′(0) = 2xex
2

∣∣∣∣
x=0

= 0.

79. lim
h→0

10h − 1

h
=

d

dx
10x
∣∣∣∣
x=0

=
d

dx
ex ln 10

∣∣∣∣
x=0

= ln 10.

80. lim
h→0

tan−1(1 + h)− π/4
h

=
d

dx
tan−1 x

∣∣∣∣
x=1

=
1

1 + x2

∣∣∣∣
x=1

=
1

2
.

81. lim
∆x→0

9[sin−1(
√

3
2 + ∆x)]2 − π2

∆x
=

d

dx
(3 sin−1 x)2

∣∣∣∣
x=
√

3
2

= 2(3 sin−1 x)
3√

1− x2

∣∣∣∣
x=
√

3
2

= 2(3
π

3
)

3√
1− (3/4)

= 12π.
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82. lim
w→2

3 sec−1 w − π
w − 2

=
d

dx
3 sec−1 x

∣∣∣∣
x=2

=
3

|2|
√

22 − 1
=

√
3

2
.

83. lim
k→0+

9.8
1− e−kt

k
= 9.8 lim

k→0+

1− e−kt
k

= 9.8
d

dk
(−e−kt)

∣∣
k=0

= 9.8 t, so if the fluid offers no resistance, then the

speed will increase at a constant rate of 9.8 m/s2.

Exercise Set 3.4

1.
dy

dt
= 3

dx

dt

(a)
dy

dt
= 3(2) = 6. (b) −1 = 3

dx

dt
,
dx

dt
= −1

3
.

2.
dx

dt
+ 4

dy

dt
= 0

(a) 1 + 4
dy

dt
= 0 so

dy

dt
= −1

4
when x = 2. (b)

dx

dt
+ 4(4) = 0 so

dx

dt
= −16 when x = 3.

3. 8x
dx

dt
+ 18y

dy

dt
= 0

(a) 8
1

2
√

2
· 3 + 18

1

3
√

2

dy

dt
= 0,

dy

dt
= −2. (b) 8

(
1

3

)
dx

dt
− 18

√
5

9
· 8 = 0,

dx

dt
= 6
√

5.

4. 2x
dx

dt
+ 2y

dy

dt
= 2

dx

dt
+ 4

dy

dt

(a) 2 · 3(−5) + 2 · 1dy
dt

= 2(−5) + 4
dy

dt
,
dy

dt
= −10.

(b) 2(1 +
√

2)
dx

dt
+ 2(2 +

√
3) · 6 = 2

dx

dt
+ 4 · 6, dx

dt
= −12

√
3

2
√

2
= −3

√
3
√

2.

5. (b) A = x2.

(c)
dA

dt
= 2x

dx

dt
.

(d) Find
dA

dt

∣∣∣∣
x=3

given that
dx

dt

∣∣∣∣
x=3

= 2. From part (c),
dA

dt

∣∣∣∣
x=3

= 2(3)(2) = 12 ft2/min.

6. (b) A = πr2.

(c)
dA

dt
= 2πr

dr

dt
.

(d) Find
dA

dt

∣∣∣∣
r=5

given that
dr

dt

∣∣∣∣
r=5

= 2. From part (c),
dA

dt

∣∣∣∣
r=5

= 2π(5)(2) = 20π cm2/s.

7. (a) V = πr2h, so
dV

dt
= π

(
r2 dh

dt
+ 2rh

dr

dt

)
.

(b) Find
dV

dt

∣∣∣∣
h=6,
r=10

given that
dh

dt

∣∣∣∣
h=6,
r=10

= 1 and
dr

dt

∣∣∣∣
h=6,
r=10

= −1. From part (a),
dV

dt

∣∣∣∣
h=6,
r=10

= π[102(1)+2(10)(6)(−1)] =

−20π in3/s; the volume is decreasing.



Exercise Set 3.4 125

8. (a) `2 = x2 + y2, so
d`

dt
=

1

`

(
x
dx

dt
+ y

dy

dt

)
.

(b) Find
d`

dt

∣∣∣∣
x=3,
y=4

given that
dx

dt
=

1

2
and

dy

dt
= −1

4
. From part (a) and the fact that ` = 5 when x = 3 and y = 4,

d`

dt

∣∣∣∣
x=3,
y=4

=
1

5

[
3

(
1

2

)
+ 4

(
−1

4

)]
=

1

10
ft/s; the diagonal is increasing.

9. (a) tan θ =
y

x
, so sec2 θ

dθ

dt
=
x
dy

dt
− y dx

dt
x2

,
dθ

dt
=

cos2 θ

x2

(
x
dy

dt
− y dx

dt

)
.

(b) Find
dθ

dt

∣∣∣∣
x=2,
y=2

given that
dx

dt

∣∣∣∣
x=2,
y=2

= 1 and
dy

dt

∣∣∣∣
x=2,
y=2

= −1

4
. When x = 2 and y = 2, tan θ = 2/2 = 1 so θ =

π

4

and cos θ = cos
π

4
=

1√
2

. Thus from part (a),
dθ

dt

∣∣∣∣
x=2,
y=2

=
(1/
√

2)2

22

[
2

(
−1

4

)
− 2(1)

]
= − 5

16
rad/s; θ is decreasing.

10. Find
dz

dt

∣∣∣∣
x=1,
y=2

given that
dx

dt

∣∣∣∣
x=1,
y=2

= −2 and
dy

dt

∣∣∣∣
x=1,
y=2

= 3.
dz

dt
= 2x3y

dy

dt
+ 3x2y2 dx

dt
,
dz

dt

∣∣∣∣
x=1,
y=2

= (4)(3) + (12)(−2) =

−12 units/s; z is decreasing.

11. Let A be the area swept out, and θ the angle through which the minute hand has rotated. Find
dA

dt
given that

dθ

dt
=

π

30
rad/min; A =

1

2
r2θ = 8θ, so

dA

dt
= 8

dθ

dt
=

4π

15
in2/min.

12. Let r be the radius and A the area enclosed by the ripple. We want
dA

dt

∣∣∣∣
t=10

given that
dr

dt
= 3. We know that

A = πr2, so
dA

dt
= 2πr

dr

dt
. Because r is increasing at the constant rate of 3 ft/s, it follows that r = 30 ft after 10

seconds so
dA

dt

∣∣∣∣
t=10

= 2π(30)(3) = 180π ft2/s.

13. Find
dr

dt

∣∣∣∣
A=9

given that
dA

dt
= 6. From A = πr2 we get

dA

dt
= 2πr

dr

dt
so

dr

dt
=

1

2πr

dA

dt
. If A = 9 then πr2 = 9,

r = 3/
√
π so

dr

dt

∣∣∣∣
A=9

=
1

2π(3/
√
π)

(6) = 1/
√
π mi/h.

14. The volume V of a sphere of radius r is given by V =
4

3
πr3 or, because r =

D

2
where D is the diameter,

V =
4

3
π

(
D

2

)3
=

1

6
πD3. We want

dD

dt

∣∣∣∣
r=1

given that
dV

dt
= 3. From V =

1

6
πD3 we get

dV

dt
=

1

2
πD2 dD

dt
,

dD

dt
=

2

πD2

dV

dt
, so

dD

dt

∣∣∣∣
r=1

=
2

π(2)2
(3) =

3

2π
ft/min.

15. Find
dV

dt

∣∣∣∣
r=9

given that
dr

dt
= −15. From V =

4

3
πr3 we get

dV

dt
= 4πr2 dr

dt
so

dV

dt

∣∣∣∣
r=9

= 4π(9)2(−15) = −4860π.

Air must be removed at the rate of 4860π cm3/min.

16. Let x and y be the distances shown in the diagram. We want to find
dy

dt

∣∣∣∣
y=8

given that
dx

dt
= 5. From x2+y2 = 172

we get 2x
dx

dt
+ 2y

dy

dt
= 0, so

dy

dt
= −x

y

dx

dt
. When y = 8, x2 + 82 = 172, x2 = 289 − 64 = 225, x = 15 so
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dy

dt

∣∣∣∣
y=8

= −15

8
(5) = −75

8
ft/s; the top of the ladder is moving down the wall at a rate of 75/8 ft/s.

17

x

y

17. Find
dx

dt

∣∣∣∣
y=5

given that
dy

dt
= −2. From x2 +y2 = 132 we get 2x

dx

dt
+2y

dy

dt
= 0 so

dx

dt
= −y

x

dy

dt
. Use x2 +y2 = 169

to find that x = 12 when y = 5 so
dx

dt

∣∣∣∣
y=5

= − 5

12
(−2) =

5

6
ft/s.

13

x

y

18. Let θ be the acute angle, and x the distance of the bottom of the plank from the wall. Find
dθ

dt

∣∣∣∣
x=2

given

that
dx

dt

∣∣∣∣
x=2

= −1

2
ft/s. The variables θ and x are related by the equation cos θ =

x

10
so − sin θ

dθ

dt
=

1

10

dx

dt
,

dθ

dt
= − 1

10 sin θ

dx

dt
. When x = 2, the top of the plank is

√
102 − 22 =

√
96 ft above the ground so sin θ =

√
96/10

and
dθ

dt

∣∣∣∣
x=2

= − 1√
96

(
−1

2

)
=

1

2
√

96
≈ 0.051 rad/s.

19. Let x denote the distance from first base and y the distance from home plate. Then x2+602 = y2 and 2x
dx

dt
= 2y

dy

dt
.

When x = 50 then y = 10
√

61 so
dy

dt
=
x

y

dx

dt
=

50

10
√

61
(25) =

125√
61

ft/s.

60
 ft

y

x

Home

First

20. Find
dx

dt

∣∣∣∣
x=4

given that
dy

dt

∣∣∣∣
x=4

= 2000. From x2 + 52 = y2 we get 2x
dx

dt
= 2y

dy

dt
so

dx

dt
=
y

x

dy

dt
. Use x2 + 25 = y2

to find that y =
√

41 when x = 4 so
dx

dt

∣∣∣∣
x=4

=

√
41

4
(2000) = 500

√
41 mi/h.
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Rocket

y x

5 mi
Radar
station

21. Find
dy

dt

∣∣∣∣
x=4000

given that
dx

dt

∣∣∣∣
x=4000

= 880. From y2 = x2 + 30002 we get 2y
dy

dt
= 2x

dx

dt
so

dy

dt
=
x

y

dx

dt
. If

x = 4000, then y = 5000 so
dy

dt

∣∣∣∣
x=4000

=
4000

5000
(880) = 704 ft/s.

Rocket

Camera

3000 ft

y
x

22. Find
dx

dt

∣∣∣∣
φ=π/4

given that
dφ

dt

∣∣∣∣
φ=π/4

= 0.2. But x = 3000 tanφ so
dx

dt
= 3000(sec2 φ)

dφ

dt
,
dx

dt

∣∣∣∣
φ=π/4

= 3000
(

sec2 π

4

)
(0.2) =

1200 ft/s.

23. (a) If x denotes the altitude, then r−x = 3960, the radius of the Earth. θ = 0 at perigee, so r = 4995/1.12 ≈ 4460;
the altitude is x = 4460 − 3960 = 500 miles. θ = π at apogee, so r = 4995/0.88 ≈ 5676; the altitude is
x = 5676− 3960 = 1716 miles.

(b) If θ = 120◦, then r = 4995/0.94 ≈ 5314; the altitude is 5314− 3960 = 1354 miles. The rate of change of the

altitude is given by
dx

dt
=
dr

dt
=
dr

dθ

dθ

dt
=

4995(0.12 sin θ)

(1 + 0.12 cos θ)2

dθ

dt
. Use θ = 120◦ and dθ/dt = 2.7◦/min = (2.7)(π/180)

rad/min to get dr/dt ≈ 27.7 mi/min.

24. (a) Let x be the horizontal distance shown in the figure. Then x = 4000 cot θ and
dx

dt
= −4000 csc2 θ

dθ

dt
, so

dθ

dt
= − sin2 θ

4000

dx

dt
. Use θ = 30◦ and dx/dt = 300 mi/h = 300(5280/3600) ft/s = 440 ft/s to get dθ/dt =

−0.0275 rad/s ≈ −1.6◦/s; θ is decreasing at the rate of 1.6◦/s.

(b) Let y be the distance between the observation point and the aircraft. Then y = 4000 csc θ so dy/dt =
−4000(csc θ cot θ)(dθ/dt). Use θ = 30◦ and dθ/dt = −0.0275 rad/s to get dy/dt ≈ 381 ft/s.

25. Find
dh

dt

∣∣∣∣
h=16

given that
dV

dt
= 20. The volume of water in the tank at a depth h is V =

1

3
πr2h. Use similar

triangles (see figure) to get
r

h
=

10

24
so r =

5

12
h thus V =

1

3
π

(
5

12
h

)2
h =

25

432
πh3,

dV

dt
=

25

144
πh2 dh

dt
;
dh

dt
=

144

25πh2

dV

dt
,
dh

dt

∣∣∣∣
h=16

=
144

25π(16)2
(20) =

9

20π
ft/min.
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h

r

24

10

26. Find
dh

dt

∣∣∣∣
h=6

given that
dV

dt
= 8. V =

1

3
πr2h, but r =

1

2
h so V =

1

3
π

(
h

2

)2
h =

1

12
πh3,

dV

dt
=

1

4
πh2 dh

dt
,

dh

dt
=

4

πh2

dV

dt
,
dh

dt

∣∣∣∣
h=6

=
4

π(6)2
(8) =

8

9π
ft/min.

h

r

27. Find
dV

dt

∣∣∣∣
h=10

given that
dh

dt
= 5. V =

1

3
πr2h, but r =

1

2
h so V =

1

3
π

(
h

2

)2
h =

1

12
πh3,

dV

dt
=

1

4
πh2 dh

dt
,
dV

dt

∣∣∣∣
h=10

=

1

4
π(10)2(5) = 125π ft3/min.

h

r

28. Let r and h be as shown in the figure. If C is the circumference of the base, then we want to find
dC

dt

∣∣∣∣
h=8

given

that
dV

dt
= 10. It is given that r =

1

2
h, thus C = 2πr = πh so

dC

dt
= π

dh

dt
. Use V =

1

3
πr2h =

1

12
πh3 to get

dV

dt
=

1

4
πh2 dh

dt
, so

dh

dt
=

4

πh2

dV

dt
. Substitution of

dh

dt
into

dC

dt
gives

dC

dt
=

4

h2

dV

dt
so

dC

dt

∣∣∣∣
h=8

=
4

64
(10) =

5

8
ft/min.

h

r
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29. With s and h as shown in the figure, we want to find
dh

dt
given that

ds

dt
= 500. From the figure, h = s sin 30◦ =

1

2
s

so
dh

dt
=

1

2

ds

dt
=

1

2
(500) = 250 mi/h.

s
h

Ground

30°

30. Find
dx

dt

∣∣∣∣
y=125

given that
dy

dt
= −20. From x2 + 102 = y2 we get 2x

dx

dt
= 2y

dy

dt
so

dx

dt
=
y

x

dy

dt
. Use x2 + 100 = y2

to find that x =
√

15, 525 = 15
√

69 when y = 125 so
dx

dt

∣∣∣∣
y=125

=
125

15
√

69
(−20) = − 500

3
√

69
. The boat is approaching

the dock at the rate of
500

3
√

69
ft/min.

y

x Boat

Pulley

10

31. Find
dy

dt
given that

dx

dt

∣∣∣∣
y=125

= −12. From x2 + 102 = y2 we get 2x
dx

dt
= 2y

dy

dt
so

dy

dt
=
x

y

dx

dt
. Use x2 + 100 = y2

to find that x =
√

15, 525 = 15
√

69 when y = 125 so
dy

dt
=

15
√

69

125
(−12) = −36

√
69

25
. The rope must be pulled at

the rate of
36
√

69

25
ft/min.

y

x Boat

Pulley

10

32. (a) Let x and y be as shown in the figure. It is required to find
dx

dt
, given that

dy

dt
= −3. By similar triangles,

x

6
=
x+ y

18
, 18x = 6x+ 6y, 12x = 6y, x =

1

2
y, so

dx

dt
=

1

2

dy

dt
=

1

2
(−3) = −3

2
ft/s.

6

18
Man

Shadow

Light

yx

(b) The tip of the shadow is z = x+ y feet from the street light, thus the rate at which it is moving is given by
dz

dt
=
dx

dt
+
dy

dt
. In part (a) we found that

dx

dt
= −3

2
when

dy

dt
= −3 so

dz

dt
= (−3/2) + (−3) = −9/2 ft/s; the tip
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of the shadow is moving at the rate of 9/2 ft/s toward the street light.

33. Find
dx

dt

∣∣∣∣
θ=π/4

given that
dθ

dt
=

2π

10
=
π

5
rad/s. Then x = 4 tan θ (see figure) so

dx

dt
= 4 sec2 θ

dθ

dt
,
dx

dt

∣∣∣∣
θ=π/4

=

4
(

sec2 π

4

)(π
5

)
= 8π/5 km/s.

x

4

Ship

θ

34. If x, y, and z are as shown in the figure, then we want
dz

dt

∣∣∣∣
x=2,
y=4

given that
dx

dt
= −600 and

dy

dt

∣∣∣∣
x=2,
y=4

= −1200.

But z2 = x2 + y2 so 2z
dz

dt
= 2x

dx

dt
+ 2y

dy

dt
,
dz

dt
=

1

z

(
x
dx

dt
+ y

dy

dt

)
. When x = 2 and y = 4, z2 = 22 + 42 = 20,

z =
√

20 = 2
√

5 so
dz

dt

∣∣∣∣
x=2,
y=4

=
1

2
√

5
[2(−600) + 4(−1200)] = −3000√

5
= −600

√
5 mi/h; the distance between missile

and aircraft is decreasing at the rate of 600
√

5 mi/h.

AircraftP

Missile

x

y
z

35. We wish to find
dz

dt

∣∣∣∣
x=2,
y=4

given
dx

dt
= −600 and

dy

dt

∣∣∣∣
x=2,
y=4

= −1200 (see figure). From the law of cosines, z2 =

x2 + y2 − 2xy cos 120◦ = x2 + y2 − 2xy(−1/2) = x2 + y2 + xy, so 2z
dz

dt
= 2x

dx

dt
+ 2y

dy

dt
+ x

dy

dt
+ y

dx

dt
,
dz

dt
=

1

2z

[
(2x+ y)

dx

dt
+ (2y + x)

dy

dt

]
. When x = 2 and y = 4, z2 = 22 + 42 + (2)(4) = 28, so z =

√
28 = 2

√
7, thus

dz

dt

∣∣∣∣
x=2,
y=4

=
1

2(2
√

7)
[(2(2) + 4)(−600) + (2(4) + 2)(−1200)] = −4200√

7
= −600

√
7 mi/h; the distance between missile

and aircraft is decreasing at the rate of 600
√

7 mi/h.

AircraftP

Missile

x

y
z

120º

36. (a) Let P be the point on the helicopter’s path that lies directly above the car’s path. Let x, y, and z be the

distances shown in the first figure. Find
dz

dt

∣∣∣∣
x=2,
y=0

given that
dx

dt
= −75 and

dy

dt
= 100. In order to find an equation
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relating x, y, and z, first draw the line segment that joins the point P to the car, as shown in the second figure.
Because triangle OPC is a right triangle, it follows that PC has length

√
x2 + (1/2)2; but triangle HPC is also a

right triangle so z2 =
(√

x2 + (1/2)2
)2

+y2 = x2 +y2 +1/4 and 2z
dz

dt
= 2x

dx

dt
+2y

dy

dt
+0,

dz

dt
=

1

z

(
x
dx

dt
+ y

dy

dt

)
.

Now, when x = 2 and y = 0, z2 = (2)2 + (0)2 + 1/4 = 17/4, z =
√

17/2 so
dz

dt

∣∣∣∣
x=2,
y=0

=
1

(
√

17/2)
[2(−75) + 0(100)] =

−300/
√

17 mi/h.

West East

North

Car

Helicopter

x

z

y

Pmi1
2

C

H

x
O

z

y

Pmi1
2

(b) Decreasing, because
dz

dt
< 0.

37. (a) We want
dy

dt

∣∣∣∣
x=1,
y=2

given that
dx

dt

∣∣∣∣
x=1,
y=2

= 6. For convenience, first rewrite the equation as xy3 =
8

5
+

8

5
y2 then

3xy2 dy

dt
+ y3 dx

dt
=

16

5
y
dy

dt
,
dy

dt
=

y3

16

5
y − 3xy2

dx

dt
, so

dy

dt

∣∣∣∣
x=1,
y=2

=
23

16

5
(2)− 3(1)22

(6) = −60/7 units/s.

(b) Falling, because
dy

dt
< 0.

38. Find
dx

dt

∣∣∣∣
(2,5)

given that
dy

dt

∣∣∣∣
(2,5)

= 2. Square and rearrange to get x3 = y2− 17, so 3x2 dx

dt
= 2y

dy

dt
,
dx

dt
=

2y

3x2

dy

dt
,

dx

dt

∣∣∣∣
(2,5)

=

(
5

6

)
(2) =

5

3
units/s.

39. The coordinates of P are (x, 2x), so the distance between P and the point (3, 0) is D =
√

(x− 3)2 + (2x− 0)2 =
√

5x2 − 6x+ 9. Find
dD

dt

∣∣∣∣
x=3

given that
dx

dt

∣∣∣∣
x=3

= −2.
dD

dt
=

5x− 3√
5x2 − 6x+ 9

dx

dt
, so

dD

dt

∣∣∣∣
x=3

=
12√
36

(−2) = −4

units/s.

40. (a) Let D be the distance between P and (2, 0). Find
dD

dt

∣∣∣∣
x=3

given that
dx

dt

∣∣∣∣
x=3

= 4. D =
√

(x− 2)2 + y2 =

√
(x− 2)2 + x =

√
x2 − 3x+ 4, so

dD

dt
=

2x− 3

2
√
x2 − 3x+ 4

dx

dt
;
dD

dt

∣∣∣∣
x=3

=
3

2
√

4
4 = 3 units/s.

(b) Let θ be the angle of inclination. Find
dθ

dt

∣∣∣∣
x=3

given that
dx

dt

∣∣∣∣
x=3

= 4. tan θ =
y

x− 2
=

√
x

x− 2
, so

sec2 θ
dθ

dt
= − x+ 2

2
√
x(x− 2)2

dx

dt
,
dθ

dt
= − cos2 θ

x+ 2

2
√
x(x− 2)2

dx

dt
. When x = 3, D = 2 so cos θ =

1

2
and

dθ

dt

∣∣∣∣
x=3

=

−1

4

5

2
√

3
(4) = − 5

2
√

3
rad/s.

41. Solve
dx

dt
= 3

dy

dt
given y = x/(x2+1). Then y(x2+1) = x. Differentiating with respect to x, (x2+1)

dy

dx
+y(2x) = 1.

But
dy

dx
=
dy/dt

dx/dt
=

1

3
so (x2 +1)

1

3
+2xy = 1, x2 +1+6xy = 3, x2 +1+6x2/(x2 +1) = 3, (x2 +1)2 +6x2−3x2−3 =
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0, x4 + 5x2 − 2 = 0. By the quadratic formula applied to x2 we obtain x2 = (−5±
√

25 + 8)/2. The minus sign is

spurious since x2 cannot be negative, so x2 = (−5 +
√

33)/2, and x = ±
√

(−5 +
√

33)/2.

42. 32x
dx

dt
+18y

dy

dt
= 0; if

dy

dt
=
dx

dt
6= 0, then (32x+18y)

dx

dt
= 0, 32x+18y = 0, y = −16

9
x, so 16x2 +9

256

81
x2 = 144,

400

9
x2 = 144, x2 =

81

25
, x = ±9

5
. If x =

9

5
, then y = −16

9

9

5
= −16

5
. Similarly, if x = −9

5
, then y =

16

5
. The

points are

(
9

5
,−16

5

)
and

(
−9

5
,

16

5

)
.

43. Find
dS

dt

∣∣∣∣
s=10

given that
ds

dt

∣∣∣∣
s=10

= −2. From
1

s
+

1

S
=

1

6
we get − 1

s2

ds

dt
− 1

S2

dS

dt
= 0, so

dS

dt
= −S

2

s2

ds

dt
. If s = 10, then

1

10
+

1

S
=

1

6
which gives S = 15. So

dS

dt

∣∣∣∣
s=10

= −225

100
(−2) = 4.5 cm/s.

The image is moving away from the lens.

44. Suppose that the reservoir has height H and that the radius at the top is R. At any instant of time let h and

r be the corresponding dimensions of the cone of water (see figure). We want to show that
dh

dt
is constant and

independent of H and R, given that
dV

dt
= −kA where V is the volume of water, A is the area of a circle of radius

r, and k is a positive constant. The volume of a cone of radius r and height h is V =
1

3
πr2h. By similar triangles

r

h
=

R

H
, r =

R

H
h thus V =

1

3
π

(
R

H

)2
h3, so

dV

dt
= π

(
R

H

)2
h2 dh

dt
. But it is given that

dV

dt
= −kA or, because

A = πr2 = π

(
R

H

)2
h2,

dV

dt
= −kπ

(
R

H

)2
h2, which when substituted into the previous equation for

dV

dt
gives

−kπ
(
R

H

)2
h2 = π

(
R

H

)2
h2 dh

dt
, and

dh

dt
= −k.

h

r

H

R

45. Let r be the radius, V the volume, and A the surface area of a sphere. Show that
dr

dt
is a constant given

that
dV

dt
= −kA, where k is a positive constant. Because V =

4

3
πr3,

dV

dt
= 4πr2 dr

dt
. But it is given that

dV

dt
= −kA or, because A = 4πr2,

dV

dt
= −4πr2k which when substituted into the previous equation for

dV

dt
gives

−4πr2k = 4πr2 dr

dt
, and

dr

dt
= −k.

46. Let x be the distance between the tips of the minute and hour hands, and α and β the angles shown in the

figure. Because the minute hand makes one revolution in 60 minutes,
dα

dt
=

2π

60
= π/30 rad/min; the hour

hand makes one revolution in 12 hours (720 minutes), thus
dβ

dt
=

2π

720
= π/360 rad/min. We want to find

dx

dt

∣∣∣∣
α=2π,
β=3π/2

given that
dα

dt
= π/30 and

dβ

dt
= π/360. Using the law of cosines on the triangle shown in the
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figure, x2 = 32 + 42 − 2(3)(4) cos(α − β) = 25 − 24 cos(α − β), so 2x
dx

dt
= 0 + 24 sin(α − β)

(
dα

dt
− dβ

dt

)
,

dx

dt
=

12

x

(
dα

dt
− dβ

dt

)
sin(α − β). When α = 2π and β = 3π/2, x2 = 25 − 24 cos(2π − 3π/2) = 25, x = 5; so

dx

dt

∣∣∣∣
α=2π,
β=3π/2

=
12

5
(π/30− π/360) sin(2π − 3π/2) =

11π

150
in/min.

3

4

!

x

"

47. Extend sides of cup to complete the cone and let V0 be the volume of the portion added, then (see figure)

V =
1

3
πr2h − V0 where

r

h
=

4

12
=

1

3
so r =

1

3
h and V =

1

3
π

(
h

3

)2
h − V0 =

1

27
πh3 − V0,

dV

dt
=

1

9
πh2 dh

dt
,

dh

dt
=

9

πh2

dV

dt
,
dh

dt

∣∣∣∣
h=9

=
9

π(9)2
(20) =

20

9π
cm/s.

r

4

2
h

6

6

Exercise Set 3.5

1. (a) f(x) ≈ f(1) + f ′(1)(x− 1) = 1 + 3(x− 1).

(b) f(1 + ∆x) ≈ f(1) + f ′(1)∆x = 1 + 3∆x.

(c) From part (a), (1.02)3 ≈ 1 + 3(0.02) = 1.06. From part (b), (1.02)3 ≈ 1 + 3(0.02) = 1.06.

2. (a) f(x) ≈ f(2) + f ′(2)(x− 2) = 1/2 + (−1/22)(x− 2) = (1/2)− (1/4)(x− 2).

(b) f(2 + ∆x) ≈ f(2) + f ′(2)∆x = 1/2− (1/4)∆x.

(c) From part (a), 1/2.05 ≈ 0.5− 0.25(0.05) = 0.4875, and from part (b), 1/2.05 ≈ 0.5− 0.25(0.05) = 0.4875.

3. (a) f(x) ≈ f(x0) + f ′(x0)(x − x0) = 1 + (1/(2
√

1)(x − 0) = 1 + (1/2)x, so with x0 = 0 and x = −0.1, we have√
0.9 = f(−0.1) ≈ 1+(1/2)(−0.1) = 1−0.05 = 0.95. With x = 0.1 we have

√
1.1 = f(0.1) ≈ 1+(1/2)(0.1) = 1.05.
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(b)

y

x

dy

0.1–0.1

∆y ∆y
dy

4. (b) The approximation is
√
x ≈ √x0 +

1

2
√
x0

(x−x0), so show that
√
x0 +

1

2
√
x0

(x−x0) ≥ √x which is equivalent

to g(x) =
√
x − x

2
√
x0
≤
√
x0

2
. But g(x0) =

√
x0

2
, and g′(x) =

1

2
√
x
− 1

2
√
x0

which is negative for x > x0 and

positive for x < x0. This shows that g has a maximum value at x = x0, so the student’s observation is correct.

5. f(x) = (1 + x)15 and x0 = 0. Thus (1 + x)15 ≈ f(x0) + f ′(x0)(x− x0) = 1 + 15(1)14(x− 0) = 1 + 15x.

6. f(x) =
1√

1− x and x0 = 0, so
1√

1− x ≈ f(x0) + f ′(x0)(x− x0) = 1 +
1

2(1− 0)3/2
(x− 0) = 1 + x/2.

7. tanx ≈ tan(0) + sec2(0)(x− 0) = x.

8.
1

1 + x
≈ 1 +

−1

(1 + 0)2
(x− 0) = 1− x.

9. x0 = 0, f(x) = ex, f ′(x) = ex, f ′(x0) = 1, hence ex ≈ 1 + 1 · x = 1 + x.

10. x0 = 0, f(x) = ln(1 + x), f ′(x) = 1/(1 + x), f ′(x0) = 1, hence ln(1 + x) ≈ 0 + 1 · (x− 0) = x.

11. x4 ≈ (1)4 + 4(1)3(x− 1). Set ∆x = x− 1; then x = ∆x+ 1 and (1 + ∆x)4 = 1 + 4∆x.

12.
√
x ≈
√

1 +
1

2
√

1
(x− 1), and x = 1 + ∆x, so

√
1 + ∆x ≈ 1 + ∆x/2.

13.
1

2 + x
≈ 1

2 + 1
− 1

(2 + 1)2
(x− 1), and 2 + x = 3 + ∆x, so

1

3 + ∆x
≈ 1

3
− 1

9
∆x.

14. (4 + x)3 ≈ (4 + 1)3 + 3(4 + 1)2(x− 1) so, with 4 + x = 5 + ∆x we get (5 + ∆x)3 ≈ 125 + 75∆x.

15. Let f(x) = tan−1 x, f(1) = π/4, f ′(1) = 1/2, tan−1(1 + ∆x) ≈ π

4
+

1

2
∆x.

16. f(x) = sin−1
(x

2

)
, sin−1

(
1

2

)
=
π

6
, f ′(x) =

1/2√
1− x2/4

, f ′(1) = 1/
√

3. sin−1

(
1

2
+

1

2
∆x

)
≈ π

6
+

1√
3

∆x.

17. f(x) =
√
x+ 3 and x0 = 0, so

√
x+ 3 ≈

√
3 +

1

2
√

3
(x − 0) =

√
3 +

1

2
√

3
x, and

∣∣∣∣f(x)−
(√

3 +
1

2
√

3
x

)∣∣∣∣ < 0.1 if

|x| < 1.692.
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0

-0.1

-2 2

| f (x) – (  3 +       x)|1
2   3

18. f(x) =
1√

9− x so
1√

9− x ≈
1√
9

+
1

2(9− 0)3/2
(x− 0) =

1

3
+

1

54
x, and

∣∣∣∣f(x)−
(

1

3
+

1

54
x

)∣∣∣∣ < 0.1 if |x| < 5.5114.

0.06

0
-6 6

| f (x)  – (   +      1
3

1
54

x)|
19. tan 2x ≈ tan 0 + (sec2 0)(2x− 0) = 2x, and | tan 2x− 2x| < 0.1 if |x| < 0.3158.

f x 2x

20.
1

(1 + 2x)5
≈ 1

(1 + 2 · 0)5
+

−5(2)

(1 + 2 · 0)6
(x− 0) = 1− 10x, and |f(x)− (1− 10x)| < 0.1.

0.12

0
-0.04 0.04

| f (x) – (1 – 10x) |

21. (a) The local linear approximation sinx ≈ x gives sin 1◦ = sin(π/180) ≈ π/180 = 0.0174533 and a calculator
gives sin 1◦ = 0.0174524. The relative error | sin(π/180) − (π/180)|/(sinπ/180) = 0.000051 is very small, so for
such a small value of x the approximation is very good.

(b) Use x0 = 45◦ (this assumes you know, or can approximate,
√

2/2).

(c) 44◦ =
44π

180
radians, and 45◦ =

45π

180
=
π

4
radians. With x =

44π

180
and x0 =

π

4
we obtain sin 44◦ = sin

44π

180
≈

sin
π

4
+
(

cos
π

4

)(44π

180
− π

4

)
=

√
2

2
+

√
2

2

(−π
180

)
= 0.694765. With a calculator, sin 44◦ = 0.694658.
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22. (a) tanx ≈ tan 0 + sec2 0(x − 0) = x, so tan 2◦ = tan(2π/180) ≈ 2π/180 = 0.034907, and with a calculator
tan 2◦ = 0.034921.

(b) Use x0 = π/3 because we know tan 60◦ = tan(π/3) =
√

3.

(c) With x0 =
π

3
=

60π

180
and x =

61π

180
we have tan 61◦ = tan

61π

180
≈ tan

π

3
+
(

sec2 π

3

)(61π

180
− π

3

)
=
√

3+4
π

180
=

1.8019, and with a calculator tan 61◦ = 1.8040.

23. f(x) = x4, f ′(x) = 4x3, x0 = 3, ∆x = 0.02; (3.02)4 ≈ 34 + (108)(0.02) = 81 + 2.16 = 83.16.

24. f(x) = x3, f ′(x) = 3x2, x0 = 2, ∆x = −0.03; (1.97)3 ≈ 23 + (12)(−0.03) = 8− 0.36 = 7.64.

25. f(x) =
√
x, f ′(x) =

1

2
√
x

, x0 = 64, ∆x = 1;
√

65 ≈
√

64 +
1

16
(1) = 8 +

1

16
= 8.0625.

26. f(x) =
√
x, f ′(x) =

1

2
√
x

, x0 = 25, ∆x = −1;
√

24 ≈
√

25 +
1

10
(−1) = 5− 0.1 = 4.9.

27. f(x) =
√
x, f ′(x) =

1

2
√
x

, x0 = 81, ∆x = −0.1;
√

80.9 ≈
√

81 +
1

18
(−0.1) ≈ 8.9944.

28. f(x) =
√
x, f ′(x) =

1

2
√
x

, x0 = 36, ∆x = 0.03;
√

36.03 ≈
√

36 +
1

12
(0.03) = 6 + 0.0025 = 6.0025.

29. f(x) = sinx, f ′(x) = cosx, x0 = 0, ∆x = 0.1; sin 0.1 ≈ sin 0 + (cos 0)(0.1) = 0.1.

30. f(x) = tanx, f ′(x) = sec2 x, x0 = 0, ∆x = 0.2; tan 0.2 ≈ tan 0 + (sec2 0)(0.2) = 0.2.

31. f(x) = cosx, f ′(x) = − sinx, x0 = π/6, ∆x = π/180; cos 31◦ ≈ cos 30◦ +

(
−1

2

)( π

180

)
=

√
3

2
− π

360
≈ 0.8573.

32. f(x) = lnx, x0 = 1,∆x = 0.01, lnx ≈ ∆x, ln 1.01 ≈ 0.01.

33. tan−1(1 + ∆x) ≈ π

4
+

1

2
∆x,∆x = −0.01, tan−1 0.99 ≈ π

4
− 0.005 ≈ 0.780398.

34. (a) Let f(x) = (1 + x)k and x0 = 0. Then (1 + x)k ≈ 1k + k(1)k−1(x− 0) = 1 + kx. Set k = 37 and x = 0.001 to
obtain (1.001)37 ≈ 1.037.

(b) With a calculator (1.001)37 = 1.03767.

(c) It is the linear term of the expansion.

35. 3
√

8.24 = 81/3 3
√

1.03 ≈ 2(1 + 1
30.03) ≈ 2.02, and 4.083/2 = 43/21.023/2 = 8(1 + 0.02(3/2)) = 8.24.

36. 6◦ = π/30 radians; h = 500 tan(π/30) ≈ 500[tan 0 + (sec2 0)
π

30
] = 500π/30 ≈ 52.36 ft.

37. (a) dy = (−1/x2)dx = (−1)(−0.5) = 0.5 and ∆y = 1/(x+ ∆x)− 1/x = 1/(1− 0.5)− 1/1 = 2− 1 = 1.
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(b)

y

x

1

2

0.5 1

dy=0.5

y∆ =1

38. (a) dy = (1/2
√
x)dx = (1/(2 ·3))(−1) = −1/6 ≈ −0.167 and ∆y =

√
x+ ∆x−√x =

√
9 + (−1)−

√
9 =
√

8−3 ≈
−0.172.

(b)

39. dy = 3x2dx; ∆y = (x+ ∆x)3 − x3 = x3 + 3x2∆x+ 3x(∆x)2 + (∆x)3 − x3 = 3x2∆x+ 3x(∆x)2 + (∆x)3.

40. dy = 8dx; ∆y = [8(x+ ∆x)− 4]− [8x− 4] = 8∆x.

41. dy = (2x−2)dx; ∆y = [(x+∆x)2−2(x+∆x)+1]−[x2−2x+1] = x2 +2x ∆x+(∆x)2−2x−2∆x+1−x2 +2x−1 =
2x ∆x+ (∆x)2 − 2∆x.

42. dy = cosx dx; ∆y = sin(x+ ∆x)− sinx.

43. (a) dy = (12x2 − 14x)dx.

(b) dy = x d(cosx) + cosx dx = x(− sinx)dx+ cosxdx = (−x sinx+ cosx)dx.

44. (a) dy = (−1/x2)dx.

(b) dy = 5 sec2 x dx.

45. (a) dy =

(√
1− x− x

2
√

1− x

)
dx =

2− 3x

2
√

1− xdx.

(b) dy = −17(1 + x)−18dx.

46. (a) dy =
(x3 − 1)d(1)− (1)d(x3 − 1)

(x3 − 1)2
=

(x3 − 1)(0)− (1)3x2dx

(x3 − 1)2
= − 3x2

(x3 − 1)2
dx.

(b) dy =
(2− x)(−3x2)dx− (1− x3)(−1)dx

(2− x)2
=

2x3 − 6x2 + 1

(2− x)2
dx.

47. False; dy = (dy/dx)dx.

48. True.

49. False; they are equal whenever the function is linear.
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50. False; if f ′(x0) = 0 then the approximation is constant.

51. dy =
3

2
√

3x− 2
dx, x = 2, dx = 0.03; ∆y ≈ dy =

3

4
(0.03) = 0.0225.

52. dy =
x√

x2 + 8
dx, x = 1, dx = −0.03; ∆y ≈ dy = (1/3)(−0.03) = −0.01.

53. dy =
1− x2

(x2 + 1)2
dx, x = 2, dx = −0.04; ∆y ≈ dy =

(
− 3

25

)
(−0.04) = 0.0048.

54. dy =

(
4x√

8x+ 1
+
√

8x+ 1

)
dx, x = 3, dx = 0.05; ∆y ≈ dy = (37/5)(0.05) = 0.37.

55. (a) A = x2 where x is the length of a side; dA = 2x dx = 2(10)(±0.1) = ±2 ft2.

(b) Relative error in x is within
dx

x
=
±0.1

10
= ±0.01 so percentage error in x is ±1%; relative error in A is within

dA

A
=

2x dx

x2
= 2

dx

x
= 2(±0.01) = ±0.02 so percentage error in A is ±2%.

56. (a) V = x3 where x is the length of a side; dV = 3x2dx = 3(25)2(±1) = ±1875 cm3.

(b) Relative error in x is within
dx

x
=
±1

25
= ±0.04 so percentage error in x is ±4%; relative error in V is within

dV

V
=

3x2dx

x3
= 3

dx

x
= 3(±0.04) = ±0.12 so percentage error in V is ±12%.

57. (a) x = 10 sin θ, y = 10 cos θ (see figure), dx = 10 cos θdθ = 10
(

cos
π

6

)(
± π

180

)
= 10

(√
3

2

)(
± π

180

)
≈

±0.151 in, dy = −10(sin θ)dθ = −10
(

sin
π

6

)(
± π

180

)
= −10

(
1

2

)(
± π

180

)
≈ ±0.087 in.

10″
x

y

θ

(b) Relative error in x is within
dx

x
= (cot θ)dθ =

(
cot

π

6

)(
± π

180

)
=
√

3
(
± π

180

)
≈ ±0.030, so percentage error

in x is ≈ ±3.0%; relative error in y is within
dy

y
= − tan θdθ = −

(
tan

π

6

)(
± π

180

)
= − 1√

3

(
± π

180

)
≈ ±0.010, so

percentage error in y is ≈ ±1.0%.

58. (a) x = 25 cot θ, y = 25 csc θ (see figure); dx = −25 csc2 θdθ = −25
(

csc2 π

3

)(
± π

360

)
= −25

(
4

3

)(
± π

360

)
≈

±0.291 cm, dy = −25 csc θ cot θdθ = −25
(

csc
π

3

)(
cot

π

3

)(
± π

360

)
= −25

(
2√
3

)(
1√
3

)(
± π

360

)
≈ ±0.145 cm.
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25 cm

x

y

θ

(b) Relative error in x is within
dx

x
= −csc2 θ

cot θ
dθ = − 4/3

1/
√

3

(
± π

360

)
≈ ±0.020, so percentage error in x is

≈ ±2.0%; relative error in y is within
dy

y
= − cot θdθ = − 1√

3

(
± π

360

)
≈ ±0.005, so percentage error in y is

≈ ±0.5%.

59.
dR

R
=

(−2k/r3)dr

(k/r2)
= −2

dr

r
, but

dr

r
= ±0.05 so

dR

R
= −2(±0.05) = ±0.10; percentage error in R is ±10%.

60. h = 12 sin θ thus dh = 12 cos θdθ so, with θ = 60◦ = π/3 radians and dθ = −1◦ = −π/180 radians, dh =
12 cos(π/3)(−π/180) = −π/30 ≈ −0.105 ft.

61. A =
1

4
(4)2 sin 2θ = 4 sin 2θ thus dA = 8 cos 2θdθ so, with θ = 30◦ = π/6 radians and dθ = ±15′ = ±1/4◦ = ±π/720

radians, dA = 8 cos(π/3)(±π/720) = ±π/180 ≈ ±0.017 cm2.

62. A = x2 where x is the length of a side;
dA

A
=

2x dx

x2
= 2

dx

x
, but

dx

x
= ±0.01, so

dA

A
= 2(±0.01) = ±0.02;

percentage error in A is ±2%

63. V = x3 where x is the length of a side;
dV

V
=

3x2dx

x3
= 3

dx

x
, but

dx

x
= ±0.02, so

dV

V
= 3(±0.02) = ±0.06;

percentage error in V is ±6%.

64.
dV

V
=

4πr2dr

4πr3/3
= 3

dr

r
, but

dV

V
= ±0.03 so 3

dr

r
= ±0.03,

dr

r
= ±0.01; maximum permissible percentage error in r

is ±1%.

65. A =
1

4
πD2 where D is the diameter of the circle;

dA

A
=

(πD/2)dD

πD2/4
= 2

dD

D
, but

dA

A
= ±0.01 so 2

dD

D
= ±0.01,

dD

D
= ±0.005; maximum permissible percentage error in D is ±0.5%.

66. V = x3 where x is the length of a side; approximate ∆V by dV if x = 1 and dx = ∆x = 0.02, dV = 3x2dx =
3(1)2(0.02) = 0.06 in3.

67. V = volume of cylindrical rod = πr2h = πr2(15) = 15πr2; approximate ∆V by dV if r = 2.5 and dr = ∆r = 0.1.
dV = 30πr dr = 30π(2.5)(0.1) ≈ 23.5619 cm3.

68. P =
2π√
g

√
L, dP =

2π√
g

1

2
√
L
dL =

π
√
g
√
L
dL,

dP

P
=

1

2

dL

L
so the relative error in P ≈ 1

2
the relative error in L.

Thus the percentage error in P is ≈ 1

2
the percentage error in L.

69. (a) α = ∆L/(L∆T ) = 0.006/(40× 10) = 1.5× 10−5/◦C.

(b) ∆L = 2.3× 10−5(180)(25) ≈ 0.1 cm, so the pole is about 180.1 cm long.
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70. ∆V = 7.5× 10−4(4000)(−20) = −60 gallons; the truck delivers 4000− 60 = 3940 gallons.

Exercise Set 3.6

1. (a) lim
x→2

x2 − 4

x2 + 2x− 8
= lim
x→2

(x− 2)(x+ 2)

(x+ 4)(x− 2)
= lim
x→2

x+ 2

x+ 4
=

2

3
or, using L’Hôpital’s rule,

lim
x→2

x2 − 4

x2 + 2x− 8
= lim
x→2

2x

2x+ 2
=

2

3
.

(b) lim
x→+∞

2x− 5

3x+ 7
=

2− lim
x→+∞

5

x

3 + lim
x→+∞

7

x

=
2

3
or, using L’Hôpital’s rule, lim

x→+∞
2x− 5

3x+ 7
= lim
x→+∞

2

3
=

2

3
.

2. (a)
sinx

tanx
= cosx so lim

x→0

sinx

tanx
= lim
x→0

cosx = 1 or, using L’Hôpital’s rule, lim
x→0

sinx

tanx
= lim
x→0

cosx

sec2 x
= 1.

(b)
x2 − 1

x3 − 1
=

(x− 1)(x+ 1)

(x− 1)(x2 + x+ 1)
=

x+ 1

x2 + x+ 1
so lim

x→1

x2 − 1

x3 − 1
=

2

3
or, using L’Hôpital’s rule,

lim
x→1

x2 − 1

x3 − 1
= lim
x→1

2x

3x2
=

2

3
.

3. True; lnx is not defined for negative x.

4. True; apply L’Hôpital’s rule n times, where n = deg p(x).

5. False; apply L’Hôpital’s rule n times.

6. True; the logarithm of the expression approaches −∞.

7. lim
x→0

ex

cosx
= 1.

8. lim
x→0

2 cos 2x

5 cos 5x
=

2

5
.

9. lim
θ→0

sec2 θ

1
= 1.

10. lim
t→0

tet + et

−et = −1.

11. lim
x→π+

cosx

1
= −1.

12. lim
x→0+

cosx

2x
= +∞.

13. lim
x→+∞

1/x

1
= 0.

14. lim
x→+∞

3e3x

2x
= lim
x→+∞

9e3x

2
= +∞.

15. lim
x→0+

− csc2 x

1/x
= lim
x→0+

−x
sin2 x

= lim
x→0+

−1

2 sinx cosx
= −∞.
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16. lim
x→0+

−1/x

(−1/x2)e1/x
= lim
x→0+

x

e1/x
= 0.

17. lim
x→+∞

100x99

ex
= lim
x→+∞

(100)(99)x98

ex
= · · · = lim

x→+∞
(100)(99)(98) · · · (1)

ex
= 0.

18. lim
x→0+

cosx/ sinx

sec2 x/ tanx
= lim
x→0+

cos2 x = 1.

19. lim
x→0

2/
√

1− 4x2

1
= 2.

20. lim
x→0

1− 1

1 + x2

3x2
= lim
x→0

1

3(1 + x2)
=

1

3
.

21. lim
x→+∞

xe−x = lim
x→+∞

x

ex
= lim
x→+∞

1

ex
= 0.

22. lim
x→π

(x− π) tan(x/2) = lim
x→π

x− π
cot(x/2)

= lim
x→π

1

−(1/2) csc2(x/2)
= −2.

23. lim
x→+∞

x sin(π/x) = lim
x→+∞

sin(π/x)

1/x
= lim
x→+∞

(−π/x2) cos(π/x)

−1/x2
= lim
x→+∞

π cos(π/x) = π.

24. lim
x→0+

tanx lnx = lim
x→0+

lnx

cotx
= lim
x→0+

1/x

− csc2 x
= lim
x→0+

− sin2 x

x
= lim
x→0+

−2 sinx cosx

1
= 0.

25. lim
x→(π/2)−

sec 3x cos 5x = lim
x→(π/2)−

cos 5x

cos 3x
= lim
x→(π/2)−

−5 sin 5x

−3 sin 3x
=
−5(+1)

(−3)(−1)
= −5

3
.

26. lim
x→π

(x− π) cotx = lim
x→π

x− π
tanx

= lim
x→π

1

sec2 x
= 1.

27. y = (1− 3/x)x, lim
x→+∞

ln y = lim
x→+∞

ln(1− 3/x)

1/x
= lim
x→+∞

−3

1− 3/x
= −3, lim

x→+∞
y = e−3.

28. y = (1 + 2x)−3/x, lim
x→0

ln y = lim
x→0
−3 ln(1 + 2x)

x
= lim
x→0
− 6

1 + 2x
= −6, lim

x→0
y = e−6.

29. y = (ex + x)1/x, lim
x→0

ln y = lim
x→0

ln(ex + x)

x
= lim
x→0

ex + 1

ex + x
= 2, lim

x→0
y = e2.

30. y = (1 + a/x)bx, lim
x→+∞

ln y = lim
x→+∞

b ln(1 + a/x)

1/x
= lim
x→+∞

ab

1 + a/x
= ab, lim

x→+∞
y = eab.

31. y = (2− x)tan(πx/2), lim
x→1

ln y = lim
x→1

ln(2− x)

cot(πx/2)
= lim
x→1

2 sin2(πx/2)

π(2− x)
= 2/π, lim

x→1
y = e2/π.

32. y = [cos(2/x)]x
2

, lim
x→+∞

ln y = lim
x→+∞

ln cos(2/x)

1/x2
= lim
x→+∞

(−2/x2)(− tan(2/x))

−2/x3
= lim
x→+∞

− tan(2/x)

1/x
=

lim
x→+∞

(2/x2) sec2(2/x)

−1/x2
= −2, lim

x→+∞
y = e−2.

33. lim
x→0

(
1

sinx
− 1

x

)
= lim
x→0

x− sinx

x sinx
= lim
x→0

1− cosx

x cosx+ sinx
= lim
x→0

sinx

2 cosx− x sinx
= 0.
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34. lim
x→0

1− cos 3x

x2
= lim
x→0

3 sin 3x

2x
= lim
x→0

9

2
cos 3x =

9

2
.

35. lim
x→+∞

(x2 + x)− x2

√
x2 + x+ x

= lim
x→+∞

x√
x2 + x+ x

= lim
x→+∞

1√
1 + 1/x+ 1

= 1/2.

36. lim
x→0

ex − 1− x
xex − x = lim

x→0

ex − 1

xex + ex − 1
= lim
x→0

ex

xex + 2ex
= 1/2.

37. lim
x→+∞

[x− ln(x2 +1)] = lim
x→+∞

[ln ex− ln(x2 +1)] = lim
x→+∞

ln
ex

x2 + 1
, lim
x→+∞

ex

x2 + 1
= lim
x→+∞

ex

2x
= lim
x→+∞

ex

2
= +∞,

so lim
x→+∞

[x− ln(x2 + 1)] = +∞

38. lim
x→+∞

ln
x

1 + x
= lim
x→+∞

ln
1

1/x+ 1
= ln(1) = 0.

39. y = xsin x, ln y = sinx lnx, lim
x→0+

ln y = lim
x→0+

lnx

cscx
= lim

x→0+

1/x

− cscx cotx
= lim

x→0+

(
sinx

x

)
(− tanx) = 1(−0) = 0, so

lim
x→0+

xsin x = lim
x→0+

y = e0 = 1.

40. y = (e2x − 1)x, ln y = x ln(e2x − 1), lim
x→0+

ln y = lim
x→0+

ln(e2x − 1)

1/x
= lim
x→0+

2e2x

e2x − 1
(−x2) =

= lim
x→0+

x

e2x − 1
lim
x→0+

(−2xe2x) = lim
x→0+

1

2e2x
lim
x→0+

(−2xe2x) =
1

2
· 0 = 0, lim

x→0+
y = e0 = 1.

41. y =

[
− 1

lnx

]x
, ln y = x ln

[
− 1

ln x

]
, lim
x→0+

ln y = lim
x→0+

ln
[
− 1

ln x

]

1/x
= lim

x→0+

(
− 1

x lnx

)
(−x2) = − lim

x→0+

x

lnx
= 0, so

lim
x→0+

y = e0 = 1.

42. y = x1/x, ln y =
lnx

x
, lim
x→+∞

ln y = lim
x→+∞

lnx

x
= lim
x→+∞

1/x

1
= 0, so lim

x→+∞
y = e0 = 1.

43. y = (lnx)1/x, ln y = (1/x) ln lnx, lim
x→+∞

ln y = lim
x→+∞

ln lnx

x
= lim
x→+∞

1/(x lnx)

1
= 0, so lim

x→+∞
y = 1.

44. y = (− lnx)x, ln y = x ln(− lnx), lim
x→0+

ln y = lim
x→0+

ln(− lnx)/(1/x) = lim
x→0+

(1/(x lnx)

(−1/x2)
= lim

x→0+
(− x

lnx
) = 0, so

lim
x→0+

y = 1.

45. y = (tanx)π/2−x, ln y = (π/2 − x) ln tanx, lim
x→(π/2)−

ln y = lim
x→(π/2)−

ln tanx

1/(π/2− x)
= lim

x→(π/2)−

(sec2 x/ tanx)

1/(π/2− x)2
=

lim
x→(π/2)−

(π/2− x)

cosx

(π/2− x)

sinx
= lim
x→(π/2)−

(π/2− x)

cosx
lim

x→(π/2)−

(π/2− x)

sinx
= 1 · 0 = 0, so lim

x→(π/2)−
y = 1.

46. (a) lim
x→+∞

lnx

xn
= lim
x→+∞

1/x

nxn−1
= lim
x→+∞

1

nxn
= 0.

(b) lim
x→+∞

xn

lnx
= lim
x→+∞

nxn−1

1/x
= lim
x→+∞

nxn = +∞.

47. (a) L’Hôpital’s rule does not apply to the problem lim
x→1

3x2 − 2x+ 1

3x2 − 2x
because it is not an indeterminate form.

(b) lim
x→1

3x2 − 2x+ 1

3x2 − 2x
= 2.
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48. (a) L’Hôpital’s rule does not apply to the problem lim
x→2

e3x2−12x+12

x4 − 16
, because it is not an indeterminate form.

(b) lim
x→2−

and lim
x→2+

exist, with values −∞ if x approaches 2 from the left and +∞ if from the right. The general

limit lim
x→2

does not exist.

49. lim
x→+∞

1/(x lnx)

1/(2
√
x)

= lim
x→+∞

2√
x lnx

= 0.

0.15

0
100 10000

50. y = xx, lim
x→0+

ln y = lim
x→0+

lnx

1/x
= lim
x→0+

−x = 0, lim
x→0+

y = 1.

1

0
0 0.5

51. y = (sinx)3/ ln x, lim
x→0+

ln y = lim
x→0+

3 ln sinx

lnx
= lim
x→0+

(3 cosx)
x

sinx
= 3, lim

x→0+
y = e3.

25

19
0 0.5

52. lim
x→π/2−

4 sec2 x

secx tanx
= lim
x→π/2−

4

sinx
= 4.

4.1

3.3
1.4 1.6

53. lnx − ex = lnx − 1

e−x
=

e−x lnx− 1

e−x
; lim
x→+∞

e−x lnx = lim
x→+∞

lnx

ex
= lim

x→+∞
1/x

ex
= 0 by L’Hôpital’s rule, so

lim
x→+∞

[lnx− ex] = lim
x→+∞

e−x lnx− 1

e−x
= −∞; no horizontal asymptote.
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0

–16

0 3

54. lim
x→+∞

[ln ex − ln(1 + 2ex)] = lim
x→+∞

ln
ex

1 + 2ex
= lim

x→+∞
ln

1

e−x + 2
= ln

1

2
; horizontal asymptote y = − ln 2. Also,

lim
x→−∞

ln
ex

1 + 2ex
= −∞.

–0.6

–1.2

0 12

55. y = (lnx)1/x, lim
x→+∞

ln y = lim
x→+∞

ln(lnx)

x
= lim
x→+∞

1

x lnx
= 0; lim

x→+∞
y = 1, y = 1 is the horizontal asymptote.

1.02

1
100 10000

56. y =

(
x+ 1

x+ 2

)x
, lim
x→±∞

ln y = lim
x→±∞

ln
x+ 1

x+ 2
1/x

= lim
x→±∞

−x2

(x+ 1)(x+ 2)
= −1; lim

x→±∞
y = e−1 is the horizontal

asymptote.

1

0
0 50

57. (a) 0 (b) +∞ (c) 0 (d) −∞ (e) +∞ (f) −∞

58. (a) Type 00; y = x(ln a)/(1+ln x); lim
x→0+

ln y = lim
x→0+

(ln a) lnx

1 + lnx
= lim

x→0+

(ln a)/x

1/x
= lim

x→0+
ln a = ln a, so we obtain

that lim
x→0+

y = eln a = a.

(b) Type ∞0; same calculation as part (a) with x→ +∞.
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(c) Type 1∞; y = (x+ 1)(ln a)/x, lim
x→0

ln y = lim
x→0

(ln a) ln(x+ 1)

x
= lim
x→0

ln a

x+ 1
= ln a, so limx→0 y = eln a = a.

59. lim
x→+∞

1 + 2 cos 2x

1
does not exist, nor is it ±∞; lim

x→+∞
x+ sin 2x

x
= lim
x→+∞

(
1 +

sin 2x

x

)
= 1.

60. lim
x→+∞

2− cosx

3 + cosx
does not exist, nor is it ±∞; lim

x→+∞
2x− sinx

3x+ sinx
= lim
x→+∞

2− (sinx)/x

3 + (sinx)/x
=

2

3
.

61. lim
x→+∞

(2 + x cos 2x+ sin 2x) does not exist, nor is it ±∞; lim
x→+∞

x(2 + sin 2x)

x+ 1
= lim
x→+∞

2 + sin 2x

1 + 1/x
, which does not

exist because sin 2x oscillates between −1 and 1 as x→ +∞.

62. lim
x→+∞

(
1

x
+

1

2
cosx+

sinx

2x

)
does not exist, nor is it ±∞; lim

x→+∞
x(2 + sinx)

x2 + 1
= lim
x→+∞

2 + sinx

x+ 1/x
= 0.

63. lim
R→0+

V t
L e
−Rt/L

1
=
V t

L
.

64. (a) lim
x→π/2

(π/2− x) tanx = lim
x→π/2

π/2− x
cotx

= lim
x→π/2

−1

− csc2 x
= lim
x→π/2

sin2 x = 1.

(b) lim
x→π/2

(
1

π/2− x − tanx

)
= lim
x→π/2

(
1

π/2− x −
sinx

cosx

)
= lim
x→π/2

cosx− (π/2− x) sinx

(π/2− x) cosx
=

= lim
x→π/2

−(π/2− x) cosx

−(π/2− x) sinx− cosx
= lim
x→π/2

(π/2− x) sinx+ cosx

−(π/2− x) cosx+ 2 sinx
= 0 (by applying L’H’s rule twice).

(c) 1/(π/2− 1.57) ≈ 1255.765534, tan 1.57 ≈ 1255.765592; 1/(π/2− 1.57)− tan 1.57 ≈ 0.000058.

65. (b) lim
x→+∞

x(k1/x − 1) = lim
t→0+

kt − 1

t
= lim
t→0+

(ln k)kt

1
= ln k.

(c) ln 0.3 = −1.20397, 1024
(

1024
√

0.3− 1
)

= −1.20327; ln 2 = 0.69315, 1024
(

1024
√

2− 1
)

= 0.69338.

66. If k 6= −1 then lim
x→0

(k + cos `x) = k + 1 6= 0, so lim
x→0

k + cos `x

x2
= ±∞. Hence k = −1, and by the rule

lim
x→0

−1 + cos `x

x2
= lim
x→0

−` sin `x

2x
= lim
x→0

−`2 cos `x

2
= −`

2

2
= −4 if ` = ±2

√
2.

67. (a) No; sin(1/x) oscillates as x→ 0.

(b)

0.05

–0.05

–0.35 0.35

(c) For the limit as x → 0+ use the Squeezing Theorem together with the inequalities −x2 ≤ x2 sin(1/x) ≤ x2.
For x→ 0− do the same; thus lim

x→0
f(x) = 0.

68. (a) Apply the rule to get lim
x→0

− cos(1/x) + 2x sin(1/x)

cosx
which does not exist (nor is it ±∞).
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(b) Rewrite as lim
x→0

[ x

sinx

]
[x sin(1/x)], but lim

x→0

x

sinx
= lim
x→0

1

cosx
= 1 and lim

x→0
x sin(1/x) = 0, thus

lim
x→0

[ x

sinx

]
[x sin(1/x)] = (1)(0) = 0.

69. lim
x→0+

sin(1/x)

(sinx)/x
, lim
x→0+

sinx

x
= 1 but lim

x→0+
sin(1/x) does not exist because sin(1/x) oscillates between −1 and 1 as

x→ +∞, so lim
x→0+

x sin(1/x)

sinx
does not exist.

70. Since f(a) = g(a) = 0, then for x 6= a,
f(x)

g(x)
=

(f(x)− f(a)/(x− a)

(g(x)− g(a))/(x− a)
. Now take the limit: lim

x→a
f(x)

g(x)
=

lim
x→a

(f(x)− f(a)/(x− a)

(g(x)− g(a))/(x− a)
=
f ′(a)

g′(a)
.

Chapter 3 Review Exercises

1. (a) 3x2 + x
dy

dx
+ y − 2 = 0,

dy

dx
=

2− y − 3x2

x
.

(b) y = (1 + 2x− x3)/x = 1/x+ 2− x2, dy/dx = −1/x2 − 2x.

(c)
dy

dx
=

2− (1/x+ 2− x2)− 3x2

x
= −1/x2 − 2x.

2. (a) xy = x− y, xdy
dx

+ y = 1− dy

dx
,
dy

dx
=

1− y
x+ 1

.

(b) y(x+ 1) = x, y =
x

x+ 1
, y′ =

1

(x+ 1)2
.

(c)
dy

dx
=

1− y
x+ 1

=
1− x

x+1

1 + x
=

1

(x+ 1)2
.

3. − 1

y2

dy

dx
− 1

x2
= 0 so

dy

dx
= −y

2

x2
.

4. 3x2 − 3y2 dy

dx
= 6(x

dy

dx
+ y), −(3y2 + 6x)

dy

dx
= 6y − 3x2 so

dy

dx
=
x2 − 2y

y2 + 2x
.

5.

(
x
dy

dx
+ y

)
sec(xy) tan(xy) =

dy

dx
,
dy

dx
=

y sec(xy) tan(xy)

1− x sec(xy) tan(xy)
.

6. 2x =
(1 + csc y)(− csc2 y)(dy/dx)− (cot y)(− csc y cot y)(dy/dx)

(1 + csc y)2
, 2x(1+csc y)2 = − csc y(csc y+csc2 y−cot2 y)

dy

dx
,

but csc2 y − cot2 y = 1, so
dy

dx
= −2x(1 + csc y)

csc y
.

7.
dy

dx
=

3x

4y
,
d2y

dx2
=

(4y)(3)− (3x)(4dy/dx)

16y2
=

12y − 12x(3x/(4y))

16y2
=

12y2 − 9x2

16y3
=
−3(3x2 − 4y2)

16y3
, but 3x2−4y2 =

7 so
d2y

dx2
=
−3(7)

16y3
= − 21

16y3
.
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8.
dy

dx
=

y

y − x ,
d2y

dx2
=

(y − x)(dy/dx)− y(dy/dx− 1)

(y − x)2
=

(y − x)

(
y

y − x

)
− y

(
y

y − x − 1

)

(y − x)2
=
y2 − 2xy

(y − x)3
, but y2 −

2xy = −3, so
d2y

dx2
= − 3

(y − x)3
.

9.
dy

dx
= tan(πy/2) + x(π/2)

dy

dx
sec2(πy/2),

dy

dx

∣∣∣∣
y=1/2

= 1 + (π/4)
dy

dx

∣∣∣∣
y=1/2

(2),
dy

dx

∣∣∣∣
y=1/2

=
2

2− π .

10. Let P (x0, y0) be the required point. The slope of the line 4x − 3y + 1 = 0 is 4/3 so the slope of the tangent to
y2 = 2x3 at P must be −3/4. By implicit differentiation dy/dx = 3x2/y, so at P , 3x2

0/y0 = −3/4, or y0 = −4x2
0.

But y2
0 = 2x3

0 because P is on the curve y2 = 2x3. Elimination of y0 gives 16x4
0 = 2x3

0, x3
0(8x0 − 1) = 0, so

x0 = 0 or 1/8. From y0 = −4x2
0 it follows that y0 = 0 when x0 = 0, and y0 = −1/16 when x0 = 1/8. It does not

follow, however, that (0, 0) is a solution because dy/dx = 3x2/y (the slope of the curve as determined by implicit
differentiation) is valid only if y 6= 0. Further analysis shows that the curve is tangent to the x-axis at (0, 0), so
the point (1/8,−1/16) is the only solution.

11. Substitute y = mx into x2 + xy + y2 = 4 to get x2 + mx2 + m2x2 = 4, which has distinct solutions x =
±2/
√
m2 +m+ 1. They are distinct because m2 +m+ 1 = (m+ 1/2)2 + 3/4 ≥ 3/4, so m2 +m+ 1 is never zero.

Note that the points of intersection occur in pairs (x0, y0) and (−x0,−y0). By implicit differentiation, the slope of
the tangent line to the ellipse is given by dy/dx = −(2x+ y)/(x+ 2y). Since the slope is unchanged if we replace
(x, y) with (−x,−y), it follows that the slopes are equal at the two point of intersection. Finally we must examine
the special case x = 0 which cannot be written in the form y = mx. If x = 0 then y = ±2, and the formula for
dy/dx gives dy/dx = −1/2, so the slopes are equal.

12. By implicit differentiation, 3x2 − y − xy′ + 3y2y′ = 0, so y′ = (3x2 − y)/(x − 3y2). This derivative is zero when
y = 3x2. Substituting this into the original equation x3−xy+y3 = 0, one has x3−3x3+27x6 = 0, x3(27x3−2) = 0.
The unique solution in the first quadrant is x = 21/3/3, y = 3x2 = 22/3/3.

13. By implicit differentiation, 3x2−y−xy′+3y2y′ = 0, so y′ = (3x2−y)/(x−3y2). This derivative exists except when
x = 3y2. Substituting this into the original equation x3−xy+y3 = 0, one has 27y6−3y3+y3 = 0, y3(27y3−2) = 0.
The unique solution in the first quadrant is y = 21/3/3, x = 3y2 = 22/3/3

14. By implicit differentiation, dy/dx = k/(2y) so the slope of the tangent to y2 = kx at (x0, y0) is k/(2y0) if y0 6= 0.

The tangent line in this case is y − y0 =
k

2y0
(x − x0), or 2y0y − 2y2

0 = kx − kx0. But y2
0 = kx0 because (x0, y0)

is on the curve y2 = kx, so the equation of the tangent line becomes 2y0y − 2kx0 = kx − kx0 which gives
y0y = k(x+ x0)/2. If y0 = 0, then x0 = 0; the graph of y2 = kx has a vertical tangent at (0, 0) so its equation is
x = 0, but y0y = k(x+ x0)/2 gives the same result when x0 = y0 = 0.

15. y = ln(x+ 1) + 2 ln(x+ 2)− 3 ln(x+ 3)− 4 ln(x+ 4), dy/dx =
1

x+ 1
+

2

x+ 2
− 3

x+ 3
− 4

x+ 4
.

16. y =
1

2
lnx+

1

3
ln(x+ 1)− ln sinx+ ln cosx, so

dy

dx
=

1

2x
+

1

3(x+ 1)
− cosx

sinx
− sinx

cosx
=

5x+ 3

6x(x+ 1)
− cotx− tanx.

17.
dy

dx
=

1

2x
(2) = 1/x.

18.
dy

dx
= 2(lnx)

(
1

x

)
=

2 lnx

x
.

19.
dy

dx
=

1

3x(lnx+ 1)2/3
.

20. y =
1

3
ln(x+ 1), y′ =

1

3(x+ 1)
.
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21.
dy

dx
= log10 lnx =

ln lnx

ln 10
, y′ =

1

(ln 10)(x lnx)
.

22. y =
1 + lnx/ ln 10

1− lnx/ ln 10
=

ln 10 + lnx

ln 10− lnx
, y′ =

(ln 10− lnx)/x+ (ln 10 + lnx)/x

(ln 10− lnx)2
=

2 ln 10

x(ln 10− lnx)2
.

23. y =
3

2
lnx+

1

2
ln(1 + x4), y′ =

3

2x
+

2x3

(1 + x4)
.

24. y =
1

2
lnx+ ln cosx− ln(1 + x2), y′ =

1

2x
− sinx

cosx
− 2x

1 + x2
=

1− 3x2

2x(1 + x2)
− tanx.

25. y = x2 + 1 so y′ = 2x.

26. y = ln
(1 + ex + e2x)

(1− ex)(1 + ex + e2x)
= − ln(1− ex),

dy

dx
=

ex

1− ex .

27. y′ = 2e
√
x + 2xe

√
x d

dx

√
x = 2e

√
x +
√
xe
√
x.

28. y′ =
abe−x

(1 + be−x)2
.

29. y′ =
2

π(1 + 4x2)
.

30. y = e(sin−1 x) ln 2, y′ =
ln 2√
1− x2

2 sin−1 x.

31. ln y = ex lnx,
y′

y
= ex

(
1

x
+ lnx

)
,
dy

dx
= xe

x

ex
(

1

x
+ lnx

)
= ex

[
xe

x−1 + xe
x

lnx
]
.

32. ln y =
ln(1 + x)

x
,
y′

y
=
x/(1 + x)− ln(1 + x)

x2
=

1

x(1 + x)
− ln(1 + x)

x2
,
dy

dx
=

1

x
(1+x)(1/x)−1− (1 + x)(1/x)

x2
ln(1+x).

33. y′ =
2

|2x+ 1|
√

(2x+ 1)2 − 1
.

34. y′ =
1

2
√

cos−1 x2

d

dx
cos−1 x2 = − 1√

cos−1 x2

x√
1− x4

.

35. ln y = 3 lnx− 1

2
ln(x2 + 1), y′/y =

3

x
− x

x2 + 1
, y′ =

3x2

√
x2 + 1

− x4

(x2 + 1)3/2
.

36. ln y =
1

3
(ln(x2 − 1)− ln(x2 + 1)),

y′

y
=

1

3

(
2x

x2 − 1
− 2x

x2 + 1

)
=

4x

3(x4 − 1)
so y′ =

4x

3(x4 − 1)
3

√
x2 − 1

x2 + 1
.

37. (b)

y

x

2

4

6

1 2 3 4
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(c)
dy

dx
=

1

2
− 1

x
, so

dy

dx
< 0 at x = 1 and

dy

dx
> 0 at x = e.

(d) The slope is a continuous function which goes from a negative value to a positive value; therefore it must
take the value zero between, by the Intermediate Value Theorem.

(e)
dy

dx
= 0 when x = 2.

38. β = 10 log I − 10 log I0,
dβ

dI
=

10

I ln 10
.

(a)
dβ

dI

∣∣∣∣
I=10I0

=
1

I0 ln 10
dB/(W/m2).

(b)
dβ

dI

∣∣∣∣
I=100I0

=
1

10I0 ln 10
dB/(W/m2).

(c)
dβ

dI

∣∣∣∣
I=100I0

=
1

1000I0 ln 10
dB/(W/m2).

39. Solve
dy

dt
= 3

dx

dt
given y = x lnx. Then

dy

dt
=
dy

dx

dx

dt
= (1 + lnx)

dx

dt
, so 1 + lnx = 3, lnx = 2, x = e2.

40. x = 2, y = 0; y′ = −2x/(5− x2) = −4 at x = 2, so y − 0 = −4(x− 2) or y = −4x+ 8.

41. Set y = logb x and solve y′ = 1: y′ =
1

x ln b
= 1 so x =

1

ln b
. The curves intersect when (x, x) lies on the graph

of y = logb x, so x = logb x. From Formula (8), Section 1.6, logb x =
lnx

ln b
from which lnx = 1, x = e, ln b = 1/e,

b = e1/e ≈ 1.4447.
y

x

2

2

42. (a) Find the point of intersection: f(x) =
√
x+k = lnx. The slopes are equal, so m1 =

1

x
= m2 =

1

2
√
x

,
√
x = 2,

x = 4. Then ln 4 =
√

4 + k, k = ln 4− 2.
y

x

2

2

(b) Since the slopes are equal m1 =
k

2
√
x

= m2 =
1

x
, so k

√
x = 2. At the point of intersection k

√
x = lnx,

2 = lnx, x = e2, k = 2/e.
y

x
0

2

5
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43. Yes, g must be differentiable (where f ′ 6= 0); this can be inferred from the graphs. Note that if f ′ = 0 at a point
then g′ cannot exist (infinite slope).

44. (a) f ′(x) = −3/(x + 1)2. If x = f(y) = 3/(y + 1) then y = f−1(x) = (3/x) − 1, so
d

dx
f−1(x) = − 3

x2
; and

1

f ′(f−1(x))
= − (f−1(x) + 1)2

3
= − (3/x)2

3
= − 3

x2
.

(b) f(x) = ex/2, f ′(x) = 1
2e
x/2. If x = f(y) = ey/2 then y = f−1(x) = 2 lnx, so

d

dx
f−1(x) =

2

x
; and

1

f ′(f−1(x))
= 2e−f

−1(x)/2 = 2e− ln x = 2x−1 =
2

x
.

45. Let P (x0, y0) be a point on y = e3x then y0 = e3x0 . dy/dx = 3e3x so mtan = 3e3x0 at P and an equation of the
tangent line at P is y − y0 = 3e3x0(x − x0), y − e3x0 = 3e3x0(x − x0). If the line passes through the origin then
(0, 0) must satisfy the equation so −e3x0 = −3x0e

3x0 which gives x0 = 1/3 and thus y0 = e. The point is (1/3, e).

46. ln y = ln 5000 + 1.07x;
dy/dx

y
= 1.07, or

dy

dx
= 1.07y.

47. ln y = 2x ln 3 + 7x ln 5;
dy/dx

y
= 2 ln 3 + 7 ln 5, or

dy

dx
= (2 ln 3 + 7 ln 5)y.

48.
dk

dT
= k0 exp

[
−q(T − T0)

2T0T

](
− q

2T 2

)
= − qk0

2T 2
exp

[
−q(T − T0)

2T0T

]
.

49. y′ = aeax sin bx+ beax cos bx, and y′′ = (a2 − b2)eax sin bx+ 2abeax cos bx, so

y′′ − 2ay′ + (a2 + b2)y = (a2 − b2)eax sin bx+ 2abeax cos bx− 2a(aeax sin bx+ beax cos bx) + (a2 + b2)eax sin bx = 0.

50. sin(tan−1 x) = x/
√

1 + x2 and cos(tan−1 x) = 1/
√

1 + x2, and y′ =
1

1 + x2
, y′′ =

−2x

(1 + x2)2
, hence y′′ +

2 sin y cos3 y =
−2x

(1 + x2)2
+ 2

x√
1 + x2

1

(1 + x2)3/2
= 0.

51. (a)

100

20
0 8

(b) As t tends to +∞, the population tends to 19: lim
t→+∞

P (t) = lim
t→+∞

95

5− 4e−t/4
=

95

5− 4 lim
t→+∞

e−t/4
=

95

5
= 19.

(c) The rate of population growth tends to zero.

0

–80

0 8



Chapter 3 Review Exercises 151

52. (a) y = (1 + x)π, lim
h→0

(1 + h)π − 1

h
=

d

dx
(1 + x)π

∣∣∣∣
x=0

= π(1 + x)π−1

∣∣∣∣
x=0

= π.

(b) Let y =
1− lnx

lnx
. Then y(e) = 0, and lim

x→e
1− lnx

(x− e) lnx
=
dy

dx

∣∣∣∣
x=e

= − 1/x

(lnx)2
= −1

e
.

53. In the case +∞ − (−∞) the limit is +∞; in the case −∞ − (+∞) the limit is −∞, because large positive
(negative) quantities are added to large positive (negative) quantities. The cases +∞− (+∞) and −∞− (−∞)
are indeterminate; large numbers of opposite sign are subtracted, and more information about the sizes is needed.

54. (a) When the limit takes the form 0/0 or ∞/∞.

(b) Not necessarily; only if lim
x→a

f(x) = 0. Consider g(x) = x; lim
x→0

g(x) = 0. Then lim
x→0

cosx

x
is not indeterminate,

whereas lim
x→0

sinx

x
is indeterminate.

55. lim
x→+∞

(ex− x2) = lim
x→+∞

x2(ex/x2− 1), but lim
x→+∞

ex

x2
= lim
x→+∞

ex

2x
= lim
x→+∞

ex

2
= +∞, so lim

x→+∞
(ex/x2− 1) = +∞

and thus lim
x→+∞

x2(ex/x2 − 1) = +∞.

56. lim
x→1

lnx

x4 − 1
= lim
x→1

1/x

4x3
=

1

4
; lim
x→1

√
lnx

x4 − 1
=

√
lim
x→1

lnx

x4 − 1
=

1

2
.

57. lim
x→0

x2ex

sin2 3x
=

[
lim
x→0

3x

sin 3x

]2 [
lim
x→0

ex

9

]
=

1

9
.

58. lim
x→0

ax ln a = ln a.

59. The boom is pulled in at the rate of 5 m/min, so the circumference C = 2rπ is changing at this rate, which means

that
dr

dt
=
dC

dt
· 1

2π
= −5/(2π). A = πr2 and

dr

dt
= −5/(2π), so

dA

dt
=
dA

dr

dr

dt
= 2πr(−5/2π) = −250, so the area

is shrinking at a rate of 250 m2/min.

60. Find
dθ

dt

∣∣∣∣
x=1
y=1

given
dz

dt
= a and

dy

dt
= −b. From the figure sin θ = y/z; when x = y = 1, z =

√
2. So θ = sin−1(y/z)

and
dθ

dt
=

1√
1− y2/z2

(
1

z

dy

dt
− y

z2

dz

dt

)
= −b− a√

2
when x = y = 1.

y

x

z

θ

61. (a) ∆x = 1.5− 2 = −0.5; dy =
−1

(x− 1)2
∆x =

−1

(2− 1)2
(−0.5) = 0.5; and ∆y =

1

(1.5− 1)
− 1

(2− 1)
= 2− 1 = 1.

(b) ∆x = 0− (−π/4) = π/4; dy =
(
sec2(−π/4)

)
(π/4) = π/2; and ∆y = tan 0− tan(−π/4) = 1.

(c) ∆x = 3− 0 = 3; dy =
−x√

25− x2
=

−0√
25− (0)2

(3) = 0; and ∆y =
√

25− 32 −
√

25− 02 = 4− 5 = −1.
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62. cot 46◦ = cot
46π

180
; let x0 =

π

4
and x =

46π

180
. Then

cot 46◦ = cotx ≈ cot
π

4
−
(

csc2 π

4

)(
x− π

4

)
= 1− 2

(
46π

180
− π

4

)
= 0.9651; with a calculator, cot 46◦ = 0.9657.

63. (a) h = 115 tanφ, dh = 115 sec2 φdφ; with φ = 51◦ =
51

180
π radians and dφ = ±0.5◦ = ±0.5

( π

180

)
radians,

h± dh = 115(1.2349)± 2.5340 = 142.0135± 2.5340, so the height lies between 139.48 m and 144.55 m.

(b) If |dh| ≤ 5 then |dφ| ≤ 5

115
cos2 51

180
π ≈ 0.017 radian, or |dφ| ≤ 0.98◦.

Chapter 3 Making Connections

1. (a) If t > 0 then A(−t) is the amount K there was t time-units ago in order that there be 1 unit now, i.e.

K ·A(t) = 1, so K =
1

A(t)
. But, as said above, K = A(−t). So A(−t) =

1

A(t)
.

(b) If s and t are positive, then the amount 1 becomes A(s) after s seconds, and that in turn is A(s)A(t)
after another t seconds, i.e. 1 becomes A(s)A(t) after s + t seconds. But this amount is also A(s + t), so
A(s)A(t) = A(s+t). Now if 0 ≤ −s ≤ t then A(−s)A(s+t) = A(t). From the first case, we get A(s+t) = A(s)A(t).

If 0 ≤ t ≤ −s then A(s + t) =
1

A(−s− t) =
1

A(−s)A(−t) = A(s)A(t) by the previous cases. If s and t are both

negative then by the first case, A(s+ t) =
1

A(−s− t) =
1

A(−s)A(−t) = A(s)A(t).

(c) If n > 0 then A

(
1

n

)
A

(
1

n

)
. . . A

(
1

n

)
= A

(
n

1

n

)
= A(1), so A

(
1

n

)
= A(1)1/n = b1/n from part (b). If

n < 0 then by part (a), A

(
1

n

)
=

1

A
(
− 1
n

) =
1

A(1)−1/n
= A(1)1/n = b1/n.

(d) Let m,n be integers. Assume n 6= 0 and m > 0. Then A
(m
n

)
= A

(
1

n

)m
= A(1)m/n = bm/n.

(e) If f, g are continuous functions of t and f and g are equal on the rational numbers
{m
n

: n 6= 0
}

, then

f(t) = g(t) for all t. Because if x is irrational, then let tn be a sequence of rational numbers which converges to
x. Then for all n > 0, f(tn) = g(tn) and thus f(x) = lim

n→+∞
f(tn) = lim

n→+∞
g(tn) = g(x) .

2. (a) From Figure 1.3.4 it is evident that (1+h)1/h < e < (1−h)−1/h provided h > 0, and (1−h)−1/h < e < (1+h)1/h

for h < 0.

(b) Suppose h > 0. Then (1 + h)1/h < e < (1 − h)−1/h. Raise to the power h: 1 + h < eh < 1/(1 − h);h <

eh− 1 < h/(1− h); 1 <
eh − 1

h
< 1/(1− h); use the Squeezing Theorem as h→ 0+. Use a similar argument in the

case h < 0.

(c) The quotient
eh − 1

h
is the slope of the secant line through (0, 1) and (h, eh), and this secant line converges

to the tangent line as h→ 0.

(d)
d

dx
ex = lim

h→0

ex+h − ex
h

= ex lim
h→0

eh − 1

h
= ex from part (b).



The Derivative in Graphing and Applications

Exercise Set 4.1

1. (a) f ′ > 0 and f ′′ > 0.

y

x

(b) f ′ > 0 and f ′′ < 0.

y

x

(c) f ′ < 0 and f ′′ > 0.

y

x

(d) f ′ < 0 and f ′′ < 0.

y

x

2. (a)

y

x

(b)

y

x

(c)

y

x

(d)

y

x

3. A: dy/dx < 0, d2y/dx2 > 0, B: dy/dx > 0, d2y/dx2 < 0, C: dy/dx < 0, d2y/dx2 < 0.

4. A: dy/dx < 0, d2y/dx2 < 0, B: dy/dx < 0, d2y/dx2 > 0, C: dy/dx > 0, d2y/dx2 < 0.

5. An inflection point occurs when f ′′ changes sign: at x = −1, 0, 1 and 2.

6. (a) f(0) < f(1) since f ′ > 0 on (0, 1).

(b) f(1) > f(2) since f ′ < 0 on (1, 2).

(c) f ′(0) > 0 by inspection.

(d) f ′(1) = 0 by inspection.

(e) f ′′(0) < 0 since f ′ is decreasing there.

(f) f ′′(2) = 0 since f ′ has a minimum there.

153
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7. (a) [4, 6] (b) [1, 4] and [6, 7]. (c) (1, 2) and (3, 5). (d) (2, 3) and (5, 7). (e) x = 2, 3, 5.

8. (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7)

f ′ − − − + + −
f ′′ + − + + − −

9. (a) f is increasing on [1, 3].

(b) f is decreasing on (−∞, 1], [3,+∞).

(c) f is concave up on (−∞, 2), (4,+∞).

(d) f is concave down on (2, 4).

(e) Points of inflection at x = 2, 4.

10. (a) f is increasing on (−∞,+∞).

(b) f is nowhere decreasing.

(c) f is concave up on (−∞, 1), (3,+∞).

(d) f is concave down on (1, 3).

(e) f has points of inflection at x = 1, 3.

11. True, by Definition 4.1.1(b).

12. False. Let f(x) = (2x − 1)2. Then f ′(x) = 4(2x − 1) so f ′(1) = 4 > 0. But f(0) = 1 > 0 = f( 1
2 ), so f is not

increasing on [0, 2].

13. False. Let f(x) = (x− 1)3. Then f is increasing on [0, 2], but f ′(1) = 0.

14. True. Since f ′ is defined everywhere in [0, 2], f is continuous on (0, 2). Since f ′ is increasing on (0, 1), f is concave
up there. Since f ′ is decreasing on (1, 2), f is concave down there. So f satisfies all the conditions of Definition
4.1.5, and has an inflection point at x = 1.

15. f ′(x) = 2(x− 3/2), f ′′(x) = 2.

(a) [3/2,+∞) (b) (−∞, 3/2] (c) (−∞,+∞) (d) nowhere (e) none

16. f ′(x) = −2(2 + x), f ′′(x) = −2.

(a) (−∞,−2] (b) [−2,+∞) (c) nowhere (d) (−∞,+∞) (e) none

17. f ′(x) = 6(2x+ 1)2, f ′′(x) = 24(2x+ 1).

(a) (−∞,+∞) (b) nowhere (c) (−1/2,+∞) (d) (−∞,−1/2) (e) −1/2

18. f ′(x) = 3(4− x2), f ′′(x) = −6x.

(a) [−2, 2] (b) (−∞,−2], [2,+∞) (c) (−∞, 0) (d) (0,+∞) (e) 0

19. f ′(x) = 12x2(x− 1), f ′′(x) = 36x(x− 2/3).

(a) [1,+∞) (b) (−∞, 1] (c) (−∞, 0), (2/3,+∞) (d) (0, 2/3) (e) 0, 2/3

20. f ′(x) = x(4x2 − 15x+ 18), f ′′(x) = 6(x− 1)(2x− 3).

(a) [0,+∞) (b) (−∞, 0] (c) (−∞, 1), (3/2,+∞) (d) (1, 3/2) (e) 1, 3/2



Exercise Set 4.1 155

21. f ′(x) = −3(x2 − 3x+ 1)

(x2 − x+ 1)3
, f ′′(x) =

6x(2x2 − 8x+ 5)

(x2 − x+ 1)4
.

(a)

[
3−
√

5

2
,

3 +
√

5

2

]
(b)

(
−∞, 3−

√
5

2

]
,

[
3 +
√

5

2
,+∞

)
(c)

(
0, 2−

√
6

2

)
,

(
2 +

√
6

2
,+∞

)

(d) (−∞, 0),

(
2−
√

6

2
, 2 +

√
6

2

)
(e) 0, 2−

√
6

2
, 2 +

√
6

2

22. f ′(x) =
2− x2

(x2 + 2)2
f ′′(x) =

2x(x2 − 6)

(x2 + 2)3
.

(a) (−
√

2,
√

2) (b) (−∞,−
√

2), (
√

2,+∞) (c) (−
√

6, 0), (
√

6,+∞) (d) (−∞,−
√

6), (0,
√

6) (e) 0, ±
√

6

23. f ′(x) =
2x+ 1

3(x2 + x+ 1)2/3
, f ′′(x) = − 2(x+ 2)(x− 1)

9(x2 + x+ 1)5/3
.

(a) [−1/2,+∞) (b) (−∞,−1/2] (c) (−2, 1) (d) (−∞,−2), (1,+∞) (e) −2, 1

24. f ′(x) =
4(x− 1/4)

3x2/3
, f ′′(x) =

4(x+ 1/2)

9x5/3
.

(a) [1/4,+∞) (b) (−∞, 1/4] (c) (−∞,−1/2), (0,+∞) (d) (−1/2, 0) (e) −1/2, 0

25. f ′(x) =
4(x2/3 − 1)

3x1/3
, f ′′(x) =

4(x5/3 + x)

9x7/3
.

(a) [−1, 0], [1,+∞) (b) (−∞,−1], [0, 1] (c) (−∞, 0), (0,+∞) (d) nowhere (e) none

26. f ′(x) =
2

3
x−1/3 − 1, f ′′(x) = −2

9
x−4/3.

(a) [0, 8/27] (b) (−∞, 0], [8/27,+∞) (c) nowhere (d) (−∞, 0), (0,+∞) (e) none

27. f ′(x) = −xe−x2/2, f ′′(x) = (−1 + x2)e−x
2/2.

(a) (−∞, 0] (b) [0,+∞) (c) (−∞,−1), (1,+∞) (d) (−1, 1) (e) −1, 1

28. f ′(x) = (2x2 + 1)ex
2

, f ′′(x) = 2x(2x2 + 3)ex
2

.

(a) (−∞,+∞) (b) none (c) (0,+∞) (d) (−∞, 0) (e) 0

29. f ′(x) =
x

x2 + 4
, f ′′(x) = − x2 − 4

(x2 + 4)2
.

(a) [0,+∞) (b) (−∞, 0] (c) (−2, 2) (d) (−∞,−2), (2,+∞) (e) −2, 2

30. f ′(x) = x2(1 + 3 lnx), f ′′(x) = x(5 + 6 lnx).

(a) [e−1/3,+∞) (b) (0, e−1/3] (c) (e−5/6,+∞) (d) (0, e−5/6) (e) e−5/6

31. f ′(x) =
2x

1 + (x2 − 1)2
, f ′′(x) = −2

3x4 − 2x2 − 2

[1 + (x2 − 1)2]2
.

(a) [0+∞) (b) (−∞, 0] (c)

(
−
√

1 +
√

7√
3

,

√
1 +
√

7√
3

)
(d)

(
−∞,−

√
1 +
√

7√
3

)
,

(√
1 +
√

7√
3

,+∞
)

(e) ±
√

1 +
√

7

3
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32. f ′(x) =
2

3x1/3
√

1− x4/3
, f ′′(x) =

2
(
−1 + 3x4/3

)

9x4/3
(
1− x4/3

)3/2 .

(a) [0, 1] (b) [−1, 0] (c) (−1,−3−3/4), (3−3/4, 1) (d) (−3−3/4, 0), (0, 3−3/4) (e) ±3−3/4

33. f ′(x) = cosx+ sinx, f ′′(x) = − sinx+ cosx, increasing: [−π/4, 3π/4], decreasing: (−π,−π/4], [3π/4, π), concave
up: (−3π/4, π/4), concave down: (−π,−3π/4), (π/4, π), inflection points: −3π/4, π/4.

1.5

–1.5

C c

34. f ′(x) = (2 tan2 x+1) secx, f ′′(x) = secx tanx(6 tan2 x+5), increasing: (−π/2, π/2), decreasing: nowhere, concave
up: (0, π/2), concave down: (−π/2, 0), inflection point: 0.

10

–10

^ 6

35. f ′(x) = −1

2
sec2(x/2), f ′′(x) = −1

2
tan(x/2) sec2(x/2)), increasing: nowhere, decreasing: (−π, π), concave up:

(−π, 0), concave down: (0, π), inflection point: 0.

10

–10

C c

36. f ′(x) = 2− csc2 x, f ′′(x) = 2 csc2 x cotx = 2
cosx

sin3 x
, increasing: [π/4, 3π/4], decreasing: (0, π/4], [3π/4, π), concave

up: (0, π/2), concave down: (π/2, π), inflection point: π/2.

8

–2

0 p

37. f(x) = 1 + sin 2x, f ′(x) = 2 cos 2x, f ′′(x) = −4 sin 2x, increasing: [−π,−3π/4], [−π/4, π/4], [3π/4, π], decreasing:
[−3π/4,−π/4], [π/4, 3π/4], concave up: (−π/2, 0), (π/2, π), concave down: (−π,−π/2), (0, π/2), inflection points:
−π/2, 0, π/2.
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2

0
C c

38. f ′(x) = 2 sin 4x, f ′′(x) = 8 cos 4x, increasing: (0, π/4], [π/2, 3π/4], decreasing: [π/4, π/2], [3π/4, π], concave up:
(0, π/8), (3π/8, 5π/8), (7π/8, π), concave down: (π/8, 3π/8), (5π/8, 7π/8), inflection points: π/8, 3π/8, 5π/8,
7π/8.

1

0
0 p

39. (a) 2

4

x

y

(b) 2

4

x

y

(c) 2

4

x

y

40. (a) 2

4

x

y

(b) 2

4

x

y

(c) 2

4

x

y

41. f ′(x) = 1/3−1/[3(1+x)2/3] so f is increasing on [0,+∞), thus if x > 0, then f(x) > f(0) = 0, 1+x/3− 3
√

1 + x > 0,
3
√

1 + x < 1 + x/3.

2.5

0
0 10

42. f ′(x) = sec2 x − 1 so f is increasing on [0, π/2), thus if 0 < x < π/2, then f(x) > f(0) = 0, tanx − x > 0,
x < tanx.
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10

0
0 6

43. x ≥ sinx on [0,+∞): let f(x) = x − sinx. Then f(0) = 0 and f ′(x) = 1 − cosx ≥ 0, so f(x) is increasing on
[0,+∞). (f ′ = 0 only at isolated points.)

4

–1

0 4

44. Let f(x) = 1−x2/2− cosx for x ≥ 0. Then f(0) = 0 and f ′(x) = −x+ sinx. By Exercise 43, f ′(x) ≤ 0 for x ≥ 0,
so f(x) ≤ 0 for all x ≥ 0, that is, cosx ≥ 1− x2/2.

45. (a) Let f(x) = x− ln(x+ 1) for x ≥ 0. Then f(0) = 0 and f ′(x) = 1− 1/(x+ 1) > 0 for x > 0, so f is increasing
for x ≥ 0 and thus ln(x+ 1) ≤ x for x ≥ 0.

(b) Let g(x) = x− 1

2
x2 − ln(x+ 1). Then g(0) = 0 and g′(x) = 1− x− 1/(x+ 1) < 0 for x > 0 since 1− x2 ≤ 1.

Thus g is decreasing and thus ln(x+ 1) ≥ x− 1

2
x2 for x ≥ 0.

(c)

2

0
0 2

1.2

0
0 2

46. (a) Let h(x) = ex − 1− x for x ≥ 0. Then h(0) = 0 and h′(x) = ex − 1 > 0 for x > 0, so h(x) is increasing.

(b) Let h(x) = ex − 1− x− 1

2
x2. Then h(0) = 0 and h′(x) = ex − 1− x. By part (a), ex − 1− x > 0 for x > 0,

so h(x) is increasing.

(c)

6

0
0 2

6

0
0 2

47. Points of inflection at x = −2,+2. Concave up on (−5,−2) and (2, 5); concave down on (−2, 2). Increasing on
[−3.5829, 0.2513] and [3.3316, 5], and decreasing on [−5,−3.5829] and [0.2513, 3.3316].
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250

–250

–5 5

48. Points of inflection at x = ±1/
√

3. Concave up on (−5,−1/
√

3) and (1/
√

3, 5), and concave down on (−1/
√

3, 1/
√

3).
Increasing on [−5, 0] and decreasing on [0, 5].

1

–2

–5 5

49. f ′′(x) = 2
90x3 − 81x2 − 585x+ 397

(3x2 − 5x+ 8)3
. The denominator has complex roots, so is always positive; hence the x-

coordinates of the points of inflection of f(x) are the roots of the numerator (if it changes sign). A plot of
the numerator over [−5, 5] shows roots lying in [−3,−2], [0, 1], and [2, 3]. To six decimal places the roots are
x ≈ −2.464202, 0.662597, 2.701605.

50. f ′′(x) =
2x5 + 5x3 + 14x2 + 30x− 7

(x2 + 1)5/2
. Points of inflection will occur when the numerator changes sign, since the

denominator is always positive. A plot of y = 2x5 + 5x3 + 14x2 + 30x− 7 shows that there is only one root and it
lies in [0, 1]. To six decimal place the point of inflection is located at x ≈ 0.210970.

51. f(x1)− f(x2) = x2
1 − x2

2 = (x1 + x2)(x1 − x2) < 0 if x1 < x2 for x1, x2 in [0,+∞), so f(x1) < f(x2) and f is thus
increasing.

52. f(x1)−f(x2) =
1

x1
− 1

x2
=
x2 − x1

x1x2
> 0 if x1 < x2 for x1, x2 in (0,+∞), so f(x1) > f(x2) and thus f is decreasing.

53. (a) True. If x1 < x2 where x1 and x2 are in I, then f(x1) < f(x2) and g(x1) < g(x2), so f(x1) + g(x1) <
f(x2) + g(x2), (f + g)(x1) < (f + g)(x2). Thus f + g is increasing on I.

(b) False. If f(x) = g(x) = x then f and g are both increasing on (−∞, 0), but (f ·g)(x) = x2 is decreasing there.

54. (a) True. f ′ and g′ are increasing functions on the interval. By Exercise 53, f ′ + g′ is increasing.

(b) False. Let f(x) = (x − 1)2 and g(x) = (x + 1)2. Each is concave up on (−∞,+∞), but their product,
(f ·g)(x) = (x2−1)2 is not; (f ·g)′′(x) = 4(3x2−1) < 0 for |x| < 1/

√
3, so f ·g is concave down in (−1/

√
3, 1/
√

3).

55. (a) f(x) = x, g(x) = 2x (b) f(x) = x, g(x) = x+ 6 (c) f(x) = 2x, g(x) = x

56. (a) f(x) = ex, g(x) = e2x (b) f(x) = g(x) = ex (c) f(x) = e2x, g(x) = ex

57. (a) f ′′(x) = 6ax+ 2b = 6a

(
x+

b

3a

)
, f ′′(x) = 0 when x = − b

3a
. f changes its direction of concavity at x = − b

3a

so − b

3a
is an inflection point.
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(b) If f(x) = ax3 + bx2 + cx+d has three x-intercepts, then it has three roots, say x1, x2 and x3, so we can write
f(x) = a(x − x1)(x − x2)(x − x3) = ax3 + bx2 + cx + d, from which it follows that b = −a(x1 + x2 + x3). Thus

− b

3a
=

1

3
(x1 + x2 + x3), which is the average.

(c) f(x) = x(x2 − 3x + 2) = x(x − 1)(x − 2) so the intercepts are 0, 1, and 2 and the average is 1. f ′′(x) =
6x− 6 = 6(x− 1) changes sign at x = 1. The inflection point is at (1,0). f is concave up for x > 1, concave down
for x < 1.

58. f ′′(x) = 6x+ 2b, so the point of inflection is at x = − b
3

. Thus an increase in b moves the point of inflection to the

left.

59. (a) Let x1 < x2 belong to (a, b). If both belong to (a, c] or both belong to [c, b) then we have f(x1) < f(x2) by
hypothesis. So assume x1 < c < x2. We know by hypothesis that f(x1) < f(c), and f(c) < f(x2). We conclude
that f(x1) < f(x2).

(b) Use the same argument as in part (a), but with inequalities reversed.

60. By Theorem 4.1.2, f is increasing on any interval [(2n − 1)π, 2(n + 1)π] (n = 0,±1,±2, . . .), because f ′(x) =
1 + cosx > 0 on ((2n− 1)π, (2n+ 1)π). By Exercise 59 (a) we can piece these intervals together to show that f(x)
is increasing on (−∞,+∞).

61. By Theorem 4.1.2, f is decreasing on any interval [(2nπ + π/2, 2(n + 1)π + π/2] (n = 0,±1,±2, . . .), because
f ′(x) = − sinx+ 1 < 0 on (2nπ + π/2, 2(n+ 1)π + π/2). By Exercise 59 (b) we can piece these intervals together
to show that f(x) is decreasing on (−∞,+∞).

62. By zooming in on the graph of
dy

dx
= − 2x

(1 + x2)2
, we find that the maximum increase is at x ≈ −0.577 and the

maximum decrease is at x ≈ 0.577. Using methods introduced in Section 4.4, it can be shown that the maximum
increase is at x = −1/

√
3 and the maximum decrease is at x = 1/

√
3.

63.
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63.

t

y

1

2 Inflection
point

65.

t

y

1

2

3

4
Concave
up

Concave
down

67. (a)
LAk

(1 + A)2

(c)
1
k

ln A

69. the eighth day

150
0

1000

! Exercise Set 4.2 (Page 000)
1. (a)

x

f (x)

y (b)

f (x)
x

y

(c)

f (x)
x

y (d)

x

y

f (x)

5. (b) nothing (c) f has a relative minimum at x = 1,
g has no relative extremum at x = 1.

7. critical: 0, ±
√

2; stationary: 0, ±
√

2
9. critical: −3, 1; stationary: −3, 1 11. critical: 0, ±5; stationary: 0

13. critical: nπ/2 for every integer n;
stationary: nπ+ π/2 for every integer n

Responses to True–False questions may be abridged to save space.
15. False; for example, f(x) = (x − 1)2(x − 1.5) has a relative maximum

at x = 1, but f(2) = 0.5 > 0 = f(1).
17. False; to apply the second derivative test (Theorem 4.2.4) at x = 1,

f ′(1) must equal 0.
19.

−2 6

x

y

 f ′  f ′′
21. (a) none (b) x = 1 (c) none

(d)

1
x

y

23. (a) 2 (b) 0 (c) 1, 3
(d)

4321
x

y

25. 0 (neither), 3√5 (min) 27. −2 (min), 2/3 (max) 29. 0 (min)
31. −1 (min), 1 (max) 33. relative maximum at (4/3, 19/3)
35. relative maximum at (π/4, 1); relative minimum at (3π/4, −1)
37. relative maximum at (1, 1); relative minima at (0, 0), (2, 0)
39. relative maximum at (−1, 0); relative minimum at (−3/5, −108/3125)

41. relative maximum at (−1, 1); relative minimum at (0, 0)
43. no relative extrema 45. relative minimum at (0, ln 2)
47. relative minimum at (− ln 2, −1/4)
49. relative maximum at (3/2, 9/4); relative minima at (0, 0), (3, 0)
51. intercepts: (0, −4), (−1, 0), (4, 0);

stationary point: (3/2, −25/4) (min);
inflection points: none −2 1 3 5

−6

−4

2
x

y

!    , −     "3
2

25
4

53. intercepts: (0, 5),

(
−7 ±

√
57

4
, 0

)

, (5, 0);

stationary points: (−2, 49)
(max), (3, −76) (min);

inflection point: (1/2, −27/2)

−80

2 4

x

y
(−2, 49)

(3, −76)

!    , −     "1
2

27
2

!              , 0"−7 − √57
4

!              , 0"−7 + √57
4

55. intercepts: (−1, 0), (0, 0), (2, 0);
stationary points: (−1, 0) (max),(

1 −
√

3
2

,
9 − 6

√
3

4

)

(min),

(
1 +

√
3

2
,

9 + 6
√

3
4

)

(max);

inflection points:
(

− 1√
2
,

5
4

−
√

2
)

,
(

1√
2
,

5
4

+
√

2
)

,

−1 1

1

3

5
y

x

!           ,              "1 − √3
2

9 − 6√3
4

!           ,              "1 + √3
2

9 + 6√3
4

!−      ,     − √2 "1

√2
5
4

!      ,     + √2 "1

√2
5
4

57. intercepts: (0, −1), (−1, 0), (1, 0);
stationary points: (−1/2, −27/16) (min),
(1, 0) (neither);
inflection points: (0, −1), (1, 0)

−1 1

−1

0.5

1.5

x

y

!−    , −      "1
2

27
16

59. intercepts: (−1, 0), (0, 0), (1, 0);
stationary points: (−1, 0) (max),(

− 1√
5
, − 16

25
√

5

)
(min),

(
1√
5
,

16

25
√

5

)
(max), (1, 0) (min);

inflection points:

(

−
√

3
5
, − 4

25

√
3
5

)

,

(0, 0),

(√
3
5
,

4
25

√
3
5

)
1

0.2

0.4

x

y

!−       , −         "1

√5
16

25√5

!      ,          "1

√5
16

25√5

!       ,             "4
25

3
5√ 3

5√

!−       , −           "4
25

3
5√ 3

5√

64.
t

1

2

y

no infl pts

65.

y

x

infl pts

1

2

3

4
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66.

y

x

infl pts

1

2

3

4

67. (a) y′(t) =
LAke−kt

(1 +Ae−kt)2
S, so y′(0) =

LAk

(1 +A)2
.

(b) The rate of growth increases to its maximum, which occurs when y is halfway between 0 and L, or when

t =
1

k
lnA; it then decreases back towards zero.

(c) From (2) one sees that
dy

dt
is maximized when y lies half way between 0 and L, i.e. y = L/2. This follows

since the right side of (2) is a parabola (with y as independent variable) with y-intercepts y = 0, L. The value

y = L/2 corresponds to t =
1

k
lnA, from (4).

68. Find t so that N ′(t) is maximum. The size of the population is increasing most rapidly when t = 8.4 years.

69. t ≈ 7.67

1000

0
0 15

70. Factor the left side of yekt + Ay = Lekt to get
(
ekt +A

)
y = Lekt. Differentiating with respect to t gives

(
ekt +A

) dy
dt

+ kekty = kLekt, so
dy

dt
=
kLekt − kekty

ekt +A
=
kekt(L− y)

Lekt/y
=
k

L
y(L− y). Differentiating again, we get

d2y

dt2
=
k

L

[
y

(
−dy
dt

)
+ (L− y)

dy

dt

]
=
k

L
(L− 2y)

dy

dt
=
k

L
(L− 2y) · k

L
y(L− y) =

k2

L2
y(L− y)(L− 2y).

71. Since 0 < y < L the right-hand side of (5) of Example 9 can change sign only if the factor L − 2y changes sign,

which it does when y = L/2, at which point we have
L

2
=

L

1 +Ae−kt
, 1 = Ae−kt, t =

1

k
lnA.

72. “Either the rate at which the temperature is falling decreases for a while and then begins to increase, or it
increases for a while and then begins to decrease”. If T (t) is the temperature at time t, then the rate at which
the temperature is falling is −T ′(t). If this is decreasing then T ′(t) is increasing, so T (t) is concave up; if it’s
increasing then T ′(t) is decreasing, so T (t) is concave down. When −T ′(t) changes from decreasing to increasing
or vice versa, the direction of concavity of T (t) changes, so the graph of the temperature has an inflection point.

73. Sign analysis of f ′(x) tells us where the graph of y = f(x) increases or decreases. Sign analysis of f ′′(x) tells us
where the graph of y = f(x) is concave up or concave down.
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Exercise Set 4.2

1. (a)

f (x)

x

y

(b)

f (x)

x

y

(c)

f (x)

x

y

(d)

f (x)
x

y

2. (a)

y

x
(b)

y

x

(c)

y

x

(d)

y

x

3. (a) f ′(x) = 6x − 6 and f ′′(x) = 6, with f ′(1) = 0. For the first derivative test, f ′ < 0 for x < 1 and f ′ > 0 for
x > 1. For the second derivative test, f ′′(1) > 0.

(b) f ′(x) = 3x2 − 3 and f ′′(x) = 6x. f ′(x) = 0 at x = ±1. First derivative test: f ′ > 0 for x < −1 and x > 1,
and f ′ < 0 for −1 < x < 1, so there is a relative maximum at x = −1, and a relative minimum at x = 1. Second
derivative test: f ′′ < 0 at x = −1, a relative maximum; and f ′′ > 0 at x = 1, a relative minimum.

4. (a) f ′(x) = 2 sinx cosx = sin 2x (so f ′(0) = 0) and f ′′(x) = 2 cos 2x. First derivative test: if x is near 0 then
f ′ < 0 for x < 0 and f ′ > 0 for x > 0, so a relative minimum at x = 0. Second derivative test: f ′′(0) = 2 > 0, so
relative minimum at x = 0.

(b) g′(x) = 2 tanx sec2 x (so g′(0) = 0) and g′′(x) = 2 sec2 x(sec2 x+ 2 tan2 x). First derivative test: if x is near 0,
then g′ < 0 for x < 0 and g′ > 0 for x > 0, so a relative minimum at x = 0. Second derivative test: g′′(0) = 2 > 0,
relative minimum at x = 0.

(c) Both functions are squares of nonzero values when x is close to 0 but x 6= 0, and so are positive for values of
x near zero; both functions are zero at x = 0, so that must be a relative minimum.

5. (a) f ′(x) = 4(x− 1)3, g′(x) = 3x2 − 6x+ 3 so f ′(1) = g′(1) = 0.

(b) f ′′(x) = 12(x− 1)2, g′′(x) = 6x− 6, so f ′′(1) = g′′(1) = 0, which yields no information.

(c) f ′ < 0 for x < 1 and f ′ > 0 for x > 1, so there is a relative minimum at x = 1; g′(x) = 3(x− 1)2 > 0 on both
sides of x = 1, so there is no relative extremum at x = 1.
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6. (a) f ′(x) = −5x4, g′(x) = 12x3 − 24x2 so f ′(0) = g′(0) = 0.

(b) f ′′(x) = −20x3, g′′(x) = 36x2 − 48x, so f ′′(0) = g′′(0) = 0, which yields no information.

(c) f ′ < 0 on both sides of x = 0, so there is no relative extremum there; g′(x) = 12x2(x− 2) < 0 on both sides
of x = 0 (for x near 0), so again there is no relative extremum there.

7. f ′(x) = 16x3 − 32x = 16x(x2 − 2), so x = 0,±
√

2 are stationary points.

8. f ′(x) = 12x3 + 12 = 12(x+ 1)(x2 − x+ 1), so x = −1 is the stationary point.

9. f ′(x) =
−x2 − 2x+ 3

(x2 + 3)2
, so x = −3, 1 are the stationary points.

10. f ′(x) = −x(x3 − 16)

(x3 + 8)2
, so stationary points at x = 0, 24/3.

11. f ′(x) =
2x

3(x2 − 25)2/3
; so x = 0 is the stationary point; x = ±5 are critical points which are not stationary points.

12. f ′(x) =
2x(4x− 3)

3(x− 1)1/3
, so x = 0, 3/4 are the stationary points; x = 1 is a critical point which is not a stationary

point.

13. f(x) = | sinx| =

{
sinx, sinx ≥ 0
− sinx, sinx < 0

, so f ′(x) =

{
cosx, sinx > 0
− cosx, sinx < 0

and f ′(x) does not exist when x =

nπ, n = 0,±1,±2, . . . (the points where sinx = 0) because lim
x→nπ−

f ′(x) 6= lim
x→nπ+

f ′(x) (see Theorem preceding

Exercise 65, Section 2.3); these are critical points which are not stationary points. Now f ′(x) = 0 when ± cosx = 0
provided sinx 6= 0 so x = π/2 + nπ, n = 0,±1,±2, . . . are stationary points.

14. When x > 0, f ′(x) = cosx, so x = (n+ 1
2 )π, n = 0, 1, 2, . . . are stationary points.

When x < 0, f ′(x) = − cosx, so x = (n+ 1
2 )π, n = −1,−2,−3, . . . are stationary points.

f is not differentiable at x = 0, so the latter is a critical point but not a stationary point.

15. False. Let f(x) = (x− 1)2(2x− 3). Then f ′(x) = 2(x− 1)(3x− 4); f ′(x) changes sign from + to − at x = 1, so f
has a relative maximum at x = 1. But f(2) = 1 > 0 = f(1).

16. True, by Theorem 4.2.2.

17. False. Let f(x) = x + (x− 1)2. Then f ′(x) = 2x − 1 and f ′′(x) = 2, so f ′′(1) > 0. But f ′(1) = 1 6= 0, so f does
not have a relative extremum at x = 1.

18. True. By Theorem 4.2.5(c), the graph of p′(x) crosses the x-axis at x = 1. By either case (a) or case (b) of
Theorem 4.2.3, f has either a relative maximum or a relative minimum at x = 1.

19.

-1 1 2 3 4 5

x

y
y=f (x)’

-1 1 2 3 4 5

x

y
y=f  (x)’’
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20.

2 3 8

x

y
y=f (x)’

1 2 3 4 5 6 7 8

x

y

y=f  (x)’’

21. (a) None.

(b) x = 1 because f ′ changes sign from + to − there.

(c) None, because f ′′ = 0 (never changes sign).

(d)
1

x

y

22. (a) x = 1 because f ′(x) changes sign from − to + there.

(b) x = 3 because f ′(x) changes sign from + to − there.

(c) x = 2 because f ′′(x) changes sign there.

(d)
1 3

x

y

23. (a) x = 2 because f ′(x) changes sign from − to + there.

(b) x = 0 because f ′(x) changes sign from + to − there.

(c) x = 1, 3 because f ′′(x) changes sign at these points.

(d)

1 2 3 4

x

y

24. (a) x = 1. (b) x = 5. (c) x = −1, 0, 3.
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(d) -1 1 2 3 4 5

x

y

25. f ′:

00

51/30

– –– –– ++ +–

Critical points: x = 0, 51/3; x = 0: neither, x = 51/3: relative minimum.

26. f ′:

00 0

0 3/2–3/2

+ –+ –+– –– – + ++

Critical points: x = −3/2, 0, 3/2; x = −3/2: relative minimum, x = 0:
relative maximum, x = 3/2: relative minimum.

27. f ′:

0 

2/3–2

– +– +– –– –+!

Critical points: x = −2, 2/3; x = −2: relative minimum, x = 2/3: relative maximum.

28. f ′:

00+ –+ –+ ++ +–

–   7 7 Critical points: x = ±
√

7; x = −
√

7: relative maximum, x =
√

7: relative minimum.

29. f ′:

0

0

– +– +– +

Critical point: x = 0; x = 0: relative minimum.

30. f ′:

00

ln 30

– –– –– ++ +–

Critical points: x = 0, ln 3; x = 0: neither, x = ln 3: relative minimum.

31. f ′:

00

1–1

– +– +– –– –+

Critical points: x = −1, 1; x = −1: relative minimum, x = 1: relative maximum.

32. f ′:

00

ln 3ln 2

+ –+ –+ ++ +–

Critical points: x = ln 2, ln 3; x = ln 2: relative maximum, x = ln 3: relative minimum.

33. f ′(x) = 8− 6x: critical point x = 4/3, f ′′(4/3) = −6 : f has a relative maximum of 19/3 at x = 4/3.

34. f ′(x) = 4x3 − 36x2: critical points at x = 0, 9, f ′′(0) = 0: Theorem 4.2.5 with m = 3: f has an inflection point at
x = 0, f ′′(9) > 0: f has a relative minimum of −2187 at x = 9.

35. f ′(x) = 2 cos 2x: critical points at x = π/4, 3π/4, f ′′(π/4) = −4: f has a relative maximum of 1 at x = π/4,
f ′′(3π/4) = 4 : f has a relative minimum of -1 at x = 3π/4.

36. f ′(x) = (x− 2)ex: critical point at x = 2, f ′′(2) = e2 : f has a relative minimum of −e2 at x = 2.

37. f ′(x) = 4x3 − 12x2 + 8x:

00 0

1 20

+ –+ –+– –– – + ++

Critical points at x = 0, 1, 2; relative minimum
of 0 at x = 0, relative maximum of 1 at x = 1, relative minimum of 0 at x = 2.

38. f ′(x) = 4x3 − 36x2 + 96x− 64; critical points at x = 1, 4, f ′′(1) = 36: f has a relative minimum of −27 at x = 1,
f ′′(4) = 0: Theorem 4.2.5 with m = 3: f has an inflection point at x = 4.

39. f ′(x) = 5x4 + 8x3 + 3x2: critical points at x = −3/5,−1, 0, f ′′(−3/5) = 18/25 : f has a relative minimum of
−108/3125 at x = −3/5, f ′′(−1) = −2 : f has a relative maximum of 0 at x = −1, f ′′(0) = 0: Theorem 4.2.5 with
m = 3: f has an inflection point at x = 0.
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40. f ′(x) = 5x4+12x3+9x2+2x: critical points at x = −2/5,−1, 0, f ′′(−2/5) = −18/25 : f has a relative maximum of
108/3125 at x = −2/5, f ′′(−1) = 0: Theorem 4.2.5 with m = 3: f has an inflection point at x = −1, f ′′(0) = 2 : f
has a relative minimum of 0 at x = 0.

41. f ′(x) =
2(x1/3 + 1)

x1/3
: critical point at x = −1, 0, f ′′(−1) = −2

3
: f has a relative maximum of 1 at x = −1, f ′ does

not exist at x = 0. Using the First Derivative Test, it is a relative minimum of 0.

42. f ′(x) =
2x2/3 + 1

x2/3
: no critical point except x = 0; since f is an odd function, x = 0 is an inflection point for f .

43. f ′(x) = − 5

(x− 2)2
; no extrema.

44. f ′(x) = −2x(x4 − 16)

(x4 + 16)2
; critical points x = −2, 0, 2, f ′′(−2) = −1

8
; f has a relative maximum of

1

8
at x = −2,

f ′′(0) =
1

8
; f has a relative minimum of 0 at x = 0, f ′′(2) = −1

8
; f has a relative maximum of

1

8
at x = 2.

45. f ′(x) =
2x

2 + x2
; critical point at x = 0, f ′′(0) = 1; f has a relative minimum of ln 2 at x = 0.

46. f ′(x) =
3x2

2 + x2
:

00

0

– +– +– ++ ++

–   23
Critical points at x = 0,−21/3; f ′′(0) = 0 inconclusive. Using the First

Derivative Test, there is no relative extrema; f has no limit at x = −21/3.

47. f ′(x) = 2e2x − ex; critical point x = − ln 2, f ′′(− ln 2) = 1/2; relative minimum of −1/4 at x = − ln 2.

48. f ′(x) = 2x(1 + x)e2x: critical point x = −1, 0, f ′′(−1) = −2/e2; relative maximum of 1/e2 at x = −1, f ′′(0) = 2:
relative minimum of 0 at x = 0.

49. f ′(x) is undefined at x = 0, 3, so these are critical points. Elsewhere, f ′(x) =

{
2x− 3 if x < 0 or x > 3;
3− 2x if 0 < x < 3.

f ′(x) = 0 for x = 3/2, so this is also a critical point. f ′′(3/2) = −2, so relative maximum of 9/4 at x = 3/2. By
the first derivative test, relative minimum of 0 at x = 0 and x = 3.

50. On each of the intervals (−∞,−1), (−1,+∞) the derivative is of the form y = ± 1

3x2/3
hence it is clear that the

only critical points are possibly −1 or 0. Near x = 0, x 6= 0, y′ =
1

3x2/3
> 0 so y has an inflection point at x = 0.

At x = −1, y′ changes sign, thus the only extremum is a relative minimum of 0 at x = −1.

51.

–2 1 3 5

–6

–4

2

x

y

(     , –      )3
2

25
4
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52.

2 4 6 8

10

20

x

y

(4 – √17, 0)

(4 + √17, 0)

(4, 17)

(0, 1)

53.
–80

2 4

x

y
(–2, 49)

(0, 5)

(3, –76)

(5, 0)

(    , –     )1
2

27
2

(               , 0)–7 – √57
4

(               , 0)–7 + √57
4

54.

–1 0.5 1.5

–4

–2

4

6

x

y
1
3

50
27

, ( )
2
3

52
27

, ( )

(0, 2)
(2, 0)

(1, 2)

55.

–1 1

1

3

5
y

x

(           ,              )1 – √3
2

9 – 6√3
4

(           ,              )1 + √3
2

9 + 6√3
4

(–       ,     – √2 )1

√2
5
4

(      ,     + √2 )1

√2
5
4

56.

–1.5 0.5 1.5

–4

–2

1

3

x

y

(–√5, 0)

(–√3, –4) (√3, –4)

(√5, 0)

(1, 0)

(0, 5)

(–1, 0)
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57.

–1 1

–1

0.5

1.5

x

y

(–     , –      )1
2

27
16

58.

–0.4 0.6

–0.5

–0.3

–0.1

x
y

2
9

16
729

, ( )

1
3

1
27

, ( )

4
9

, 0( )

(0, 0)

59.

1

0.2

0.4

x

y (     ,         )√5
5

16√5
125

(      ,        )√15
5

4√15
125

(        ,          )–√15
5

–4√15
125

(      ,            )–√5
5

–16√5
125

60.

-1 1

-0.5

0.5

x

y

A C

BD

Stationary points: (±1, 0), A =

(
1√
7
,
−216

343
√

7

)
, B =

(−1√
7
,

216

343
√

7

)
. Inflection

points: (0, 0), (±1, 0), C =

(√
3√
7
,
−64
√

3

343
√

7

)
, D =

(
−
√

3√
7
,

64
√

3

343
√

7

)
.

61. (a) lim
x→−∞

y = −∞, lim
x→+∞

y = +∞; curve crosses x-axis at x = 0, 1,−1.

y

x

–6

–4

–2

2

4

–2 –1 1

(b) lim
x→±∞

y = +∞; curve never crosses x-axis.
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y

x

0.2

–1 1

(c) lim
x→−∞

y = −∞, lim
x→+∞

y = +∞; curve crosses x-axis at x = −1

y

x

–0.2

0.2

0.4

–1 1

(d) lim
x→±∞

y = +∞; curve crosses x-axis at x = 0, 1.

y

x

0.4

–1 1

62. (a)

y

xa b

y

x

a b

y

xa b

(b)

y

x

a b

y

x

a b

(c)

y

x

a b

63. f ′(x) = 2 cos 2x if sin 2x > 0, f ′(x) = −2 cos 2x if sin 2x < 0, f ′(x) does not exist when x = π/2, π, 3π/2; critical
numbers x = π/4, 3π/4, 5π/4, 7π/4, π/2, π, 3π/2, relative minimum of 0 at x = π/2, π, 3π/2; relative maximum of
1 at x = π/4, 3π/4, 5π/4, 7π/4.
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1

0
0 o

64. f ′(x) =
√

3 + 2 cosx; critical numbers x = 5π/6, 7π/6, relative minimum of 7
√

3π/6 − 1 at x = 7π/6; relative
maximum of 5

√
3π/6 + 1 at x = 5π/6.

12

0
0 o

65. f ′(x) = − sin 2x; critical numbers x = π/2, π, 3π/2, relative minimum of 0 at x = π/2, 3π/2; relative maximum of
1 at x = π.

1

0
0 o

66. f ′(x) = (2 cosx− 1)/(2− cosx)2; critical numbers x = π/3, 5π/3, relative maximum of
√

3/3 at x = π/3, relative
minimum of −

√
3/3 at x = 5π/3.

0.8

0 o

–0.8

67. f ′(x) = lnx+ 1, f ′′(x) = 1/x; f ′(1/e) = 0, f ′′(1/e) > 0; relative minimum of −1/e at x = 1/e.

2.5

–0.5

0 2.5

68. f ′(x) = −2
ex − e−x

(ex + e−x)2
= 0 when x = 0. By the first derivative test f ′(x) > 0 for x < 0 and f ′(x) < 0 for x > 0;

relative maximum of 1 at x = 0.
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1

0
–2 2

69. f ′(x) = 2x(1 − x)e−2x = 0 at x = 0, 1. f ′′(x) = (4x2 − 8x + 2)e−2x; f ′′(0) > 0 and f ′′(1) < 0, so a relative
minimum of 0 at x = 0 and a relative maximum of 1/e2 at x = 1.

0.14

0
–0.3 4

70. f ′(x) = 10/x− 1 = 0 at x = 10; f ′′(x) = −10/x2 < 0; relative maximum of 10(ln(10)− 1) ≈ 13.03 at x = 10.

14

–4

0 20

71. Relative minima at x ≈ −3.58, 3.33; relative maximum at x ≈ 0.25.

250

–250

–5 5

72. Relative minimum at x ≈ −0.84; relative maximum at x ≈ 0.84.

1.2

–1.2

-6 6

73. Relative maximum at x ≈ −0.272, relative minimum at x ≈ 0.224.
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–4 2

2

4

6

8

x

f "(x)

f '(x)

y

74. Relative maximum at x ≈ −1.111, relative minimum at x ≈ 0.471, relative maximum at x ≈ 2.036.

–5 –3 1 5

0.2

0.4

y

x
f '(x)

f "(x)

75. f ′(x) =
4x3 − sin 2x

2
√
x4 + cos2 x

, f ′′(x) =
6x2 − cos 2x√
x4 + cos2 x

− (4x3 − sin 2x)(4x3 − sin 2x)

4(x4 + cos2 x)3/2
. Relative minima at x ≈ ±0.618,

relative maximum at x = 0.

2

–2

–2 1

x

y

f''(x)

f '(x)

76. Point of inflection at x = 0, relative minimum at x ≈ −2.263.

-3 -2 -1 0 1

-3

-2

-1

1

2

3

x

y

f'

f''

77. (a) Let f(x) = x2 +
k

x
, then f ′(x) = 2x − k

x2
=

2x3 − k
x2

. f has a relative extremum when 2x3 − k = 0, so

k = 2x3 = 2(3)3 = 54.

(b) Let f(x) =
x

x2 + k
, then f ′(x) =

k − x2

(x2 + k)2
. f has a relative extremum when k− x2 = 0, so k = x2 = 32 = 9.

78. (a) Relative minima at x ≈ ±0.6436, relative maximum at x = 0.
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y

x
1

1.2

1.4

1.6

1.8

2

–1.5 –0.5 0.5 1.5

(b) x = 0,±
√√

2− 1.

79. (a) f ′(x) = −xf(x). Since f(x) is always positive, f ′(x) = 0 at x = 0, f ′(x) > 0 for x < 0 and f ′(x) < 0 for
x > 0, so x = 0 is a maximum.

(b) µ

y

x

2c
1 µ,( )2c

1

80. (a) One relative maximum, located at x = n.

0.3

0
0 14

(b) f ′(x) = cxn−1(−x+ n)e−x = 0 at x = n. Since f ′(x) > 0 for x < n and f ′(x) < 0 for x > n it’s a maximum.

81. (a) Because h and g have relative maxima at x0, h(x) ≤ h(x0) for all x in I1 and g(x) ≤ g(x0) for all x in I2,
where I1 and I2 are open intervals containing x0. If x is in both I1 and I2 then both inequalities are true and by
addition so is h(x) + g(x) ≤ h(x0) + g(x0) which shows that h+ g has a relative maximum at x0.

(b) By counterexample; both h(x) = −x2 and g(x) = −2x2 have relative maxima at x = 0 but h(x)− g(x) = x2

has a relative minimum at x = 0 so in general h− g does not necessarily have a relative maximum at x0.

82. (a)
x

y

x0
( )

f(x0) is not an extreme value. (b)
x

y

x0
( )

f(x0) is a relative maximum.
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(c)

x

y

x0
( )

f(x0) is a relative minimum.

83. The first derivative test applies in many cases where the second derivative test does not. For example, it implies
that |x| has a relative minimum at x = 0, but the second derivative test does not, since |x| is not differentiable
there.

The second derivative test is often easier to apply, since we only need to compute f ′(x0) and f ′′(x0), instead of
analyzing f ′(x) at values of x near x0. For example, let f(x) = 10x3 + (1 − x)ex. Then f ′(x) = 30x2 − xex
and f ′′(x) = 60x − (x + 1)ex. Since f ′(0) = 0 and f ′′(0) = −1, the second derivative test tells us that f has a
relative maximum at x = 0. To prove this using the first derivative test is slightly more difficult, since we need to
determine the sign of f ′(x) for x near, but not equal to, 0.

84. The zeros of p tell us where the graph meets the x-axis. If the multiplicity of such a zero is odd then the graph
crosses the x-axis; otherwise it does not.

The zeros of p′ tell us where the graph of p is horizontal. If such a zero has odd multiplicity then p′ changes sign
there, and p has a relative extremum; otherwise it does not.

The zeros of p′′ with odd multiplicity are the places where p′′ changes sign, so they tell us where p has an inflection
point. (Zeros of p′′ with even multiplicity don’t tell us much about the graph.)

Exercise Set 4.3

1. Vertical asymptote x = 4, horizontal asymptote y = −2.

6 8

–6

–4

2

x

x = 4

y = –2

y

2. Vertical asymptotes x = ±2, horizontal asymptote y = 0.

–4 4

–8

–6

–4

2

4

6

8

x

x = 2x = –2

y

3. Vertical asymptotes x = ±2, horizontal asymptote y = 0.
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–4
4

–4

–2

2

4

x

x = 2

x = –2

y

4. Vertical asymptotes x = ±2, horizontal asymptote y = 1.

–4 4

–6

–2

4

8

x

y

y = 1

x = 2x = –2

5. No vertical asymptotes, horizontal asymptote y = 1.

–4

0.75

1.25

x

y

y = 1

(–      ,    )2

√3

1
4 (      ,    )2

√3

1
4

6. No vertical asymptotes, horizontal asymptote y = 1.

–4 –2 2 4

0.8

x

y

y = 1

(1, 0)(–1, 0)

(0, 1)

((                    )  )√   √18 – 3√33
3 – √33/3

1
3

√18 – 3√33    – 1  
21

3(          
,        )

(          
,        )((                    )  )√   √18 + 3√33

3 + √33/3
1
3

√18 – 3√33    – 1  
21

3

7. Vertical asymptote x = 1, horizontal asymptote y = 1.
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2 4

–2

2

4

x

y

x = 1

y = 1

(–       , –   )1

√2
1
33

8. Vertical asymptote x = 0,−3, horizontal asymptote y = 2.

–6 –4 –2 2

–6

–2

8

x

x = –3

y

y = 2(–2,     )7
4

9. Vertical asymptote x = 0, horizontal asymptote y = 3.

–5 5

4

8

x

y = 3

y

(6,     )25
9

(4,     )11
4

(2, 3)

10. Vertical asymptote x = 1, horizontal asymptote y = 3.

3 6

6

12

18

x

x = 1

y

y = 3
(–2,     )1

3

(–1, 0)

11. Vertical asymptote x = 1, horizontal asymptote y = 9.

–10 10

20

30

x

y

y = 9

x = 1

(    , 9)1
3

(–    , 0)1
3

(–1, 1)
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12. Vertical asymptote x = 1, horizontal asymptote y = 3.

–10 –6 –2 4 8 12

6

9

12

15

xx = 1

y

y = 3

(–    ,          )5
3

6117
2048(–    ,          )7

3
7473
2500

13. Vertical asymptote x = 1, horizontal asymptote y = −1.

2 4

–4

–2

x

x = 1

y = –1

y

(–1, –   )1
2

14. Vertical asymptote x = 1, horizontal asymptote y = 0.

–4 –2 4 6

–4

–2

3

5

x

x = 1

y

(–21/3,       )22/3

3

(               ,                       )(28 + 12√5)1/3

2

(28 + 12√5)2/3

18 + 6√5

15. (a) Horizontal asymptote y = 3 as x→ ±∞, vertical asymptotes at x = ±2.

y

x

–5

5

10

–5 5

(b) Horizontal asymptote of y = 1 as x→ ±∞, vertical asymptotes at x = ±1.
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y

x

–10

10

–5 5

16. (a) Horizontal asymptote of y = −1 as x→ ±∞, vertical asymptotes at x = −2, 1.

y

x

–10

10

–5 5

(b) Horizontal asymptote of y = 1 as x→ ±∞, vertical asymptote at x = −1, 2.

y

x

–10

10

–5 5

17. lim
x→±∞

∣∣∣∣
x2

x− 3
− (x+ 3)

∣∣∣∣ = lim
x→±∞

∣∣∣∣
9

x− 3

∣∣∣∣ = 0.

10

–5

10

x

x = 3

y = x + 3

y

18.
2 + 3x− x3

x
− (3− x2) =

2

x
→ 0 as x→ ±∞.
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–5 –3 –1 1 3 5

–20

–10

5

15

25

x

y

y = 3 – x2

19. y = x2− 1

x
=
x3 − 1

x
; y-axis is a vertical asymptote; y′ =

2x3 + 1

x2
, y′ = 0 when x = − 3

√
1

2
≈ −0.8; y′′ =

2(x3 − 1)

x3
,

curvilinear asymptote y = x2.

x

y

≈(–0.8, 1.9)

(1, 0)

20. y =
x2 − 2

x
= x− 2

x
so y-axis is a vertical asymptote, y = x is an oblique asymptote; y′ =

x2 + 2

x2
, y′′ = − 4

x3
.

x

y
y = x

4

4

21. y =
(x− 2)3

x2
= x − 6 +

12x− 8

x2
so y-axis is a vertical asymptote, y = x − 6 is an oblique asymptote; y′ =

(x− 2)2(x+ 4)

x3
, y′′ =

24(x− 2)

x4
.

x

y

–10

(–4, –13.5)

y = x – 6

(2, 0)
10

22. y = x− 1

x
− 1

x2
= x−

(
1

x
+

1

x2

)
so y-axis is a vertical asymptote, y = x is an oblique asymptote; y′ = 1+

1

x2
+

2

x3
=

(x+ 1)(x2 − x+ 2)

x3
, y′′ = − 2

x3
− 6

x4
= −2(x+ 3)

x4
.



180 Chapter 4

-5 0 5

-5

-2.5

2.5

5

x

y

(-1,-1)

(-3,-25/9)

23. y =
x3 − 4x− 8

x+ 2
= x2 − 2x− 8

x+ 2
so x = −2 is a vertical asymptote, y = x2 − 2x is a curvilinear asymptote as

x→ ±∞.

–4 4

10

30

x

y

y = x2 – 2x

(–3, 23)

(0, –4)
x = –2

24. y =
x5

x2 + 1
= x3 − x+

x

x2 + 1
so y = x3 − x is a curvilinear asymptote.

–2 –1 1 2

–10

–5

5

10

x

y

y = x3 – x

25. (a) VI (b) I (c) III (d) V (e) IV (f) II

26. (a) When n is even the function is defined only for x ≥ 0; as n increases the graph approaches the line y = 1 for
x > 0.

y

x

(b) When n is odd the graph is symmetric with respect to the origin; as n increases the graph approaches the
line y = 1 for x > 0 and the line y = −1 for x < 0.

y

x
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27. True. If the degree of P were larger than the degree of Q, then lim
x→±∞

f(x) would be infinite and the graph would

not have a horizontal asymptote. If the degree of P were less than the degree of Q, then lim
x→±∞

f(x) would be

zero, so the horizontal asymptote would be y = 0, not y = 5.

28. True. If f were continuous at x = 1 then lim
x→1

f(x) would equal f(1), not ±∞.

29. False. Let f(x) = 3
√
x− 1. Then f is continuous at x = 1, but lim

x→1
f ′(x) = lim

x→1

1

3
(x − 1)−2/3 = +∞, so f ′ has a

vertical asymptote at x = 1.

30. True. Suppose that f has a cusp at x = 1. Then either

(1) lim
x→1+

f ′(x) = −∞ and lim
x→1−

f ′(x) = +∞, or

(2) lim
x→1+

f ′(x) = +∞ and lim
x→1−

f ′(x) = −∞.

If f also has an inflection point at x = 1, then there exist real numbers a < 1 < b such that either

(A) f ′ is increasing on [a, 1) and decreasing on (1, b ], or

(B) f ′ is decreasing on [a, 1) and increasing on (1, b ].

We will show that each of the 4 combinations of these cases leads to a contradiction:

(1A) Since f ′ is decreasing on (1, b ], f ′(x) ≥ f ′(b) for all x in (1, b ]. This contradicts the fact that lim
x→1+

f ′(x) = −∞.

(1B) Since f ′ is decreasing on [a, 1), f ′(x) ≤ f ′(a) for all x in [a, 1). This contradicts the fact that lim
x→1−

f ′(x) = +∞.

(2A) Since f ′ is increasing on [a, 1), f ′(x) ≥ f ′(a) for all x in [a, 1). This contradicts the fact that lim
x→1−

f ′(x) = −∞.

(2B) Since f ′ is increasing on (1, b ], f ′(x) ≤ f ′(b) for all x in (1, b ]. This contradicts the fact that lim
x→1+

f ′(x) = +∞.

31. y =
√

4x2 − 1, y′ =
4x√

4x2 − 1
, y′′ = − 4

(4x2 − 1)3/2
so extrema when x = ±1

2
, no inflection points.

–1 1

1

2

3

4

x

y

32. y =
3
√
x2 − 4; y′ =

2x

3(x2 − 4)2/3
; y′′ = − 2(3x2 + 4)

9(x2 − 4)5/3
.

–2

(–2, 0) (2, 0)

(0, –2)

2

x

y
3

33. y = 2x+ 3x2/3; y′ = 2 + 2x−1/3; y′′ = −2

3
x−4/3.
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x

y

4

5

(0, 0)

(-1, 1)

34. y = 2x2 − 3x4/3; y′ = 4x− 4x1/3; y′′ = 4− 4

3
x−2/3.

–4 –2 2 4

2

4

6

8

x

y

(–1, –1) (1, –1)

35. y = x1/3(4− x); y′ =
4(1− x)

3x2/3
; y′′ = −4(x+ 2)

9x5/3
.

–10

10

x

y

(1, 3)

(–2, –6 )23

36. y = 5x2/3 + x5/3; y′ =
5(x+ 2)

3x1/3
; y′′ =

10(x− 1)

9x4/3
.

–6 –4 –2 2 4

–2

4

6

8

x

y

(1, 6)

(–2, 3 × 22/3)

37. y = x2/3 − 2x1/3 + 4; y′ =
2(x1/3 − 1)

3x2/3
; y′′ = −2(x1/3 − 2)

9x5/3
.

10 30–10

2

6

x

y

(–8, 12)

(0, 4)

(1, 3) (8, 4)
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38. y =
8(
√
x− 1)

x
; y′ =

4(2−√x)

x2
; y′′ =

2(3
√
x− 8)

x3
.

15

x

y

(4, 2)
64
9

15
8

, 

4

( )

39. y = x+ sinx; y′ = 1 + cosx, y′ = 0 when x = π + 2nπ; y′′ = − sinx; y′′ = 0 when x = nπ, n = 0,±1,±2, . . .

c

c
x

y

40. y = x− tanx; y′ = 1− sec2 x; y′ = 0 when x = nπ; y′′ = −2 sec2 x tanx = 0 when x = nπ, n = 0,±1,±2, . . .

–5 –3 3 5

–8

–4

2

6

10

x

x = –!/2 x = !/2

x = –3!/2 x = 3!/2y

41. y =
√

3 cosx + sinx; y′ = −
√

3 sinx + cosx; y′ = 0 when x = π/6 + nπ; y′′ = −
√

3 cosx − sinx; y′′ = 0 when
x = 2π/3 + nπ.

o
–2

2

x

y

42. y = sinx+ cosx; y′ = cosx− sinx; y′ = 0 when x = π/4 + nπ; y′′ = − sinx− cosx; y′′ = 0 when x = 3π/4 + nπ.

–o o

–2

2

x

y

43. y = sin2 x − cosx; y′ = sinx(2 cosx + 1); y′ = 0 when x = −π, 0, π, 2π, 3π and when x = −2

3
π,

2

3
π,

4

3
π,

8

3
π;

y′′ = 4 cos2 x+ cosx− 2; y′′ = 0 when x ≈ ±2.57, ±0.94, 3.71, 5.35, 7.22, 8.86.
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–4 6 10

–1

1.5

x

y

(0, -1)
(5.35, 0.06)

(–2.57, 1.13)

(2.57, 1.13) (3.71, 1.13)

(8.86, 1.13)

(7.22, 0.06)(–0.94, 0.06) (0.94, 0.06)

(o, –1)

(å, 1)(C, 1) (c, 1)

(8,    )5
4(*,    )5

4
5
4(g,    ) 5

4(w,    )

44. y =
√

tanx; y′ =
sec2 x

2
√

tanx
; so y′ > 0 always; y′′ = sec2 x

3 tan2 x− 1

4(tanx)3/2
, y′′ = 0 when x =

π

6
, y =

1
4
√

3
.

2

4

6

8

10

x

x = 6

y

32

45. (a) lim
x→+∞

xex = +∞, lim
x→−∞

xex = 0.

(b) y = xex; y′ = (x + 1)ex; y′′ = (x + 2)ex; relative minimum at (−1,−e−1) ≈ (−1,−0.37), inflection point at
(−2,−2e−2) ≈ (−2,−0.27), horizontal asymptote y = 0 as x→ −∞.

–1

–3–5
1

x

y

(–2, –0.27)
(–1, –0.37)

46. (a) lim
x→+∞

f(x) = 0, lim
x→−∞

f(x) = −∞.

(b) f ′(x) = (1−x)e−x, f ′′(x) = (x−2)e−x, critical point at x = 1; relative maximum at x = 1, point of inflection
at x = 2, horizontal asymptote y = 0 as x→ +∞.

y

x

–0.8

0.2

1 2

(1,   ) 1
e (2,    )2

e2

47. (a) lim
x→+∞

x2

e2x
= 0, lim

x→−∞
x2

e2x
= +∞.

(b) y = x2/e2x = x2e−2x; y′ = 2x(1 − x)e−2x; y′′ = 2(2x2 − 4x + 1)e−2x; y′′ = 0 if 2x2 − 4x + 1 = 0, when
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x =
4±
√

16− 8

4
= 1±

√
2/2 ≈ 0.29, 1.71, horizontal asymptote y = 0 as x→ +∞.

1 2 3

0.3

x

y

(0, 0)

(0.29, 0.05)

(1, 0.14)
(1.71, 0.10)

48. (a) lim
x→+∞

x2e2x = +∞, lim
x→−∞

x2e2x = 0.

(b) y = x2e2x; y′ = 2x(x+ 1)e2x; y′′ = 2(2x2 + 4x+ 1)e2x; y′′ = 0 if 2x2 + 4x+ 1 = 0, when x =
−4±

√
16− 8

4
=

−1±
√

2/2 ≈ −0.29,−1.71, horizontal asymptote y = 0 as x→ −∞.

–3 –2 –1

y

x

0.2

0.3

(–1.71, 0.10)
(–1, 0.14)

(0, 0)

(–0.29, 0.05)

49. (a) lim
x→±∞

x2e−x
2

= 0.

(b) y = x2e−x
2

; y′ = 2x(1− x2)e−x
2

; y′ = 0 if x = 0,±1; y′′ = 2(1− 5x2 + 2x4)e−x
2

; y′′ = 0 if 2x4 − 5x2 + 1 = 0,

x2 =
5±
√

17

4
, x = ± 1

2

√
5 +
√

17 ≈ ±1.51, x = ± 1
2

√
5−
√

17 ≈ ±0.47, horizontal asymptote y = 0 as x→ ±∞.

–1–3 1 3

0.1

x

y

1
e(–1,    ) 1

e(1,    )

(–1.51, 0.23) (1.51, 0.23)

(–0.47, 0.18) (0.47, 0.18)

50. (a) lim
x→±∞

f(x) = 1.

(b) f ′(x) = 2x−3e−1/x2

so f ′(x) < 0 for x < 0 and f ′(x) > 0 for x > 0. Set u = x2 and use the given result to

find lim
x→0

f ′(x) = 0, so (by the first derivative test) f(x) has a minimum at x = 0. f ′′(x) = (−6x−4 + 4x−6)e−1/x2

,

so f(x) has points of inflection at x = ±
√

2/3. y = 1 is a horizontal asymptote as x→ ±∞.

y

x

0.4

1

–10 –5 5 10
(0, 0)

(–!2/3, e–3/2)  (!2/3, e–3/2)
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51. (a) lim
x→−∞

f(x) = 0, lim
x→+∞

f(x) = −∞.

(b) f ′(x) = −e
x(x− 2)

(x− 1)2
so f ′(x) = 0 when x = 2, f ′′(x) = −e

x(x2 − 4x+ 5)

(x− 1)3
so f ′′(x) 6= 0 always, relative

maximum when x = 2, no point of inflection, vertical asymptote x = 1, horizontal asymptote y = 0 as x→ −∞.

–1 2 3 4

–20

–10

10

x
x = 1

y

(2, –e2)

52. (a) lim
x→−∞

f(x) = 0, lim
x→+∞

f(x) = +∞.

(b) f ′(x) =
ex(3x+ 2)

3x1/3
so f ′(x) = 0 when x = −2

3
, f ′′(x) =

ex(9x2 + 12x− 2)

9x4/3
so points of inflection when

f ′′(x) = 0 at x = −2−
√

6

3
,−2 +

√
6

3
, relative maximum at

(
−2

3
, e−2/3

(
−2

3

)2/3
)

, absolute minimum at (0, 0),

horizontal asymptote y = 0 as x→ −∞.

–2 –1 1

1

2

3

x

y

(–2/3, –2/32/3e2/3)

(–1.48, 0.30) (0.15, 0.33)

53. (a) lim
x→+∞

f(x) = 0, lim
x→−∞

f(x) = +∞.

(b) f ′(x) = x(2 − x)e1−x, f ′′(x) = (x2 − 4x + 2)e1−x, critical points at x = 0, 2; relative minimum at x = 0,
relative maximum at x = 2, points of inflection at x = 2±

√
2, horizontal asymptote y = 0 as x→ +∞.

y

x

0.6

1

1.8

1 2 3 4

(2,   )

(3.41, 1.04)

(0.59, 0.52)

(0, 0)

4
e

54. (a) lim
x→+∞

f(x) = +∞, lim
x→−∞

f(x) = 0.

(b) f ′(x) = x2(3 +x)ex−1, f ′′(x) = x(x2 + 6x+ 6)ex−1, critical points at x = −3, 0; relative minimum at x = −3,
points of inflection at x = 0,−3±

√
3 ≈ 0,−4.7,−1.27, horizontal asymptote y = 0 as x→ −∞.
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y

x

–0.4

0.4

0.8

–4 –2

(–4.7, –0.35)

(0, 0)

(–1.27, –0.21)

(–3, –0.49)

1

55. (a) lim
x→0+

y = lim
x→0+

x lnx = lim
x→0+

lnx

1/x
= lim
x→0+

1/x

−1/x2
= 0; lim

x→+∞
y = +∞.

(b) y = x lnx, y′ = 1 + lnx, y′′ = 1/x, y′ = 0 when x = e−1.

1
x

y

(e–1, –e–1) 

56. (a) lim
x→0+

y = lim
x→0+

lnx

1/x2
= lim
x→0+

1/x

−2/x3
= 0, lim

x→+∞
y = +∞.

(b) y = x2 lnx, y′ = x(1 + 2 lnx), y′′ = 3 + 2 lnx, y′ = 0 if x = e−1/2, y′′ = 0 if x = e−3/2, lim
x→0+

y′ = 0.

1

–0.2
–0.1

0.1
0.2

x

y

(e–1/2, –   e–1) 1
2

(e–3/2, –  e–3) 3
2

57. (a) lim
x→0+

x2 ln(2x) = lim
x→0+

(x2 ln 2) + lim
x→0+

(x2 lnx) = 0 by the rule given, lim
x→+∞

x2 lnx = +∞ by inspection.

(b) y = x2 ln(2x), y′ = 2x ln(2x) + x, y′′ = 2 ln(2x) + 3, y′ = 0 if x = 1/(2
√
e), y′′ = 0 if x = 1/(2e3/2).

y

x

3
8e3

1
2e3/2( ), –

(      )1
8e

1
2

, –1
2 √e

58. (a) lim
x→+∞

f(x) = +∞; lim
x→0

f(x) = 0.

(b) y = ln(x2 + 1), y′ = 2x/(x2 + 1), y′′ = −2
x2 − 1

(x2 + 1)2
, y′ = 0 if x = 0, y′′ = 0 if x = ±1.
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y

x

1

2

–2 2(0, 0)

(1, ln 2)(–1, ln 2)

59. (a) lim
x→+∞

f(x) = +∞, lim
x→0+

f(x) = 0.

(b) y = x2/3 lnx, y′ =
2 lnx+ 3

3x1/3
, y′ = 0 when lnx = −3

2
, x = e−3/2, y′′ =

−3 + 2 lnx

9x4/3
, y′′ = 0 when lnx =

3

2
,

x = e3/2.

4 5
–1

1

3

5

x

(e3/2,     )3e
2

(e–3/2, –     )3
2e

y

60. (a) lim
x→0+

f(x) = −∞, lim
x→+∞

f(x) = 0.

(b) y = x−1/3 lnx, y′ =
3− lnx

3x4/3
, y′ = 0 when x = e3; y′′ =

4 lnx− 15

9x7/3
, y′′ = 0 when x = e15/4.

8 16 24 32 40

0.5

1

x

y (e15/4 ,        )15

4e5/4

(e3,     )3
e

61. (a)

0.4

–0.2

–0.5 3

(b) y′ = (1 − bx)e−bx, y′′ = b2(x − 2/b)e−bx; relative maximum at x = 1/b, y = 1/(be); point of inflection at
x = 2/b, y = 2/(be2). Increasing b moves the relative maximum and the point of inflection to the left and down,
i.e. towards the origin.
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62. (a)

1

0
–2 2

(b) y′ = −2bxe−bx
2

, y′′ = 2b(−1 + 2bx2)e−bx
2

; relative maximum at x = 0, y = 1; points of inflection at
x = ±

√
1/2b, y = 1/

√
e. Increasing b moves the points of inflection towards the y-axis; the relative maximum

doesn’t move.

63. (a) The oscillations of ex cosx about zero increase as x→ +∞ so the limit does not exist, and lim
x→−∞

ex cosx = 0.

(b) y = ex and y = ex cosx intersect for x = 2πn for any integer n. y = −ex and y = ex cosx intersect for
x = 2πn+ π for any integer n. On the graph below, the intersections are at (0, 1) and (π,−eπ).

-1 3 5

-40

-20

20

x

y

y =ex

y =-ex

y =ex cos x

(c) The curve y = eax cos bx oscillates between y = eax and y = −eax. The frequency of oscillation increases
when b increases.

y

x

–5

5

–1 2

a = 1

b = 1

b = 2

b = 3 y

x

5

10

–1 0.5 1

b = 1

a = 1
a = 2

a = 3

64. (a)

x

y

-6 6
-2

8

n=2
n=3

n=3

n=4

(b) y′ =
n2 − 2x2

n
xn−1e−x

2/n, y′′ =
n4 − n3 − 4x2n2 − 2x2n+ 4x4

n2
xn−2e−x

2/n. For n even, the curve has relative

maxima at x = ± n√
2

and a relative minimum at x = 0. For n odd, it has a relative maximum at x =
n√
2

and a

relative minimum at x = − n√
2

. For every n, there are 4 inflection points, at x = ±

√
n(2n+ 1±

√
8n+ 1)

4
.
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65. (a) x = 1, 2.5, 4 and x = 3, the latter being a cusp.

(b) (−∞, 1], [2.5, 3).

(c) Relative maxima for x = 1, 3; relative minima for x = 2.5.

(d) x ≈ 0.6, 1.9, 4.

66. (a) f ′(x) = −2h(x) + (1− 2x)h′(x), f ′(5) = −2h(5)− 9h′(5). But from the graph h′(5) ≈ −0.2 and f ′(5) = 0, so
h(5) = −(9/2)h′(5) ≈ 0.9.

(b) f ′′(x) = −4h′(x) + (1 − 2x)h′′(x), f ′′(5) ≈ 0.8 − 9h′′(5) and since h′′(5) is clearly negative, f ′′(5) > 0 and
thus f has a minimum at x = 5.

67. Let y be the length of the other side of the rectangle, then L = 2x + 2y and xy = 400 so y = 400/x and hence

L = 2x + 800/x. L = 2x is an oblique asymptote. L = 2x +
800

x
=

2(x2 + 400)

x
, L′ = 2 − 800

x2
=

2(x2 − 400)

x2
,

L′′ =
1600

x3
, L′ = 0 when x = 20, L = 80.

20

100

x

L

68. Let y be the height of the box, then S = x2 + 4xy and x2y = 500 so y = 500/x2 and hence S = x2 + 2000/x. The

graph approaches the curve S = x2 asymptotically. S = x2 +
2000

x
=
x3 + 2000

x
, S′ = 2x− 2000

x2
=

2(x3 − 1000)

x2
,

S′′ = 2 +
4000

x3
=

2(x3 + 2000)

x3
, S′′ = 0 when x = 10, S = 300.

30

1000

x

S

69. y′ = 0.1x4(6x− 5); critical numbers: x = 0, x = 5/6; relative minimum at x = 5/6, y ≈ −6.7× 10−3.

–1 1

0.01
x

y

70. y′ = 0.1x4(x + 1)(7x + 5); critical numbers: x = 0, x = −1, x = −5/7, relative maximum at x = −1, y = 0;
relative minimum at x = −5/7, y ≈ −1.5× 10−3.
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1

0.001 x

y

72. Calculus may tell us about details that are too small to show up in the graph, as in Exercise 70. It may also tell
us about what the graph looks like outside of the viewing window.

Exercise Set 4.4

1. Relative maxima at x = 2, 6; absolute maximum at x = 6; relative minimum at x = 4; absolute minima at x = 0, 4.

2. Relative maximum at x = 3; absolute maximum at x = 7; relative minima at x = 1, 5; absolute minima at x = 1, 5.

3. (a)

y

x

10 (b)

y

x

2 7
(c)

y

x

53 7

4. (a)

y

x

(b)

y

x
(c)

x

y

-5 5

5. The minimum value is clearly 0; there is no maximum because lim
x→1−

f(x) = ∞. x = 1 is a point of discontinuity

of f .

6. There are no absolute extrema on (0, 1), since there are no critical points there. Also, neither x = 0 nor x = 1 gives
an absolute maximum or minimum, since f(x) takes on values both larger and smaller than f(0) = f(1) = 1/2.

7. f ′(x) = 8x − 12, f ′(x) = 0 when x = 3/2; f(1) = 2, f(3/2) = 1, f(2) = 2 so the maximum value is 2 at x = 1, 2
and the minimum value is 1 at x = 3/2.

8. f ′(x) = 8 − 2x, f ′(x) = 0 when x = 4; f(0) = 0, f(4) = 16, f(6) = 12 so the maximum value is 16 at x = 4 and
the minimum value is 0 at x = 0.

9. f ′(x) = 3(x − 2)2, f ′(x) = 0 when x = 2; f(1) = −1, f(2) = 0, f(4) = 8 so the minimum is −1 at x = 1 and the
maximum is 8 at x = 4.

10. f ′(x) = 6x2 + 6x− 12, f ′(x) = 0 when x = −2, 1; f(−3) = 9, f(−2) = 20, f(1) = −7, f(2) = 4, so the minimum is
−7 at x = 1 and the maximum is 20 at x = −2.

11. f ′(x) = 3/(4x2 + 1)3/2, no critical points; f(−1) = −3/
√

5, f(1) = 3/
√

5 so the maximum value is 3/
√

5 at x = 1
and the minimum value is −3/

√
5 at x = −1.
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12. f ′(x) =
2(2x+ 1)

3(x2 + x)1/3
, f ′(x) = 0 when x = −1/2 and f ′(x) does not exist when x = −1, 0; f(−2) = 22/3,

f(−1) = 0, f(−1/2) = 4−2/3, f(0) = 0, f(3) = 122/3 so the maximum value is 122/3 at x = 3 and the minimum
value is 0 at x = −1, 0.

13. f ′(x) = 1− 2 cosx, f ′(x) = 0 when x = π/3; then f(−π/4) = −π/4 +
√

2; f(π/3) = π/3−
√

3; f(π/2) = π/2− 2,
so f has a minimum of π/3−

√
3 at x = π/3 and a maximum of −π/4 +

√
2 at x = −π/4.

14. f ′(x) = cosx+sinx, f ′(x) = 0 for x in (0, π) when x = 3π/4; f(0) = −1, f(3π/4) =
√

2, f(π) = 1 so the maximum
value is

√
2 at x = 3π/4 and the minimum value is −1 at x = 0.

15. f(x) = 1 + |9 − x2| =

{
10− x2, |x| ≤ 3
−8 + x2, |x| > 3

, f ′(x) =

{
−2x, |x| < 3

2x, |x| > 3
, thus f ′(x) = 0 when x = 0, f ′(x) does

not exist for x in (−5, 1) when x = −3 because lim
x→−3−

f ′(x) 6= lim
x→−3+

f ′(x) (see Theorem preceding Exercise 65,

Section 2.3); f(−5) = 17, f(−3) = 1, f(0) = 10, f(1) = 9 so the maximum value is 17 at x = −5 and the minimum
value is 1 at x = −3.

16. f(x) = |6− 4x| =
{

6− 4x, x ≤ 3/2
−6 + 4x, x > 3/2

, f ′(x) =

{
−4, x < 3/2

4, x > 3/2
, f ′(x) does not exist when x = 3/2 thus 3/2

is the only critical point in (−3, 3); f(−3) = 18, f(3/2) = 0, f(3) = 6 so the maximum value is 18 at x = −3 and
the minimum value is 0 at x = 3/2.

17. True, by Theorem 4.4.2.

18. False. By Example 5, f(x) =
1

x2 − x is continuous on (0, 1) but has no absolute minimum there.

19. True, by Theorem 4.4.3.

20. True. The absolute maximum of f on [a, b] exists, by Theorem 4.4.2. If it occurred in (a, b), then it would also
be a relative maximum. Since f has no relative maximum in (a, b), the absolute maximum must occur at either
x = a or x = b.

21. f ′(x) = 2x− 1, f ′(x) = 0 when x = 1/2; f(1/2) = −9/4 and lim
x→±∞

f(x) = +∞. Thus f has a minimum of −9/4

at x = 1/2 and no maximum.

22. f ′(x) = −4(x+ 1); critical point x = −1. Maximum value f(−1) = 5, no minimum.

23. f ′(x) = 12x2(1− x); critical points x = 0, 1. Maximum value f(1) = 1, no minimum because lim
x→+∞

f(x) = −∞.

24. f ′(x) = 4(x3 + 1); critical point x = −1. Minimum value f(−1) = −3, no maximum.

25. No maximum or minimum because lim
x→+∞

f(x) = +∞ and lim
x→−∞

f(x) = −∞.

26. No maximum or minimum because lim
x→+∞

f(x) = +∞ and lim
x→−∞

f(x) = −∞.

27. lim
x→−1−

f(x) = −∞, so there is no absolute minimum on the interval; f ′(x) =
x2 + 2x− 1

(x+ 1)2
= 0 at x = −1 −

√
2,

for which y = −2 − 2
√

2 ≈ −4.828. Also f(−5) = −13/2, so the absolute maximum of f on the interval is
y = −2− 2

√
2, taken at x = −1−

√
2.

28. lim
x→−1+

f(x) = −∞, so there is no absolute minimum on the interval. f ′(x) = 3/(x+ 1)2 > 0, so f is increasing on

the interval (−1, 5] and the maximum must occur at the endpoint x = 5 where f(5) = 1/2.
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29. lim
x→±∞

= +∞ so there is no absolute maximum. f ′(x) = 4x(x − 2)(x − 1), f ′(x) = 0 when x = 0, 1, 2, and

f(0) = 0, f(1) = 1, f(2) = 0 so f has an absolute minimum of 0 at x = 0, 2.

8

0
–2 4

30. (x− 1)2(x+ 2)2 can never be less than zero because it is the product of two squares; the minimum value is 0 for
x = 1 or −2, no maximum because lim

x→+∞
f(x) = +∞.

15

0
–3 2

31. f ′(x) =
5(8− x)

3x1/3
, f ′(x) = 0 when x = 8 and f ′(x) does not exist when x = 0; f(−1) = 21, f(0) = 0, f(8) = 48,

f(20) = 0 so the maximum value is 48 at x = 8 and the minimum value is 0 at x = 0, 20.

50

0
–1 20

32. f ′(x) = (2 − x2)/(x2 + 2)2, f ′(x) = 0 for x in the interval (−1, 4) when x =
√

2; f(−1) = −1/3, f(
√

2) =
√

2/4,
f(4) = 2/9 so the maximum value is

√
2/4 at x =

√
2 and the minimum value is −1/3 at x = −1.

0.4

–0.4

–1 4

33. f ′(x) = −1/x2; no maximum or minimum because there are no critical points in (0,+∞).

25

0
0 10
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34. f ′(x) = − x(x− 2)

(x2 − 2x+ 2)2
, and for 1 ≤ x < +∞, f ′(x) = 0 when x = 2. Also lim

x→+∞
f(x) = 2 and f(2) = 5/2 and

f(1) = 2, hence f has an absolute minimum value of 2 at x = 1 and an absolute maximum value of 5/2 at x = 2.

3

0
1 8

35. f ′(x) =
1− 2 cosx

sin2 x
; f ′(x) = 0 on [π/4, 3π/4] only when x = π/3. Then f(π/4) = 2

√
2 − 1, f(π/3) =

√
3 and

f(3π/4) = 2
√

2 + 1, so f has an absolute maximum value of 2
√

2 + 1 at x = 3π/4 and an absolute minimum value
of
√

3 at x = π/3.

3

0
3 9

36. f ′(x) = 2 sinx cosx − sinx = sinx(2 cosx − 1), f ′(x) = 0 for x in (−π, π) when x = 0, ±π/3; f(−π) = −1,
f(−π/3) = 5/4, f(0) = 1, f(π/3) = 5/4, f(π) = −1 so the maximum value is 5/4 at x = ±π/3 and the minimum
value is −1 at x = ±π.

1.5

–1.5

C c

37. f ′(x) = x2(3 − 2x)e−2x, f ′(x) = 0 for x in [1, 4] when x = 3/2; if x = 1, 3/2, 4, then f(x) = e−2,
27

8
e−3, 64e−8;

critical point at x = 3/2; absolute maximum of
27

8
e−3 at x = 3/2, absolute minimum of 64e−8 at x = 4.

0.2

0
1 4

38. f ′(x) = (1 − ln 2x)/x2, f ′(x) = 0 on [1, e] for x = e/2; if x = 1, e/2, e then f(x) = ln 2, 2/e, (ln 2 + 1)/e; absolute

minimum of
1 + ln 2

e
at x = e, absolute maximum of 2/e at x = e/2.
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0.76

0.64
1 2.7

39. f ′(x) = −3x2 − 10x+ 3

x2 + 1
, f ′(x) = 0 when x =

1

3
, 3. f(0) = 0, f

(
1

3

)
= 5 ln

(
10

9

)
− 1, f(3) = 5 ln 10 − 9,

f(4) = 5 ln 17−12 and thus f has an absolute minimum of 5(ln 10− ln 9)−1 at x = 1/3 and an absolute maximum
of 5 ln 10− 9 at x = 3.

3.0

–2.5

0 4

40. f ′(x) = (x2 + 2x− 1)ex, f ′(x) = 0 at x = −1 +
√

2 and x = −1−
√

2 (discard), f(−1 +
√

2) = (2− 2
√

2)e−1+
√

2 ≈
−1.25, f(−2) = 3e−2 ≈ 0.41, f(2) = 3e2 ≈ 22.17. Absolute maximum is 3e2 at x = 2, absolute minimum is

(2− 2
√

2)e−1+
√

2 at x = −1 +
√

2.

-2

25

2-2

41. f ′(x) = −[cos(cosx)] sinx; f ′(x) = 0 if sinx = 0 or if cos(cosx) = 0. If sinx = 0, then x = π is the critical point
in (0, 2π); cos(cosx) = 0 has no solutions because −1 ≤ cosx ≤ 1. Thus f(0) = sin(1), f(π) = sin(−1) = − sin(1),
and f(2π) = sin(1) so the maximum value is sin(1) ≈ 0.84147 and the minimum value is − sin(1) ≈ −0.84147.

1

–1

0 o

42. f ′(x) = −[sin(sinx)] cosx; f ′(x) = 0 if cosx = 0 or if sin(sinx) = 0. If cosx = 0, then x = π/2 is the critical point
in (0, π); sin(sinx) = 0 if sinx = 0, which gives no critical points in (0, π). Thus f(0) = 1, f(π/2) = cos(1), and
f(π) = 1 so the maximum value is 1 and the minimum value is cos(1) ≈ 0.54030.
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1.5

0
0 c

43. f ′(x) =

{
4, x < 1

2x− 5, x > 1
so f ′(x) = 0 when x = 5/2, and f ′(x) does not exist when x = 1 because lim

x→1−
f ′(x) 6=

lim
x→1+

f ′(x) (see Theorem preceding Exercise 65, Section 2.3); f(1/2) = 0, f(1) = 2, f(5/2) = −1/4, f(7/2) = 3/4

so the maximum value is 2 and the minimum value is −1/4.

44. f ′(x) = 2x+p which exists throughout the interval (0, 2) for all values of p so f ′(1) = 0 because f(1) is an extreme
value, thus 2 + p = 0, p = −2. f(1) = 3 so 12 + (−2)(1) + q = 3, q = 4 thus f(x) = x2 − 2x + 4 and f(0) = 4,
f(2) = 4 so f(1) is the minimum value.

45. The period of f(x) is 2π, so check f(0) = 3, f(2π) = 3 and the critical points. f ′(x) = −2 sinx − 2 sin 2x =
−2 sinx(1+2 cosx) = 0 on [0, 2π] at x = 0, π, 2π and x = 2π/3, 4π/3. Check f(π) = −1, f(2π/3) = −3/2, f(4π/3) =
−3/2. Thus f has an absolute maximum on (−∞,+∞) of 3 at x = 2kπ, k = 0,±1,±2, . . . and an absolute mini-
mum of −3/2 at x = 2kπ ± 2π/3, k = 0,±1,±2, . . ..

46. cos
x

3
has a period of 6π, and cos

x

2
a period of 4π, so f(x) has a period of 12π. Consider the interval [0, 12π].

f ′(x) = − sin
x

3
− sin

x

2
, f ′(x) = 0 when sin

x

3
+ sin

x

2
= 0 thus, by use of the trigonometric identity sin a +

sin b = 2 sin
a+ b

2
cos

a− b
2

, 2 sin

(
5x

12

)
cos
(
− x

12

)
= 0 so sin

5x

12
= 0 or cos

x

12
= 0. Solve sin

5x

12
= 0 to

get x = 12π/5, 24π/5, 36π/5, 48π/5 and then solve cos
x

12
= 0 to get x = 6π. The corresponding values of

f(x) are −4.0450, 1.5450, 1.5450,−4.0450, 1, 5, 5 so the maximum value is 5 and the minimum value is −4.0450
(approximately).

47. Let f(x) = x− sinx, then f ′(x) = 1− cosx and so f ′(x) = 0 when cosx = 1 which has no solution for 0 < x < 2π
thus the minimum value of f must occur at 0 or 2π. f(0) = 0, f(2π) = 2π so 0 is the minimum value on [0, 2π]
thus x− sinx ≥ 0, sinx ≤ x for all x in [0, 2π].

48. Let h(x) = cosx − 1 + x2/2. Then h(0) = 0, and it is sufficient to show that h′(x) ≥ 0 for 0 < x < 2π. But
h′(x) = − sinx+ x ≥ 0 by Exercise 47.

49. Let m = slope at x, then m = f ′(x) = 3x2− 6x+ 5, dm/dx = 6x− 6; critical point for m is x = 1, minimum value
of m is f ′(1) = 2.

50. (a) lim
x→0+

f(x) = +∞, lim
x→(π/2)−

f(x) = +∞, so f has no maximum value on the interval. By Table 4.4.3 f must

have a minimum value.

(b) According to Table 4.4.3, there is an absolute minimum value of f on (0, π/2). To find the absolute minimum
value, we examine the critical points (Theorem 4.4.3). f ′(x) = secx tanx − cscx cotx = 0 at x = π/4, where
f(π/4) = 2

√
2, which must be the absolute minimum value of f on the interval (0, π/2).

51. lim
x→+∞

f(x) = +∞, lim
x→8+

f(x) = +∞, so there is no absolute maximum value of f for x > 8. By Table 4.4.3 there

must be a minimum. Since f ′(x) =
2x(−520 + 192x− 24x2 + x3)

(x− 8)3
, we must solve a quartic equation to find the

critical points. But it is easy to see that x = 0 and x = 10 are real roots, and the other two are complex. Since
x = 0 is not in the interval in question, we must have an absolute minimum of f on (8,+∞) of 125 at x = 10.
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52. (a)
dC

dt
=

K

a− b
(
ae−at − be−bt

)
so

dC

dt
= 0 at t =

ln(a/b)

a− b . This is the only stationary point and C(0) = 0,

lim
t→+∞

C(t) = 0, C(t) > 0 for 0 < t < +∞, so it is an absolute maximum.

(b)

0.7

0
0 10

53. The absolute extrema of y(t) can occur at the endpoints t = 0, 12 or when dy/dt = 2 sin t = 0, i.e. t = 0, 12, kπ,
k = 1, 2, 3; the absolute maximum is y = 4 at t = π, 3π; the absolute minimum is y = 0 at t = 0, 2π.

54. (a) The absolute extrema of y(t) can occur at the endpoints t = 0, 2π or when dy/dt = 2 cos 2t − 4 sin t cos t =
2 cos 2t− 2 sin 2t = 0, t = 0, 2π, π/8, 5π/8, 9π/8, 13π/8; the absolute maximum is y ≈ 3.4142 at t = π/8, 9π/8; the
absolute minimum is y ≈ 0.5858 at t = 5π/8, 13π/8.

(b) The absolute extrema of x(t) occur at the endpoints t = 0, 2π or when
dx

dt
= − 2 sin t+ 1

(2 + sin t)2
= 0, t =

7π/6, 11π/6. The absolute maximum is x ≈ 0.5774 at t = 11π/6 and the absolute minimum is x ≈ −0.5774 at
t = 7π/6.

55. f ′(x) = 2ax + b; critical point is x = − b

2a
. f ′′(x) = 2a > 0 so f

(
− b

2a

)
is the minimum value of f , but

f

(
− b

2a

)
= a

(
− b

2a

)2
+ b

(
− b

2a

)
+ c =

−b2 + 4ac

4a
thus f(x) ≥ 0 if and only if f

(
− b

2a

)
≥ 0,

−b2 + 4ac

4a
≥ 0,

−b2 + 4ac ≥ 0, b2 − 4ac ≤ 0.

56. Use the proof given in the text, replacing “maximum” by “minimum” and “largest” by “smallest” and reversing
the order of all inequality symbols.

57. If f has an absolute minimum, say at x = a, then, for all x, f(x) ≥ f(a) > 0. But since lim
x→+∞

f(x) = 0, there is

some x such that f(x) < f(a). This contradiction shows that f cannot have an absolute minimum. On the other

hand, let f(x) =
1

(x2 − 1)2 + 1
. Then f(x) > 0 for all x. Also, lim

x→+∞
f(x) = 0 so the x-axis is an asymptote, both

as x→ −∞ and as x→ +∞. But since f(0) = 1
2 < 1 = f(1) = f(−1), the absolute minimum of f on [−1, 1] does

not occur at x = 1 or x = −1, so it is a relative minimum. (In fact it occurs at x = 0.)

-3 -2 -1 1 2 3

1

x

y

58. At an absolute maximum of a function on an interval, the value of the function is greater than or equal to the
value at any other point of the interval. An absolute maximum may occur in the interior of the interval or at an
endpoint.

At a relative maximum of a function on an interval, the value of the function is greater than or equal to the values
at other nearby points, but not necessarily greater than or equal to the values at distant points in the interval. A
relative maximum can only occur in the interior of the interval, not at an endpoint.
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This function has a relative maximum at P which is not an absolute maximum, since the value of the function at
Q is larger than at P:

P
Q

This function has an absolute maximum at P. It is not a relative maximum, since it occurs at an endpoint of the
interval where the function is defined.

P

Exercise Set 4.5

1. If y = x+ 1/x for 1/2 ≤ x ≤ 3/2, then dy/dx = 1− 1/x2 = (x2− 1)/x2, dy/dx = 0 when x = 1. If x = 1/2, 1, 3/2,
then y = 5/2, 2, 13/6 so

(a) y is as small as possible when x = 1.

(b) y is as large as possible when x = 1/2.

2. Let x and y be nonnegative numbers and z the sum of their squares, then z = x2 + y2. But x+ y = 1, y = 1− x
so z = x2 + (1− x)2 = 2x2 − 2x+ 1 for 0 ≤ x ≤ 1. dz/dx = 4x− 2, dz/dx = 0 when x = 1/2. If x = 0, 1/2, 1 then
z = 1, 1/2, 1 so

(a) z is as large as possible when one number is 0 and the other is 1.

(b) z is as small as possible when both numbers are 1/2.

3. A = xy where x+2y = 1000 so y = 500−x/2 and A = 500x−x2/2 for x in [0, 1000]; dA/dx = 500−x, dA/dx = 0
when x = 500. If x = 0 or 1000 then A = 0, if x = 500 then A = 125, 000 so the area is maximum when x = 500
ft and y = 500− 500/2 = 250 ft.

x

y

Stream

4. Let the length of one fenced side be x feet. Then the other fenced side has length 1000 − x feet, and the area of

the triangle is A(x) =
1

2
x(1000 − x) = 500x − 1

2
x2 square feet. We wish to maximize this for x in the interval

[0, 1000]. The derivative A′(x) = 500 − x equals 0 when x = 500, so the maximum area occurs for either x = 0,
x = 500, or x = 1000. Since A(0) = A(1000) = 0 and A(500) = 125, 000, the maximum area occurs when both
fenced sides are 500 feet long.
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x 1000

Stream

-x

5. Let x and y be the dimensions shown in the figure and A the area, then A = xy subject to the cost condition
3(2x) + 2(2y) = 6000, or y = 1500 − 3x/2. Thus A = x(1500 − 3x/2) = 1500x − 3x2/2 for x in [0, 1000].
dA/dx = 1500− 3x, dA/dx = 0 when x = 500. If x = 0 or 1000 then A = 0, if x = 500 then A = 375, 000 so the
area is greatest when x = 500 ft and (from y = 1500− 3x/2) when y = 750 ft.

Heavy-duty

Standard

x

y

6. Let x and y be the dimensions shown in the figure and A the area of the rectangle, then A = xy and, by similar
triangles, x/6 = (8 − y)/8, y = 8 − 4x/3 so A = x(8 − 4x/3) = 8x − 4x2/3 for x in [0, 6]. dA/dx = 8 − 8x/3,
dA/dx = 0 when x = 3. If x = 0, 3, 6 then A = 0, 12, 0 so the area is greatest when x = 3 in and (from y = 8−4x/3)
y = 4 in.

8

y

x

6

10

7. Let x, y, and z be as shown in the figure and A the area of the rectangle, then A = xy and, by similar triangles,
z/10 = y/6, z = 5y/3; also x/10 = (8− z)/8 = (8− 5y/3)/8 thus y = 24/5− 12x/25 so A = x(24/5− 12x/25) =
24x/5− 12x2/25 for x in [0, 10]. dA/dx = 24/5− 24x/25, dA/dx = 0 when x = 5. If x = 0, 5, 10 then A = 0, 12, 0
so the area is greatest when x = 5 in and y = 12/5 in.

8

z

x

y

6

10

8. A = (2x)y = 2xy where y = 16 − x2 so A = 32x − 2x3 for 0 ≤ x ≤ 4; dA/dx = 32 − 6x2, dA/dx = 0 when
x = 4/

√
3. If x = 0, 4/

√
3, 4 then A = 0, 256/(3

√
3), 0 so the area is largest when x = 4/

√
3 and y = 32/3. The

dimensions of the rectangle with largest area are 8/
√

3 by 32/3.
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–4 4

16

x

y

y

x

9. A = xy where x2 + y2 = 202 = 400 so y =
√

400− x2 and A = x
√

400− x2 for 0 ≤ x ≤ 20; dA/dx =
2(200 − x2)/

√
400− x2, dA/dx = 0 when x =

√
200 = 10

√
2. If x = 0, 10

√
2, 20 then A = 0, 200, 0 so the area is

maximum when x = 10
√

2 and y =
√

400− 200 = 10
√

2.

x

y10

10. The perimeter is f(x) = 2x + 2y = 2x + 2x−2; we must minimize this for x in (0,+∞). Since lim
x→0+

f(x) =

lim
x→+∞

f(x) = +∞, the analysis in Table 4.4.3 implies that f has an absolute minimum on the interval (0,+∞).

This minimum must occur at a critical point, so we compute f ′(x) = 2− 4x−3. Solving f ′(x) = 0 gives x = 3
√

2.

The point P for which the perimeter is smallest is

(
3
√

2,
1
3
√

4

)
.

x

x -2 P

11. Let x = length of each side that uses the $1 per foot fencing, y = length of each side that uses the $2 per foot
fencing. The cost is C = (1)(2x) + (2)(2y) = 2x+ 4y, but A = xy = 3200 thus y = 3200/x so C = 2x+ 12800/x
for x > 0, dC/dx = 2− 12800/x2, dC/dx = 0 when x = 80, d2C/dx2 > 0 so C is least when x = 80, y = 40.

12. A = xy where 2x + 2y = p so y = p/2 − x and A = px/2 − x2 for x in [0, p/2]; dA/dx = p/2 − 2x, dA/dx = 0
when x = p/4. If x = 0 or p/2 then A = 0, if x = p/4 then A = p2/16 so the area is maximum when x = p/4 and
y = p/2− p/4 = p/4, which is a square.

x

y

13. Let x and y be the dimensions of a rectangle; the perimeter is p = 2x + 2y. But A = xy thus y = A/x so
p = 2x+ 2A/x for x > 0, dp/dx = 2− 2A/x2 = 2(x2 − A)/x2, dp/dx = 0 when x =

√
A, d2p/dx2 = 4A/x3 > 0 if

x > 0 so p is a minimum when x =
√
A and y =

√
A and thus the rectangle is a square.

14. With x, y, r, and s as shown in the figure, the sum of the enclosed areas is A = πr2 + s2 where r =
x

2π
and

s =
y

4
because x is the circumference of the circle and y is the perimeter of the square, thus A =

x2

4π
+
y2

16
. But
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x+y = 12, so y = 12−x and A =
x2

4π
+

(12− x)2

16
=
π + 4

16π
x2− 3

2
x+ 9 for 0 ≤ x ≤ 12.

dA

dx
=
π + 4

8π
x− 3

2
,
dA

dx
= 0

when x =
12π

π + 4
. If x = 0,

12π

π + 4
, 12 then A = 9,

36

π + 4
,

36

π
so the sum of the enclosed areas is

(a) a maximum when x = 12 in (when all of the wire is used for the circle).

(b) a minimum when x = 12π/(π + 4) in.

x y
12

r s

cut

15. Suppose that the lower left corner of S is at (x,−3x). From the figure it’s clear that the maximum area of the
intersection of R and S occurs for some x in [−4, 4], and the area is A(x) = (8 − x)(12 + 3x) = 96 + 12x − 3x2.
Since A′(x) = 12 − 6x = 6(2 − x) is positive for x < 2 and negative for x > 2, A(x) is increasing for x in [−4, 2]
and decreasing for x in [2, 4]. So the maximum area is A(2) = 108.

-4
4

8-8

12

-12

x

x-3

16. Suppose that the lower left corner of S is at (x,−3x). As in Exercise 15, it’s clear that the maximum intersection

occurs for some x in [−4, 4]. If −4 ≤ x ≤ 4

3
, then the area is the same as in Exercise 15, A(x) = (8−x)(12 + 3x) =

96 + 12x− 3x2. But if
4

3
≤ x ≤ 4, then the height of the intersection is only 16, so the area is A(x) = 16(8− x).

For x in

(
−4,

4

3

)
, A′(x) = 6(2−x) > 0, so A(x) is increasing on

[
−4,

4

3

]
. For x in

(
4

3
, 4

)
, A′(x) = −16, so A(x)

is decreasing on

[
4

3
, 4

]
. Hence the maximum area is A

(
4

3

)
=

320

3
.

-4
4

8-8

12

-12

x

x-3

17. Suppose that the lower left corner of S is at (x,−6x). From the figure it’s clear that the maximum area of the
intersection of R and S occurs for some x in [−2, 2], and the area is A(x) = (8 − x)(12 + 6x) = 96 + 36x − 6x2.
Since A′(x) = 36− 12x = 12(3− x) is positive for x < 2, A(x) is increasing for x in [−2, 2]. So the maximum area
is A(2) = 144.
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-2
2

8-8

12

-12

x

x-6

18. Suppose the printable area has width x inches; then its height is
42

x
inches. The width of the paper is x + 3

inches and its height is
42

x
+ 2 inches, so its area is A(x) = (x+ 3)

(
42

x
+ 2

)
= 2x+ 48 +

126

x
square inches. We

must minimize this for x in (0,+∞). Since A′(x) = 2 − 126

x2
=

2(x2 − 63)

x2
, A(x) is decreasing on

(
0,
√

63
)

and

increasing on
(√

63,+∞
)
. So the minimum area occurs for x =

√
63 = 3

√
7; the width of the paper is 3

√
7 + 3

inches and the height is 2
√

7 + 2 inches.

x

x

x x42/ 42/  +2

+3

19. Let the box have dimensions x, x, y, with y ≥ x. The constraint is 4x+ y ≤ 108, and the volume V = x2y. If we
take y = 108− 4x then V = x2(108− 4x) and dV/dx = 12x(−x+ 18) with roots x = 0, 18. The maximum value
of V occurs at x = 18, y = 36 with V = 11, 664 in3. The First Derivative Test shows this is indeed a maximum.

20. Let the box have dimensions x, x, y with x ≥ y. The constraint is x + 2(x + y) ≤ 108, and the volume V = x2y.
Take x = (108− 2y)/3 = 36− 2y/3, V = y(36− 2y/3)2, dV/dy = (4/3)y2− 96y+ 1296 with roots y = 18, 54. Then
d2V/dy2 = (8/3)y− 96 is negative for y = 18, so by the second derivative test, V has a maximum of 10, 368 in3 at
y = 18, x = 24.

21. Let x be the length of each side of a square, then V = x(3 − 2x)(8 − 2x) = 4x3 − 22x2 + 24x for 0 ≤ x ≤ 3/2;
dV/dx = 12x2 − 44x + 24 = 4(3x − 2)(x − 3), dV/dx = 0 when x = 2/3 for 0 < x < 3/2. If x = 0, 2/3, 3/2 then
V = 0, 200/27, 0 so the maximum volume is 200/27 ft3.

22. Let x = length of each edge of base, y = height. The cost is C = (cost of top and bottom) + (cost of sides)
= (2)(2x2) + (3)(4xy) = 4x2 + 12xy, but V = x2y = 2250, thus y = 2250/x2, so C = 4x2 + 27000/x for x > 0,
dC/dx = 8x− 27000/x2, dC/dx = 0 when x = 3

√
3375 = 15, d2C/dx2 > 0 so C is least when x = 15, y = 10.

23. Let x = length of each edge of base, y = height, k = $/cm2 for the sides. The cost is C = (2k)(2x2) + (k)(4xy) =
4k(x2 + xy), but V = x2y = 2000 thus y = 2000/x2 so C = 4k(x2 + 2000/x) for x > 0, dC/dx = 4k(2x −
2000/x2), dC/dx = 0 when x = 3

√
1000 = 10, d2C/dx2 > 0 so C is least when x = 10, y = 20.

24. Let x and y be the dimensions shown in the figure and V the volume, then V = x2y. The amount of material is to

be 1000 ft2, thus (area of base) + (area of sides) = 1000, x2 + 4xy = 1000, y =
1000− x2

4x
so V = x2 1000− x2

4x
=
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1

4
(1000x − x3) for 0 < x ≤ 10

√
10.

dV

dx
=

1

4
(1000 − 3x2),

dV

dx
= 0 when x =

√
1000/3 = 10

√
10/3. If

x = 0, 10
√

10/3, 10
√

10 then V = 0,
5000

3

√
10/3, 0; the volume is greatest for x = 10

√
10/3 ft and y = 5

√
10/3 ft.

x
x

y

25. Let x = height and width, y = length. The surface area is S = 2x2 + 3xy where x2y = V , so y = V/x2 and
S = 2x2 + 3V/x for x > 0; dS/dx = 4x − 3V/x2, dS/dx = 0 when x = 3

√
3V/4, d2S/dx2 > 0 so S is minimum

when x =
3

√
3V

4
, y =

4

3
3

√
3V

4
.

26. The area of the window is A = 2rh + πr2/2, the perimeter is p = 2r + 2h + πr thus h =
1

2
[p − (2 + π)r] so

A = r[p − (2 + π)r] + πr2/2 = pr − (2 + π/2)r2 for 0 ≤ r ≤ p/(2 + π), dA/dr = p − (4 + π)r, dA/dr = 0 when
r = p/(4 + π) and d2A/dr2 < 0, so A is maximum when r = p/(4 + π).

2r

r

h

27. Let r and h be the dimensions shown in the figure, then the volume of the inscribed cylinder is V = πr2h. But

r2 +

(
h

2

)2
= R2 so r2 = R2 − h2

4
. Hence V = π

(
R2 − h2

4

)
h = π

(
R2h− h3

4

)
for 0 ≤ h ≤ 2R.

dV

dh
=

π

(
R2 − 3

4
h2

)
,
dV

dh
= 0 when h = 2R/

√
3. If h = 0, 2R/

√
3, 2R then V = 0,

4π

3
√

3
R3, 0 so the volume is largest

when h = 2R/
√

3 and r =
√

2/3R.

h
2

h

r

R

28. Let r and h be the dimensions shown in the figure, then the surface area is S = 2πrh+ 2πr2. But r2 +

(
h

2

)2
= R2

so h = 2
√
R2 − r2. Hence S = 4πr

√
R2 − r2 + 2πr2 for 0 ≤ r ≤ R,

dS

dr
=

4π(R2 − 2r2)√
R2 − r2

+ 4πr;
dS

dr
= 0 when

R2 − 2r2

√
R2 − r2

= −r, R2 − 2r2 = −r
√
R2 − r2, R4 − 4R2r2 + 4r4 = r2(R2 − r2), 5r4 − 5R2r2 + R4 = 0, and using

the quadratic formula r2 =
5R2 ±

√
25R4 − 20R4

10
=

5±
√

5

10
R2, r =

√
5±
√

5

10
R, of which only r =

√
5 +
√

5

10
R
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satisfies the original equation. If r = 0,

√
5 +
√

5

10
R, 0 then S = 0, (5+

√
5)πR2, 2πR2 so the surface area is greatest

when r =

√
5 +
√

5

10
R and, from h = 2

√
R2 − r2, h = 2

√
5−
√

5

10
R.

h
2

h

r

R

29. From (13), S = 2πr2 + 2πrh. But V = πr2h thus h = V/(πr2) and so S = 2πr2 + 2V/r for r > 0. dS/dr =
4πr − 2V/r2, dS/dr = 0 if r = 3

√
V/(2π). Since d2S/dr2 = 4π + 4V/r3 > 0, the minimum surface area is achieved

when r = 3
√
V/2π and so h = V/(πr2) = [V/(πr3)]r = 2r.

30. V = πr2h where S = 2πr2 + 2πrh so h =
S − 2πr2

2πr
, V =

1

2
(Sr − 2πr3) for r > 0.

dV

dr
=

1

2
(S − 6πr2) = 0

if r =
√
S/(6π),

d2V

dr2
= −6πr < 0 so V is maximum when r =

√
S/(6π) and h =

S − 2πr2

2πr
=

S − 2πr2

2πr2
r =

S − S/3
S/3

r = 2r, thus the height is equal to the diameter of the base.

31. The surface area is S = πr2 + 2πrh where V = πr2h = 500 so h = 500/(πr2) and S = πr2 + 1000/r for r > 0;
dS/dr = 2πr−1000/r2 = (2πr3−1000)/r2, dS/dr = 0 when r = 3

√
500/π, d2S/dr2 > 0 for r > 0 so S is minimum

when r = 3
√

500/π cm and h =
500

πr2
=

500

π

( π

500

)2/3

= 3
√

500/π cm.

r

h

32. The total area of material used is A = Atop + Abottom + Aside = (2r)2 + (2r)2 + 2πrh = 8r2 + 2πrh. The volume
is V = πr2h thus h = V/(πr2) so A = 8r2 + 2V/r for r > 0, dA/dr = 16r − 2V/r2 = 2(8r3 − V )/r2, dA/dr = 0
when r = 3

√
V /2. This is the only critical point, d2A/dr2 > 0 there so the least material is used when r = 3

√
V /2,

r

h
=

r

V/(πr2)
=
π

V
r3 and, for r =

3
√
V /2,

r

h
=
π

V

V

8
=
π

8
.

33. Let x be the length of each side of the squares and y the height of the frame, then the volume is V = x2y. The total
length of the wire is L thus 8x+ 4y = L, y = (L− 8x)/4 so V = x2(L− 8x)/4 = (Lx2 − 8x3)/4 for 0 ≤ x ≤ L/8.
dV/dx = (2Lx− 24x2)/4, dV/dx = 0 for 0 < x < L/8 when x = L/12. If x = 0, L/12, L/8 then V = 0, L3/1728, 0
so the volume is greatest when x = L/12 and y = L/12.

34. (a) Let x = diameter of the sphere, y = length of an edge of the cube. The combined volume is V =
1

6
πx3 + y3

and the surface area is S = πx2 + 6y2 = constant. Thus y =
(S − πx2)1/2

61/2
and V =

π

6
x3 +

(S − πx2)3/2

63/2
for
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0 ≤ x ≤
√
S

π
;
dV

dx
=

π

2
x2 − 3π

63/2
x(S − πx2)1/2 =

π

2
√

6
x(
√

6x −
√
S − πx2).

dV

dx
= 0 when x = 0, or when

√
6x =

√
S − πx2, 6x2 = S − πx2, x2 =

S

6 + π
, x =

√
S

6 + π
. If x = 0,

√
S

6 + π
,

√
S

π
, then V =

S3/2

63/2
,

S3/2

6
√

6 + π
,

S3/2

6
√
π

so that V is smallest when x =

√
S

6 + π
, and hence when y =

√
S

6 + π
, thus x = y.

(b) From part (a), the sum of the volumes is greatest when there is no cube.

35. Let h and r be the dimensions shown in the figure, then the volume is V =
1

3
πr2h. But r2 + h2 = L2 thus

r2 = L2−h2 so V =
1

3
π(L2−h2)h =

1

3
π(L2h−h3) for 0 ≤ h ≤ L.

dV

dh
=

1

3
π(L2−3h2).

dV

dh
= 0 when h = L/

√
3.

If h = 0, L/
√

3, 0 then V = 0,
2π

9
√

3
L3, 0 so the volume is as large as possible when h = L/

√
3 and r =

√
2/3L.

h L

r

36. Let r and h be the radius and height of the cone (see figure). The slant height of any such cone will be R, the

radius of the circular sheet. Refer to the solution of Exercise 35 to find that the largest volume is
2π

9
√

3
R3.

h R

r

37. The area of the paper is A = πrL = πr
√
r2 + h2, but V =

1

3
πr2h = 100 so h = 300/(πr2) and A =

πr
√
r2 + 90000/(π2r4). To simplify the computations let S = A2, S = π2r2

(
r2 +

90000

π2r4

)
= π2r4 +

90000

r2

for r > 0,
dS

dr
= 4π2r3 − 180000

r3
=

4(π2r6 − 45000)

r3
, dS/dr = 0 when r = 6

√
45000/π2, d2S/dr2 > 0, so S and

hence A is least when r = 6
√

45000/π2 =
√

2 3
√

75/π cm, h =
300

π
3
√
π2/45000 = 2 3

√
75/π cm.

h L

r

38. The area of the triangle is A =
1

2
hb. By similar triangles (see figure)

b/2

h
=

R√
h2 − 2Rh

, b =
2Rh√

h2 − 2Rh
so
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A =
Rh2

√
h2 − 2Rh

for h > 2R,
dA

dh
=

Rh2(h− 3R)

(h2 − 2Rh)3/2
,
dA

dh
= 0 for h > 2R when h = 3R, by the first derivative test

A is minimum when h = 3R. If h = 3R then b = 2
√

3R (the triangle is equilateral).

R

h − R

R

h

b
b/2

h2 − 2Rh

39. The volume of the cone is V =
1

3
πr2h. By similar triangles (see figure)

r

h
=

R√
h2 − 2Rh

, r =
Rh√

h2 − 2Rh
so

V =
1

3
πR2 h3

h2 − 2Rh
=

1

3
πR2 h2

h− 2R
for h > 2R,

dV

dh
=

1

3
πR2h(h− 4R)

(h− 2R)2
,
dV

dh
= 0 for h > 2R when h = 4R, by

the first derivative test V is minimum when h = 4R. If h = 4R then r =
√

2R.

r

R

h − R

R

h

h2 − 2Rh

40. Let x = number of steers per acre, w = average market weight per steer, T = total market weight per acre. Then
T = xw where w = 2000 − 50(x − 20) = 3000 − 50x so T = x(3000 − 50x) = 3000x − 50x2 for 0 ≤ x ≤ 60,
dT/dx = 3000−100x and dT/dx = 0 when x = 30. If x = 0, 30, 60 then T = 0, 45000, 0 so the total market weight
per acre is largest when 30 steers per acre are allowed.

41. The revenue is R(x) = x(225− 0.25x) = 225x− 0.25x2. The marginal revenue is R′(x) = 225− 0.5x =
1

2
(450−x).

Since R′(x) > 0 for x < 450 and R′(x) < 0 for x > 450, the maximum revenue occurs when the company mines
450 tons of ore.

42. The revenue from producing x units of fertilizer is R(x) = x(300 − 0.1x) = 300x − 0.1x2, so the profit is P (x) =
R(x) − C(x) = −15000 + 175x − 0.125x2; we must maximize this for x in [0,1000]. The marginal profit is
P ′(x) = 175− 0.25x, so the maximum profit occurs when the producer manufactures 700 units of fertilizer.

43. (a) The daily profit is P = (revenue) − (production cost) = 100x − (100, 000 + 50x + 0.0025x2) = −100, 000 +
50x − 0.0025x2 for 0 ≤ x ≤ 7000, so dP/dx = 50 − 0.005x and dP/dx = 0 when x = 10, 000. Because 10,000 is
not in the interval [0, 7000], the maximum profit must occur at an endpoint. When x = 0, P = −100, 000; when
x = 7000, P = 127, 500 so 7000 units should be manufactured and sold daily.

(b) Yes, because dP/dx > 0 when x = 7000 so profit is increasing at this production level.

(c) dP/dx = 15 when x = 7000, so P (7001)− P (7000) ≈ 15, and the marginal profit is $15.

44. (a) R(x) = px but p = 1000− x so R(x) = (1000− x)x.

(b) P (x) = R(x)− C(x) = (1000− x)x− (3000 + 20x) = −3000 + 980x− x2.
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(c) P ′(x) = 980− 2x, P ′(x) = 0 for 0 < x < 500 when x = 490; test the points 0, 490, 500 to find that the profit
is a maximum when x = 490.

(d) P (490) = 237,100.

(e) p = 1000− x = 1000− 490 = 510.

45. The profit is P = (profit on nondefective) − (loss on defective) = 100(x − y) − 20y = 100x − 120y but y =
0.01x+ 0.00003x2, so P = 100x− 120(0.01x+ 0.00003x2) = 98.8x− 0.0036x2 for x > 0, dP/dx = 98.8− 0.0072x,
dP/dx = 0 when x = 98.8/0.0072 ≈ 13, 722, d2P/dx2 < 0 so the profit is maximum at a production level of about
13,722 pounds.

46. To cover 1 mile requires 1/v hours, and 1/(10 − 0.07v) gallons of diesel fuel, so the total cost to the client is

C =
15

v
+

2.50

10− 0.07v
,
dC

dv
=

0.1015v2 + 21v − 1500

v2(0.07v − 10)2
. By the second derivative test, C has a minimum of about

67.9 cents/mile at v ≈ 56.18 miles per hour.

47. The area is (see figure) A =
1

2
(2 sin θ)(4 + 4 cos θ) = 4(sin θ + sin θ cos θ) for 0 ≤ θ ≤ π/2; dA/dθ = 4(cos θ −

sin2 θ + cos2 θ) = 4(cos θ − [1 − cos2 θ] + cos2 θ) = 4(2 cos2 θ + cos θ − 1) = 4(2 cos θ − 1)(cos θ + 1). dA/dθ = 0
when θ = π/3 for 0 < θ < π/2. If θ = 0, π/3, π/2 then A = 0, 3

√
3, 4 so the maximum area is 3

√
3.

4
2 cos θ

θ

4 cos θ

2 sin θ2

48. Let b and h be the dimensions shown in the figure, then the cross-sectional area is A =
1

2
h(5 + b). But h = 5 sin θ

and b = 5 + 2(5 cos θ) = 5 + 10 cos θ so A =
5

2
sin θ(10 + 10 cos θ) = 25 sin θ(1 + cos θ) for 0 ≤ θ ≤ π/2.

dA/dθ = −25 sin2 θ + 25 cos θ(1 + cos θ) = 25(− sin2 θ + cos θ + cos2 θ) = 25(−1 + cos2 θ + cos θ + cos2 θ) =
25(2 cos2 θ + cos θ − 1) = 25(2 cos θ − 1)(cos θ + 1). dA/dθ = 0 for 0 < θ < π/2 when cos θ = 1/2, θ = π/3. If
θ = 0, π/3, π/2 then A = 0, 75

√
3/4, 25 so the cross-sectional area is greatest when θ = π/3.

b
5 cos θ

θ

55

5

h = 5 sin θ

49. I = k
cosφ

`2
, k the constant of proportionality. If h is the height of the lamp above the table then cosφ = h/` and

` =
√
h2 + r2 so I = k

h

`3
= k

h

(h2 + r2)3/2
for h > 0,

dI

dh
= k

r2 − 2h2

(h2 + r2)5/2
,
dI

dh
= 0 when h = r/

√
2, by the first

derivative test I is maximum when h = r/
√

2.

50. Let L, L1, and L2 be as shown in the figure, then L = L1 +L2 = 8 csc θ+ sec θ,
dL

dθ
= −8 csc θ cot θ+ sec θ tan θ =

−8 cos θ

sin2 θ
+

sin θ

cos2 θ
=
−8 cos3 θ + sin3 θ

sin2 θ cos2 θ
, 0 < θ < π/2;

dL

dθ
= 0 if sin3 θ = 8 cos3 θ, tan3 θ = 8, tan θ = 2 which gives

the absolute minimum for L because lim
θ→0+

L = lim
θ→π/2−

L = +∞. If tan θ = 2, then csc θ =
√

5/2 and sec θ =
√

5

so L = 8(
√

5/2) +
√

5 = 5
√

5 ft.
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1

8

θ

L2

L1

L

51. The distance between the particles is D =
√

(1− t− t)2 + (t− 2t)2 =
√

5t2 − 4t+ 1 for t ≥ 0. For convenience,
we minimize D2 instead, so D2 = 5t2 − 4t + 1, dD2/dt = 10t − 4, which is 0 when t = 2/5. d2D2/dt2 > 0 so D2

hence D is minimum when t = 2/5. The minimum distance is D = 1/
√

5.

52. The distance between the particles is D =
√

(2t− t)2 + (2− t2)2 =
√
t4 − 3t2 + 4 for t ≥ 0. For convenience, we

minimize D2 instead, so D2 = t4− 3t2 + 4, dD2/dt = 4t3− 6t = 4t(t2− 3/2), which is 0 for t > 0 when t =
√

3/2.

d2D2/dt2 = 12t2 − 6 > 0 when t =
√

3/2 so D2 hence D is minimum there. The minimum distance is D =
√

7/2.

53. If P (x0, y0) is on the curve y = 1/x2, then y0 = 1/x2
0. At P the slope of the tangent line is −2/x3

0 so its equation

is y − 1

x2
0

= − 2

x3
0

(x − x0), or y = − 2

x3
0

x +
3

x2
0

. The tangent line crosses the y-axis at
3

x2
0

, and the x-axis at
3

2
x0.

The length of the segment then is L =

√
9

x4
0

+
9

4
x2

0 for x0 > 0. For convenience, we minimize L2 instead, so

L2 =
9

x4
0

+
9

4
x2

0,
dL2

dx0
= −36

x5
0

+
9

2
x0 =

9(x6
0 − 8)

2x5
0

, which is 0 when x6
0 = 8, x0 =

√
2.

d2L2

dx2
0

> 0 so L2 and hence L

is minimum when x0 =
√

2, y0 = 1/2.

54. If P (x0, y0) is on the curve y = 1 − x2, then y0 = 1 − x2
0. At P the slope of the tangent line is −2x0 so its

equation is y − (1 − x2
0) = −2x0(x − x0), or y = −2x0x + x2

0 + 1. The y-intercept is x2
0 + 1 and the x-intercept

is
1

2
(x0 + 1/x0) so the area A of the triangle is A =

1

4
(x2

0 + 1)(x0 + 1/x0) =
1

4
(x3

0 + 2x0 + 1/x0) for 0 ≤ x0 ≤ 1.

dA/dx0 =
1

4
(3x2

0 + 2 − 1/x2
0) =

1

4
(3x4

0 + 2x2
0 − 1)/x2

0 which is 0 when x2
0 = −1 (reject), or when x2

0 = 1/3 so

x0 = 1/
√

3. d2A/dx2
0 =

1

4
(6x0 + 2/x3

0) > 0 at x0 = 1/
√

3 so a relative minimum and hence the absolute minimum

occurs there.

55. At each point (x, y) on the curve the slope of the tangent line is m =
dy

dx
= − 2x

(1 + x2)2
for any x,

dm

dx
=

2(3x2 − 1)

(1 + x2)3
,

dm

dx
= 0 when x = ±1/

√
3, by the first derivative test the only relative maximum occurs at x = −1/

√
3, which is

the absolute maximum because lim
x→±∞

m = 0. The tangent line has greatest slope at the point (−1/
√

3, 3/4).

56. (a)
dN

dt
= 250(20−t)e−t/20 = 0 at t = 20, N(0) = 125,000, N(20) ≈ 161,788, and N(100) ≈ 128,369; the absolute

maximum is N = 161788 at t = 20, the absolute minimum is N = 125,000 at t = 0.

(b) The absolute minimum of
dN

dt
occurs when

d2N

dt2
= 12.5(t− 40)e−t/20 = 0, t = 40. The First Derivative Test

shows that this is indeed a minimum value.

57. Let C be the center of the circle and let θ be the angle 6 PWE. Then 6 PCE = 2θ, so the distance along the shore

from E to P is 2θ miles. Also, the distance from P to W is 2 cos θ miles. So Nancy takes t(θ) =
2θ

8
+

2 cos θ

2
=
θ

4
+

cos θ hours for her training routine; we wish to find the extrema of this for θ in [0,
π

2
]. We have t′(θ) =

1

4
− sin θ, so

the only critical point in [0,
π

2
] is θ = sin−1(

1

4
). So we compute t(0) = 1, t(sin−1(

1

4
)) =

1

4
sin−1(

1

4
)+

√
15

4
≈ 1.0314,
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and t(
π

2
) =

π

8
≈ 0.3927.

(a) The minimum is t(
π

2
) =

π

8
≈ 0.3927. To minimize the time, Nancy should choose P = W ; i.e. she should jog

all the way from E to W , π miles.

(b) The maximum is t(sin−1(
1

4
)) =

1

4
sin−1(

1

4
) +

√
15

4
≈ 1.0314. To maximize the time, she should jog

2 sin−1(
1

4
) ≈ 0.5054 miles.

W EC

P

2!

!

!

58. Let x be how far P is upstream from where the man starts (see figure), then the total time to reach T is t = (time

from M to P ) + (time from P to T ) =

√
x2 + 1

rR
+

1− x
rW

for 0 ≤ x ≤ 1, where rR and rW are the rates at which

he can row and walk, respectively.

(a) t =

√
x2 + 1

3
+

1− x
5

,
dt

dx
=

x

3
√
x2 + 1

− 1

5
so

dt

dx
= 0 when 5x = 3

√
x2 + 1, 25x2 = 9(x2 + 1), x2 = 9/16,

x = 3/4. If x = 0, 3/4, 1 then t = 8/15, 7/15,
√

2/3 so the time is a minimum when x = 3/4 mile.

(b) t =

√
x2 + 1

4
+

1− x
5

,
dt

dx
=

x

4
√
x2 + 1

− 1

5
so

dt

dx
= 0 when x = 4/3 which is not in the interval [0, 1]. Check

the endpoints to find that the time is a minimum when x = 1 (he should row directly to the town).

M

TP

1

1
x

59. With x and y as shown in the figure, the maximum length of pipe will be the smallest value of L = x + y.

By similar triangles
y

8
=

x√
x2 − 16

, y =
8x√

x2 − 16
so L = x +

8x√
x2 − 16

for x > 4,
dL

dx
= 1 − 128

(x2 − 16)3/2
,

dL

dx
= 0 when (x2 − 16)3/2 = 128, x2 − 16 = 1282/3 = 16(22/3), x2 = 16(1 + 22/3), x = 4(1 + 22/3)1/2, d2L/dx2 =

384x/(x2 − 16)5/2 > 0 if x > 4 so L is smallest when x = 4(1 + 22/3)1/2. For this value of x, L = 4(1 + 22/3)3/2 ft.



210 Chapter 4

8

4

x

y

x2 – 16

60. Label points as shown at right. Let the distance AB be x feet. Since BD = 3, AD =
√

9 + x2. Since AC = x+ 5

and triangles ABD and ACE are similar, the length of the rod is L(x) = AE =
AC

AB
· AD =

x+ 5

x

√
9 + x2 =

(1 + 5x−1)
√

9 + x2. We must minimize this for x ≥ 4. We have L′(x) =
x3 − 45

x2
√

9 + x2
> 0 for x ≥ 4, so L is

increasing on [4,+∞). Hence the minimum length is L(4) =
45

4
= 11.25 feet; it occurs when the left part of the

rod lies on top of the left half of the barrier.

A B C

D

E

61. Let x = distance from the weaker light source, I = the intensity at that point, and k the constant of pro-

portionality. Then I =
kS

x2
+

8kS

(90− x)2
if 0 < x < 90;

dI

dx
= −2kS

x3
+

16kS

(90− x)3
=

2kS[8x3 − (90− x)3]

x3(90− x)3
=

18
kS(x− 30)(x2 + 2700)

x3(x− 90)3
, which is 0 when x = 30;

dI

dx
< 0 if x < 30, and

dI

dx
> 0 if x > 30, so the intensity is

minimum at a distance of 30 cm from the weaker source.

62. θ = π−(α+β) = π−cot−1(x−2)−cot−1 5− x
4

,
dθ

dx
=

1

1 + (x− 2)2
+

−1/4

1 + (5− x)2/16
=

−3(x2 − 2x− 7)

[1 + (x− 2)2][16 + (5− x)2]
,

dθ/dx = 0 when x =
2±
√

4 + 28

2
= 1± 2

√
2, only 1 + 2

√
2 is in [2, 5]; dθ/dx > 0 for x in [2, 1 + 2

√
2), dθ/dx < 0

for x in (1 + 2
√

2, 5], θ is maximum when x = 1 + 2
√

2.

x

y

A(2, 1)

B(5, 4)

P(x, 0)

52
x – 2 5 – x

� �
�

63. θ = α − β = cot−1(x/12) − cot−1(x/2),
dθ

dx
= − 12

144 + x2
+

2

4 + x2
=

10(24− x2)

(144 + x2)(4 + x2)
, dθ/dx = 0 when

x =
√

24 = 2
√

6 feet, by the first derivative test θ is maximum there.
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64. Let v = speed of light in the medium. The total time required for the light to travel from A to P to B is t =

(total distance from A to P to B)/v =
1

v

(√
(c− x)2 + a2 +

√
x2 + b2

)
, so

dt

dx
=

1

v

[
− c− x√

(c− x)2 + a2
+

x√
x2 + b2

]

and
dt

dx
= 0 when

x√
x2 + b2

=
c− x√

(c− x)2 + a2
. But x/

√
x2 + b2 = sin θ2 and (c − x)/

√
(c− x)2 + a2 = sin θ1.

Hence dt/dx = 0 when sin θ2 = sin θ1, so θ2 = θ1.

65. The total time required for the light to travel from A to P to B is t = (time from A to P )+ (time from P to B) =√
x2 + a2

v1
+

√
(c− x)2 + b2

v2
,
dt

dx
=

x

v1

√
x2 + a2

− c− x
v2

√
(c− x)2 + b2

but x/
√
x2 + a2 = sin θ1 and

(c− x)/
√

(c− x)2 + b2 = sin θ2 thus
dt

dx
=

sin θ1

v1
− sin θ2

v2
so

dt

dx
= 0 when

sin θ1

v1
=

sin θ2

v2
.

66. (a) The rate at which the farmer walks is analogous to the speed of light in Fermat’s principle.

(b) The best path occurs when θ1 = θ2 (see figure). x 1 − x

3
4

1
4

θ2

θ1
House

Barn

(c) By similar triangles, x/(1/4) = (1− x)/(3/4), 3x = 1− x, 4x = 1, x = 1/4 mi.

67. s = (x1 − x̄)2 + (x2 − x̄)2 + · · · + (xn − x̄)2, ds/dx̄ = −2(x1 − x̄) − 2(x2 − x̄) − · · · − 2(xn − x̄), ds/dx̄ = 0

when (x1 − x̄) + (x2 − x̄) + · · · + (xn − x̄) = 0, (x1 + x2 + · · · + xn) − nx̄ = 0, x̄ =
1

n
(x1 + x2 + · · · + xn),

d2s/dx̄2 = 2 + 2 + · · ·+ 2 = 2n > 0, so s is minimum when x̄ =
1

n
(x1 + x2 + · · ·+ xn).

68. If f(x0) is a maximum then f(x) ≤ f(x0) for all x in some open interval containing x0 thus
√
f(x) ≤

√
f(x0)

because
√
x is an increasing function, so

√
f(x0) is a maximum of

√
f(x) at x0. The proof is similar for a minimum

value, simply replace ≤ by ≥.

69. If we ignored the interval of possible values of the variables, we might find an extremum that is not physically
meaningful, or conclude that there is no extremum. For instance, in Example 2, if we didn’t restrict x to the
interval [0, 8], there would be no maximum value of V , since lim

x→+∞
(480x− 92x2 + 4x3) = +∞.

Exercise Set 4.6

1. (a) Positive, negative, slowing down.

(b) Positive, positive, speeding up.
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(c) Negative, positive, slowing down.

2. (a) Positive, slowing down.

(b) Negative, slowing down.

(c) Positive, speeding up.

3. (a) Left because v = ds/dt < 0 at t0.

(b) Negative because a = d2s/dt2 and the curve is concave down at t0(d2s/dt2 < 0).

(c) Speeding up because v and a have the same sign.

(d) v < 0 and a > 0 at t1 so the particle is slowing down because v and a have opposite signs.

4. (a) III (b) I (c) II

5.
t (s)

s (m)

6. (a) When s ≥ 0, so 0 < t < 2 and 4 < t ≤ 7.

(b) When the slope is zero, at t = 3.

(c) When s is decreasing, so 0 ≤ t < 3.

7.

1 2 3 4 5 6

–10

–5

0

5

10

15

t

|v|

6

t

a

–15

15

8. (a) v ≈ (30− 10)/(15− 10) = 20/5 = 4 m/s.

(b)

t

v

t

a

2525

(1) (2)
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9. False. A particle is speeding up when its speed versus time curve is increasing. When the position versus time
graph is increasing, the particle is moving in the positive direction along the s-axis.

10. True; see equation (1).

11. False. Acceleration is the derivative of velocity.

12. True; see the first figure in Table 4.6.1.

13. (a) At 60 mi/h the tangent line seems to pass through the points (5, 42) and (10, 63). Thus the acceleration

would be
v1 − v0

t1 − t0
· 5280

602
=

63− 42

10− 5
· 5280

602
≈ 6.2 ft/s2.

(b) The maximum acceleration occurs at maximum slope, so when t = 0.

14. (a) At 60 mi/h the tangent line seems to pass through the points (5, 52) and (10, 79). Thus the acceleration

would be
v1 − v0

t1 − t0
· 5280

602
=

79− 52

10− 5
· 5280

602
≈ 7.9 ft/s2.

(b) The maximum acceleration occurs at maximum slope, so when t = 0.

15. (a) t 1 2 3 4 5

s 0.71 1.00 0.71 0.00 −0.71

v 0.56 0.00 −0.56 −0.79 −0.56

a −0.44 −0.62 −0.44 0.00 0.44

(b) To the right at t = 1, stopped at t = 2, otherwise to the left.

(c) Speeding up at t = 3; slowing down at t = 1, 5; neither at t = 2, 4.

16. (a) t 1 2 3 4 5

s 0.37 2.16 4.03 4.68 4.21

v 1.10 2.16 1.34 0 −0.84

a 1.84 0 −1.34 −1.17 −0.51

(b) To the right at t = 1, 2, 3, stopped at t = 4, to the left at t = 5.

(c) Speeding up at t = 1, 5; slowing down at t = 3; stopped at t = 4, neither at t = 2.

17. (a) v(t) = 3t2 − 6t, a(t) = 6t− 6.

(b) s(1) = −2 ft, v(1) = −3 ft/s, speed = 3 ft/s, a(1) = 0 ft/s2.

(c) v = 0 at t = 0, 2.

(d) For t ≥ 0, v(t) changes sign at t = 2, and a(t) changes sign at t = 1; so the particle is speeding up for
0 < t < 1 and 2 < t and is slowing down for 1 < t < 2.

(e) Total distance = |s(2)− s(0)|+ |s(5)− s(2)| = | − 4− 0|+ |50− (−4)| = 58 ft.

18. (a) v(t) = 4t3 − 8t, a(t) = 12t2 − 8.

(b) s(1) = 1 ft, v(1) = −4 ft/s, speed = 4 ft/s, a(1) = 4 ft/s
2
.
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(c) v = 0 at t = 0,
√

2.

(d) For t ≥ 0, v(t) changes sign at t =
√

2, and a(t) changes sign at t =
√

6/3. The particle is speeding up for
0 < t <

√
6/3 and

√
2 < t and slowing down for

√
6/3 < t <

√
2.

(e) Total distance = |s(
√

2)− s(0)|+ |s(5)− s(
√

2)| = |0− 4|+ |529− 0| = 533 ft.

19. (a) s(t) = 9− 9 cos(πt/3), v(t) = 3π sin(πt/3), a(t) = π2 cos(πt/3).

(b) s(1) = 9/2 ft, v(1) = 3π
√

3/2 ft/s, speed = 3π
√

3/2 ft/s, a(1) = π2/2 ft/s
2
.

(c) v = 0 at t = 0, 3.

(d) For 0 < t < 5, v(t) changes sign at t = 3 and a(t) changes sign at t = 3/2, 9/2; so the particle is speeding up
for 0 < t < 3/2 and 3 < t < 9/2 and slowing down for 3/2 < t < 3 and 9/2 < t < 5.

(e) Total distance = |s(3)− s(0)|+ |s(5)− s(3)| = |18− 0|+ |9/2− 18| = 18 + 27/2 = 63/2 ft.

20. (a) v(t) =
4− t2

(t2 + 4)2
, a(t) =

2t(t2 − 12)

(t2 + 4)3
.

(b) s(1) = 1/5 ft, v(1) = 3/25 ft/s, speed = 3/25 ft/s, a(1) = −22/125 ft/s2.

(c) v = 0 at t = 2.

(d) a changes sign at t = 2
√

3, so the particle is speeding up for 2 < t < 2
√

3 and it is slowing down for 0 < t < 2
and for 2

√
3 < t.

(e) Total distance = |s(2)− s(0)|+ |s(5)− s(2)| =
∣∣∣∣
1

4
− 0

∣∣∣∣+

∣∣∣∣
5

29
− 1

4

∣∣∣∣ =
19

58
ft.

21. (a) s(t) = (t2 + 8)e−t/3 ft, v(t) =
(
− 1

3 t
2 + 2t− 8

3

)
e−t/3 ft/s, a(t) =

(
1
9 t

2 − 4
3 t+ 26

9

)
e−t/3 ft/s

2
.

(b) s(1) = 9e−1/3 ft, v(1) = −e−1/3 ft/s, speed= e−1/3 ft/s, a(1) = 5
3e
−1/3 ft/s

2
.

(c) v = 0 for t = 2, 4.

(d) v changes sign at t = 2, 4 and a changes sign at t = 6±
√

10, so the particle is speeding up for 2 < t < 6−
√

10
and 4 < t < 6 +

√
10, and slowing down for 0 < t < 2, 6−

√
10 < t < 4 and t > 6 +

√
10.

(e) Total distance = |s(2)−s(0)|+|s(4)−s(2)|+|s(5)−s(4)|= |12e−2/3−8|+|24e−4/3−12e−2/3|+|33e−5/3−24e−4/3|
= (8− 12e−2/3) + (24e−4/3 − 12e−2/3) + (24e−4/3 − 33e−5/3) = 8− 24e−2/3 + 48e−4/3 − 33e−5/3 ≈ 2.098 ft.

22. (a) s(t) = 1
4 t

2 − ln(t+ 1), v(t) =
t2 + t− 2

2(t+ 1)
, a(t) =

t2 + 2t+ 3

2(t+ 1)2
.

(b) s(1) = 1
4 − ln 2 ft, v(1) = 0 ft/s, speed = 0 ft/s, a(1) = 3

4 ft/s
2
.

(c) v = 0 for t = 1.

(d) v changes sign at t = 1 and a does not change sign, so the particle is slowing down for 0 < t < 1 and speeding
up for t > 1.

(e) Total distance = |s(5)−s(1)|+ |s(1)−s(0)| = |25/4− ln 6− (1/4− ln 2)|+ |1/4− ln 2| = 23/4+ln(2/3) ≈ 5.345
ft.
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23. v(t) =
5− t2

(t2 + 5)2
, a(t) =

2t(t2 − 15)

(t2 + 5)3
.

0.25

0
0 20

s(t)

0.2

–0.05

0 20

v(t)

0.01

–0.15

0 10

a(t)

(a) v = 0 at t =
√

5.

(b) s =
√

5/10 at t =
√

5.

(c) a changes sign at t =
√

15, so the particle is speeding up for
√

5 < t <
√

15 and slowing down for 0 < t <
√

5
and
√

15 < t.

24. v(t) = (1− t)e−t, a(t) = (t− 2)e−t.

2

0
0 2

s(t)

1

–0.2

0 2

v(t)

0.5

–2

0 3

a(t)

(a) v = 0 at t = 1.

(b) s = 1/e at t = 1.

(c) a changes sign at t = 2, so the particle is speeding up for 1 < t < 2 and slowing down for 0 < t < 1 and 2 < t.

25. s = −4t+ 3, v = −4, a = 0.

30

Not speeding up,
not slowing down

t = 3/4

–3

t = 3/2 t = 0 s

26. s = 5t2 − 20t, v = 10t− 20, a = 10. Starts at s = 0 to the left, turns around at t = 2 at s = −20, then moves to
the right, speeding up.

27. s = t3 − 9t2 + 24t, v = 3(t− 2)(t− 4), a = 6(t− 3).

2018160

t = 2 (Stopped)t = 0

(Stopped) t = 4
t = 3

s

Speeding up

Slowing down

Slowing down

28. s = t3 − 6t2 + 9t+ 1, v = 3(t− 1)(t− 3), a = 6(t− 2).
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531

t = 1 (Stopped)

t = 0

(Stopped) t = 3 t = 2

s

Speeding up

Slowing down

29. s = 16te−t
2/8, v = (−4t2 + 16)e−t

2/8, a = t(−12 + t2)e−t
2/8.

t = 2√3

0 10 20

Speeding up

Slowing down

t = +∞

t = 0
t = 2 (Stopped)

s

30. s = t+ 25/(t+ 2), v = (t− 3)(t+ 7)/(t+ 2)2, a = 50/(t+ 2)3.

12.5108
s

Slowing down

t = 3
t = 0

Speeding up

31. s =

{
cos t, 0 ≤ t ≤ 2π

1, t > 2π
, v =

{
− sin t, 0 ≤ t ≤ 2π

0, t > 2π
, a =

{
− cos t, 0 ≤ t < 2π

0, t > 2π
.

10-1
s

Speeding up

t = c
t = c/2

t = 3c/2 t = 2c
t = 0

(Stopped
permanently)

Slowing down

32. s =

{
2t(t− 2)2, 0 ≤ t ≤ 3

13− 7(t− 4)2, t > 3
, v =

{
6t2 − 16t+ 8, 0 ≤ t ≤ 3
−14t+ 56, t > 3

, a =

{
12t− 16, 0 ≤ t < 3
−14, t > 3

.

1364/27 60

t = 4 (Stopped)

t = 2/3 (Stopped)
t = 0

t = 2
(Stopped)

t = 3

t = 4/3

s

Speeding up

Slowing down

33. (a) v = 10t − 22, speed = |v| = |10t − 22|. d|v|/dt does not exist at t = 2.2 which is the only critical point. If
t = 1, 2.2, 3 then |v| = 12, 0, 8. The maximum speed is 12 ft/s.

(b) The distance from the origin is |s| = |5t2 − 22t| = |t(5t − 22)|, but t(5t − 22) < 0 for 1 ≤ t ≤ 3 so
|s| = −(5t2 − 22t) = 22t − 5t2, d|s|/dt = 22 − 10t, thus the only critical point is t = 2.2. d2|s|/dt2 < 0 so the
particle is farthest from the origin when t = 2.2 s. Its position is s = 5(2.2)2 − 22(2.2) = −24.2 ft.

34. v = − 200t

(t2 + 12)2
, speed = |v| = 200t

(t2 + 12)2
for t ≥ 0.

d|v|
dt

=
600(4− t2)

(t2 + 12)3
= 0 when t = 2, which is the only critical

point in (0,+∞). By the first derivative test there is a relative maximum, and hence an absolute maximum, at
t = 2. The maximum speed is 25/16 ft/s to the left.

35. s = ln(3t2 − 12t+ 13), v =
6t− 12

3t2 − 12t+ 13
, a = −6(3t2 − 12t+ 11)

(3t2 − 12t+ 13)2
.
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(a) a = 0 when t = 2±
√

3/3; s(2−
√

3/3) = ln 2; s(2 +
√

3/3) = ln 2; v(2−
√

3/3) = −
√

3; v(2 +
√

3/3) =
√

3.

(b) v = 0 when t = 2; s(2) = 0; a(2) = 6.

36. s = t3 − 6t2 + 1, v = 3t2 − 12t, a = 6t− 12.

(a) a = 0 when t = 2; s = −15, v = −12.

(b) v = 0 when 3t2− 12t = 3t(t− 4) = 0, t = 0 or t = 4. If t = 0, then s = 1 and a = −12; if t = 4, then s = −31
and a = 12.

37. (a)

1.5

0
0 5

(b) v =
2t√

2t2 + 1
, lim
t→+∞

v =
2√
2

=
√

2.

38. (a) a =
dv

dt
=
dv

ds

ds

dt
= v

dv

ds
because v =

ds

dt
.

(b) v =
3

2
√

3t+ 7
=

3

2s
;
dv

ds
= − 3

2s2
; a = − 9

4s3
= −9/500.

39. (a) s1 = s2 if they collide, so
1

2
t2 − t+ 3 = −1

4
t2 + t+ 1,

3

4
t2 − 2t+ 2 = 0 which has no real solution.

(b) Find the minimum value of D = |s1 − s2| =
∣∣∣∣
3

4
t2 − 2t+ 2

∣∣∣∣. From part (a),
3

4
t2 − 2t+ 2 is never zero, and for

t = 0 it is positive, hence it is always positive, so D =
3

4
t2 − 2t+ 2.

dD

dt
=

3

2
t− 2 = 0 when t =

4

3
.
d2D

dt2
> 0 so D

is minimum when t =
4

3
, D =

2

3
.

(c) v1 = t− 1, v2 = −1

2
t+ 1. v1 < 0 if 0 ≤ t < 1, v1 > 0 if t > 1; v2 < 0 if t > 2, v2 > 0 if 0 ≤ t < 2. They are

moving in opposite directions during the intervals 0 ≤ t < 1 and t > 2.

40. (a) sA − sB = 20− 0 = 20.

(b) sA = sB , 15t2 + 10t+ 20 = 5t2 + 40t, 10t2 − 30t+ 20 = 0, (t− 2)(t− 1) = 0, t = 1 or t = 2.

(c) vA = vB , 30t + 10 = 10t + 40, 20t = 30, t = 3/2. When t = 3/2, sA = 275/4 and sB = 285/4 so car B is
ahead of car A.

41. r(t) =
√
v2(t), r′(t) = 2v(t)v′(t)/[2

√
v2(t)] = v(t)a(t)/|v(t)| so r′(t) > 0 (speed is increasing) if v and a have the

same sign, and r′(t) < 0 (speed is decreasing) if v and a have opposite signs.

42. If the radius of the wheel is R, then the bicycle travels a distance 2πR during one wheel rotation. If the time for

one rotation is T , then the average velocity during that time is
2πR

T
. Usually the bicycle’s velocity will not change

much during one rotation, so the average will be a good approximation of the instantaneous velocity.
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43. While the fuel is burning, the acceleration is positive and the rocket is speeding up. After the fuel is gone, the
acceleration (due to gravity) is negative and the rocket slows down until it reaches the highest point of its flight.
Then the acceleration is still negative, and the rocket speeds up as it falls, until it hits the ground. After that
the acceleration is zero, and the rocket neither speeds up nor slows down. During the powered part of the flight,
the acceleration is not constant, and it’s hard to say whether it will be increasing or decreasing. First, the power
output of the engine may not be constant. Even if it is, the mass of the rocket decreases as the fuel is used up,
which tends to increase the acceleration. But as the rocket moves faster, it encounters more air resistance, which
tends to decrease the acceleration. Air resistance also acts during the free-fall part of the flight. While the rocket
is still rising, air resistance increases the deceleration due to gravity; while the rocket is falling, air resistance
decreases the deceleration.

launch

fuel gone

crash

Exercise Set 4.7

1. f(x) = x2 − 2, f ′(x) = 2x, xn+1 = xn −
x2
n − 2

2xn
; x1 = 1, x2 = 1.5, x3 ≈ 1.416666667, . . . , x5 ≈ x6 ≈ 1.414213562.

2. f(x) = x2 − 5, f ′(x) = 2x, xn+1 = xn −
x2
n − 5

2xn
; x1 = 2, x2 = 2.25, x3 ≈ 2.236111111, x4 ≈ 2.2360679779, x4 ≈

x5 ≈ 2.2360679775.

3. f(x) = x3 − 6, f ′(x) = 3x2, xn+1 = xn −
x3
n − 6

3x2
n

; x1 = 2, x2 ≈ 1.833333333, x3 ≈ 1.817263545, . . . , x5 ≈ x6 ≈
1.817120593.

4. xn − a = 0.

5. f(x) = x3 − 2x − 2, f ′(x) = 3x2 − 2, xn+1 = xn −
x3
n − 2xn − 2

3x2
n − 2

; x1 = 2, x2 = 1.8, x3 ≈ 1.7699481865, x4 ≈
1.7692926629, x5 ≈ x6 ≈ 1.7692923542.

6. f(x) = x3 + x − 1, f ′(x) = 3x2 + 1, xn+1 = xn −
x3
n + xn − 1

3x2
n + 1

; x1 = 1, x2 = 0.75, x3 ≈ 0.686046512, . . . ,

x5 ≈ x6 ≈ 0.682327804.

7. f(x) = x5+x4−5, f ′(x) = 5x4+4x3, xn+1 = xn−
x5
n + x4

n − 5

5x4
n + 4x3

n

; x1 = 1, x2 ≈ 1.333333333, x3 ≈ 1.239420573, . . . , x6 ≈
x7 ≈ 1.224439550.

8. f(x) = x5 − 3x + 3, f ′(x) = 5x4 − 3, xn+1 = xn −
x5
n − 3xn + 3

5x4
n − 3

; x1 = −1.5, x2 ≈ −1.49579832, x3 ≈ x4 ≈
−1.49577135.

9. There are 2 solutions. f(x) = x4 +x2−4, f ′(x) = 4x3 +2x, xn+1 = xn−
x4
n + x2

n − 4

4x3
n + 2xn

; x1 = −1, x2 ≈ −1.3333, x3 ≈
−1.2561, x4 ≈ −1.24966, . . . , x7 ≈ x8 ≈ −1.249621068.
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16

–5

–2.2 2.2

10. There are 3 solutions. f(x) = x5 − 5x3 − 2, f ′(x) = 5x4 − 15x2, xn+1 = xn −
x5
n − 5x3

n − 2

5x4
n − 15x2

n

; x1 = 2, x2 = 2.5,

x3 ≈ 2.327384615, . . . , x7 ≈ x8 ≈ 2.273791732.

10

–20

–2.5 2.5

11. There is 1 solution. f(x) = 2 cosx−x, f ′(x) = −2 sinx−1, xn+1 = xn−
2 cosx− x
−2 sinx− 1

; x1 = 1, x2 ≈ 1.03004337, x3 ≈
1.02986654, x4 ≈ x5 ≈ 1.02986653.

8

–6

O o

12. There are 2 solutions. f(x) = sinx−x2, f ′(x) = cosx− 2x, xn+1 = xn−
sinxn − x2

n

cosxn − 2xn
; x1 = 1, x2 ≈ 0.891395995,

x3 ≈ 0.876984845, . . . , x5 ≈ x6 ≈ 0.876726215.

0.3

–1.3

0 1.5

13. There are infinitely many solutions. f(x) = x − tanx, f ′(x) = 1 − sec2 x = − tan2 x, xn+1 = xn +
xn − tanxn

tan2 xn
;

x1 = 4.5, x2 ≈ 4.493613903, x3 ≈ 4.493409655, x4 ≈ x5 ≈ 4.493409458.

100

–100

6 i
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14. There are infinitely many solutions. f(x) = 1+ex sinx, f ′(x) = ex(cosx+sinx), xn+1 = xn−
1 + exn sinxn

exn(cosxn + sinxn)
;

x1 = 3, x2 ≈ 3.2249, x3 ≈ 3.1847,. . . , x10 ≈ x11 ≈ 3.183063012.

3

–22

0 c

15. The graphs of y = x3 and y = 1− x intersect once, near x = 0.7. Let f(x) = x3 + x− 1, so that f ′(x) = 3x2 + 1,

and xn+1 = xn −
x3
n + xn − 1

3x2
n + 1

. If x1 = 0.7 then x2 ≈ 0.68259109, x3 ≈ 0.68232786, x4 ≈ x5 ≈ 0.68232780.

4

–1

–1 2

16. The graphs of y = sinx and y = x3 − 2x2 + 1 intersect 3 times, near x = −0.8 and x = 0.6 and x = 2. Let

f(x) = sinx− x3 + 2x2 − 1; then f ′(x) = cosx− 3x2 + 4x, so xn+1 = xn −
cosxn − 3x2

n + 4xn
sinxn − x3

n + 2x2
n + 1

. If x1 = −0.8,

then x2 ≈ −0.783124811, x3 ≈ −0.782808234, x4 ≈ x5 ≈ −0.782808123; if x1 = 0.6, then x2 ≈ 0.568003853, x3 ≈
x4 ≈ 0.568025739; if x1 = 2, then x2 ≈ 1.979461151, x3 ≈ 1.979019264, x4 ≈ x5 ≈ 1.979019061.

-1 1 2

-1

x

y

17. The graphs of y = x2 and y =
√

2x+ 1 intersect twice, near x = −0.5 and x = 1.4. x2 =
√

2x+ 1, x4−2x−1 = 0.

Let f(x) = x4− 2x− 1, then f ′(x) = 4x3− 2 so xn+1 = xn−
x4
n − 2xn − 1

4x3
n − 2

. If x1 = −0.5, then x2 = −0.475, x3 ≈
−0.474626695, x4 ≈ x5 ≈ −0.474626618; if x1 = 1, then x2 = 2, x3 ≈ 1.633333333, . . . , x8 ≈ x9 ≈ 1.395336994.

4

0
–0.5 2

18. The graphs of y = 1
8x

3−1 and y = cosx−2 intersect twice, at x = 0 and near x = −2. Let f(x) = 1
8x

3 + 1− cosx

so that f ′(x) = 3
8x

2 + sinx. Then xn+1 = xn −
x3
n/8 + 1− cosxn
3x2

n/8 + sinxn
. If x1 = −2 then x2 ≈ −2.70449471,

x3 ≈ −2.46018026, . . . , x6 ≈ x7 ≈ −2.40629382.
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0

–3

–3 2

19. Between x = 0 and x = π, the graphs of y = 1 and y = ex sinx intersect twice, near x = 1 and x = 3. Let f(x) =

1− ex sinx, f ′(x) = −ex(cosx+ sinx), and xn+1 = xn+
1− exn sinxn

exn(cosxn + sinxn)
. If x1 = 1 then x2 ≈ 0.65725814, x3 ≈

0.59118311, . . . , x5 ≈ x6 ≈ 0.58853274, and if x1 = 3 then x2 ≈ 3.10759324, x3 ≈ 3.09649396, . . . , x5 ≈ x6 ≈
3.09636393.

8

0
0 3.2

20. The graphs of y = e−x and y = lnx intersect near x = 1.3; let f(x) = e−x − lnx, f ′(x) = −e−x − 1/x, x1 = 1.3,

xn+1 = xn +
e−xn − lnxn
e−xn + 1/xn

, x2 ≈ 1.309759929, x4 = x5 ≈ 1.309799586.

1

–4

0 2

21. True. See the discussion before equation (1).

22. False. Newton’s method usually only finds an approximation to a solution of f(x) = 0.

23. False. The function f(x) = x3 − x2 − 110x has 3 roots: x = −10, x = 0, and x = 11. Newton’s method in

this case gives xn+1 = xn −
x3
n − x2

n − 110xn
3x2

n − 2xn − 110
=

2x3
n − x2

n

3x2
n − 2xn − 110

. Starting from x1 = 5, we find x2 = −5,

x3 = x4 = x5 = · · · = 11. So the method converges to the root x = 11, although the root closest to x1 is x = 0.

24. True. If the curves are y = f(x) and y = g(x), then the x-coordinates of their intersections are roots of f(x) = g(x).
We may approximate these by applying Newton’s method to f(x)− g(x).

25. (a) f(x) = x2 − a, f ′(x) = 2x, xn+1 = xn −
x2
n − a
2xn

=
1

2

(
xn +

a

xn

)
.

(b) a = 10; x1 = 3, x2 ≈ 3.166666667, x3 ≈ 3.162280702, x4 ≈ x5 ≈ 3.162277660.

26. (a) f(x) =
1

x
− a, f ′(x) = − 1

x2
, xn+1 = xn(2− axn).

(b) a = 17; x1 = 0.05, x2 = 0.0575, x3 = 0.05879375, x4 ≈ 0.05882351, x5 ≈ x6 ≈ 0.05882353.
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27. f ′(x) = x3 + 2x − 5; solve f ′(x) = 0 to find the critical points. Graph y = x3 and y = −2x + 5 to see that

they intersect at a point near x = 1.25; f ′′(x) = 3x2 + 2 so xn+1 = xn −
x3
n + 2xn − 5

3x2
n + 2

. x1 = 1.25, x2 ≈
1.3317757009, x3 ≈ 1.3282755613, x4 ≈ 1.3282688557, x5 ≈ 1.3282688557 so the minimum value of f(x) occurs at
x ≈ 1.3282688557 because f ′′(x) > 0; its value is approximately −4.098859132.

28. From a rough sketch of y = x sinx we see that the maximum occurs at a point near x = 2, which will be a point

where f ′(x) = x cosx+sinx = 0. f ′′(x) = 2 cosx−x sinx so xn+1 = xn−
xn cosxn + sinxn

2 cosxn − xn sinxn
= xn−

xn + tanxn
2− xn tanxn

.

x1 = 2, x2 ≈ 2.029048281, x3 ≈ 2.028757866, x4 ≈ x5 ≈ 2.028757838; the maximum value is approximately
1.819705741.

29. A graphing utility shows that there are two inflection points at x ≈ 0.25,−1.25. These points are the zeros of

f ′′(x) = (x4 + 4x3 + 8x2 + 4x− 1)
e−x

(x2 + 1)3
. It is equivalent to find the zeros of g(x) = x4 + 4x3 + 8x2 + 4x− 1.

One root is x = −1 by inspection. Since g′(x) = 4x3 + 12x2 + 16x + 4, Newton’s Method becomes xn+1 =

xn−
x4
n + 4x3

n + 8x2
n + 4xn − 1

4x3
n + 12x2

n + 16xn + 4
With x0 = 0.25, x1 ≈ 0.18572695, x2 ≈ 0.179563312, x3 ≈ 0.179509029, x4 ≈ x5 ≈

0.179509025. So the points of inflection are at x ≈ 0.17951, x = −1.

30. f ′(x) = −2 tan−1 x+
1− 2x

x2 + 1
= 0 for x = x1 ≈ 0.245147, f(x1) ≈ 0.122536 (with x0 = 0.1).

31. Let f(x) be the square of the distance between (1, 0) and any point (x, x2) on the parabola, then f(x) = (x−1)2 +
(x2− 0)2 = x4 +x2− 2x+ 1 and f ′(x) = 4x3 + 2x− 2. Solve f ′(x) = 0 to find the critical points; f ′′(x) = 12x2 + 2

so xn+1 = xn −
4x3

n + 2xn − 2

12x2
n + 2

= xn −
2x3

n + xn − 1

6x2
n + 1

. x1 = 1, x2 ≈ 0.714285714, x3 ≈ 0.605168701, . . . , x6 ≈ x7 ≈
0.589754512; the coordinates are approximately (0.589754512, 0.347810385).

32. The area is A = xy = x cosx so dA/dx = cosx− x sinx. Find x so that dA/dx = 0; d2A/dx2 = −2 sinx− x cosx

so xn+1 = xn +
cosxn − xn sinxn

2 sinxn + xn cosxn
= xn +

1− xn tanxn
2 tanxn + xn

. x1 = 1, x2 ≈ 0.864536397, x3 ≈ 0.860339078,

x4 ≈ x5 ≈ 0.860333589; y ≈ 0.652184624.

33. (a) Let s be the arc length, and L the length of the chord, then s = 1.5L. But s = rθ and L = 2r sin(θ/2) so
rθ = 3r sin(θ/2), θ − 3 sin(θ/2) = 0.

(b) Let f(θ) = θ − 3 sin(θ/2), then f ′(θ) = 1 − 1.5 cos(θ/2) so θn+1 = θn −
θn − 3 sin(θn/2)

1− 1.5 cos(θn/2)
. θ1 = 3, θ2 ≈

2.991592920, θ3 ≈ 2.991563137, θ4 ≈ θ5 ≈ 2.991563136 rad so θ ≈ 171◦.

34. r2(θ − sin θ)/2 = πr2/4 so θ − sin θ − π/2 = 0. Let f(θ) = θ − sin θ − π/2, then f ′(θ) = 1 − cos θ so θn+1 =
θn − sin θn − π/2

1− cos θn
. θ1 = 2, θ2 ≈ 2.339014106, θ3 ≈ 2.310063197, . . . , θ5 ≈ θ6 ≈ 2.309881460 rad; θ ≈ 132◦.

35. If x = 1, then y4+y = 1, y4+y−1 = 0. Graph z = y4 and z = 1−y to see that they intersect near y = −1 and y = 1.

Let f(y) = y4 + y − 1, then f ′(y) = 4y3 + 1 so yn+1 = yn −
y4
n + yn − 1

4y3
n + 1

. If y1 = −1, then y2 ≈ −1.333333333,

y3 ≈ −1.235807860, . . . , y6 ≈ y7 ≈ −1.220744085; if y1 = 1, then y2 = 0.8, y3 ≈ 0.731233596, . . . , y6 ≈ y7 ≈
0.724491959.

36. If x = 2, then 2y − cos y = 0. Graph z = 2y and z = cos y to see that they intersect near y = 0.5. Let

f(y) = 2y−cos y, then f ′(y) = 2+sin y so yn+1 = yn−
2yn − cos yn

2 + sin yn
. y1 = 0.5, y2 ≈ 0.450626693, y3 ≈ 0.450183648,

y4 ≈ y5 ≈ 0.450183611.

37. S(25) = 250,000 =
5000

i

[
(1 + i)25 − 1

]
; set f(i) = 50i− (1 + i)25 + 1, f ′(i) = 50− 25(1 + i)24; solve f(i) = 0. Set
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i0 = .06 and ik+1 = ik −
[
50i− (1 + i)25 + 1

]
/
[
50− 25(1 + i)24

]
. Then i1 ≈ 0.05430, i2 ≈ 0.05338, i3 ≈ 0.05336,

. . . , i ≈ 0.053362.

38. (a) xn tends to +∞; x1 = 2, x2 ≈ 5.3333, x3 ≈ 11.055, x4 ≈ 22.293, x5 ≈ 44.676.

0.5

0
0 15

(b) xn tends to 0. x1 = 0.5, x2 ≈ −0.3333, x3 ≈ 0.0833, x4 ≈ −0.0012, x5 ≈ 0.0000.

39. (a) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0.5000 −0.7500 0.2917 −1.5685 −0.4654 0.8415 −0.1734 2.7970 1.2197 0.1999

(b) The sequence xn must diverge, since if it did converge then f(x) = x2 +1 = 0 would have a solution. It seems
the xn are oscillating back and forth in a quasi-cyclical fashion.

40. (a) xn+1 = xn, i.e. the constant sequence xn is generated.

(b) This is equivalent to f(xn) = 0 as in part (a).

(c) The x’s oscillate between two values: xn = xn+2 = xn+4 = · · · and xn+1 = xn+3 = xn+5 = · · ·

41. Suppose we know an interval [a, b] such that f(a) and f(b) have opposite signs. Here are some differences between
the two methods:

The Intermediate-Value method is guaranteed to converge to a root in [a, b]; Newton’s Method starting from some
x1 in the interval might not converge, or might converge to some root outside of the interval.

If the starting approximation x1 is close enough to the actual root, then Newton’s Method converges much faster
than the Intermediate-Value method.

Newton’s Method can only be used if f is differentiable and we have a way to compute f ′(x) for any x. For the
Intermediate-Value method we only need to be able to compute f(x).

42. As will be shown later in the text, the best quadratic approximation to f(x) at xn is the function p(x) =

f(xn) + f ′(xn)(x− xn) +
1

2
f ′′(xn)(x− xn)2. Solving p(x) = 0 by the quadratic formula gives

x = xn +
−f ′(xn)±

√
f ′(xn)2 − 2f(xn)f ′′(xn)

f ′′(xn)
.

We immediately see 3 disadvantages of this method: (1) We need to have a formula for f ′′, not just for f ′ as in
Newton’s Method. (2) We need to compute a square root, of a number which might be negative. (3) We need to
decide which of two roots to use as xn+1.

Point (3) is easily dealt with: we want the method to converge, so the value of xn+1 will need to be close to xn.
So let’s choose the plus or minus sign so that the numerator is as close to zero as possible. Thus, we’ll use a plus
sign if f ′(xn) is positive and a minus sign if it’s negative. (We’ll ignore the case in which f ′(xn) = 0.) Thus, we

let xn+1 = xn +
−f ′(xn) + sgn(f ′(xn))

√
f ′(xn)2 − 2f(xn)f ′′(xn)

f ′′(xn)
, where sgn(x) is 1 if x is positive and −1 if it’s

negative.
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As an example, let’s try to find the root x = 1 of f(x) = x3 − 1 using this method and Newton’s Method. In
Newton’s Method,

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x3
n − 1

3x2
n

=
2x3

n + 1

3x2
n

.

In the quadratic method, f ′(xn) = 3x2
n > 0 (unless xn = 0), so sgn(f ′(xn)) = 1 and

xn+1 = xn +
−3x2

n +
√

(3x2
n)2 − 2(x3

n − 1) · 6xn
6xn

=
xn
2

+

√
12xn − 3x4

n

6xn
.

To use this, we’ll need to restrict xn so that 12xn−3x4
n > 0; i.e. 0 < xn <

3
√

4 ≈ 1.587. So let’s start with xn = 1.1
in both methods:

n xn(Newton) xn(quadratic)
1 1.1 1.1
2 1.0088154269972452 0.999663173605500
3 1.0000768082965652 1.000000000012738
4 1.0000000058989103 1− 6.88922 · 10−34

5 1 + 3.47971 · 10−17 1 + 1.08991 · 10−100

6 1 + 1.21084 · 10−33 1− 4.31565 · 10−301

7 1 + 1.46614 · 10−66 1 + 2.67928 · 10−902

We see that the quadratic method does converge faster than Newton’s Method. It can be shown that in this
example, if xn = 1 + ε where ε is close to zero, then Newton’s Method gives xn+1 ≈ 1 + ε2 and the quadratic

method gives xn+1 ≈ 1 − 1

3
ε3. Roughly speaking, if xn is accurate to N decimal places then Newton’s Method

gives xn+1 accurate to about 2N decimal places, while the quadratic method gives xn+1 accurate to about 3N
decimal places. So one step of the quadratic method improves the accuracy by more than one step of Newton’s
Method, but not as much as two steps of Newton’s Method. In most cases, this faster convergence is offset by the
additional amount of computation that’s required for each step, so Newton’s Method is usually preferable.

Exercise Set 4.8

1. f is continuous on [3, 5] and differentiable on (3, 5), f(3) = f(5) = 0; f ′(x) = 2x− 8, 2c− 8 = 0, c = 4, f ′(4) = 0.

2. f is continuous on [0, 4] and differentiable on (0, 4), f(0) = f(4) = 0; f ′(x) =
1

2
− 1

2
√
x
,

1

2
− 1

2
√
c

= 0, c =

1, f ′(1) = 0.

3. f is continuous on [π/2, 3π/2] and differentiable on (π/2, 3π/2), f(π/2) = f(3π/2) = 0, f ′(x) = − sinx, − sin c = 0,
c = π.

4. f is continuous on [−1, 3] and differentiable on (−1, 3), f(−1) = f(3) = 0; f ′(1) = 0; f ′(x) = 2(1− x)/(4 + 2x−
x2); 2(1− c) = 0, c = 1.

5. f is continuous on [−3, 5] and differentiable on (−3, 5), (f(5) − f(−3))/(5 − (−3)) = 1; f ′(x) = 2x − 1; 2c − 1 =
1, c = 1.

6. f is continuous on [−1, 2] and differentiable on (−1, 2), f(−1) = −6, f(2) = 6, f ′(x) = 3x2 + 1, 3c2 + 1 =
6− (−6)

2− (−1)
= 4, c2 = 1, c = ±1 of which only c = 1 is in (−1, 2).

7. f is continuous on [−5, 3] and differentiable on (−5, 3), (f(3) − f(−5))/(3 − (−5)) = 1/2; f ′(x) = − x√
25− x2

;

− c√
25− c2

= 1/2, c = −
√

5.

8. f is continuous on [3, 4] and differentiable on (3, 4), f(4) = 15/4, f(3) = 8/3, solve f ′(c) = (15/4−8/3)/1 = 13/12;
f ′(x) = 1 + 1/x2, f ′(c) = 1 + 1/c2 = 13/12, c2 = 12, c = ±2

√
3, but −2

√
3 is not in the interval, so c = 2

√
3.
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9. (a) f(−2) = f(1) = 0. The interval is [−2, 1].

(b) c ≈ −1.29.

6

–2

–2 1

(c) x0 = −1, x1 = −1.5, x2 = −1.328125, x3 ≈ −1.2903686, x4 ≈ −1.2885882, x5 ≈ x6 ≈ −1.2885843.

10. (a) m =
f(−2)− f(1)

−2− 1
=

0 + 3

−3
= −1 so y + 3 = −(x− 1), y = −x− 2.

(b) f ′(x) = 3x2 − 4 = −1 has solutions x = ±1; discard x = 1, so c = −1.

(c) y − (3) = −(x− (−1)) or y = −x+ 2.

(d)

4

–4

–3 2

11. False. Rolle’s Theorem only applies to the case in which f is differentiable on (a, b) and the common value of f(a)
and f(b) is zero.

12. True. This is a restatement of the Mean-Value Theorem.

13. False. The Constant Difference Theorem states that if the derivatives are equal, then the functions differ by a
constant.

14. True. See the proof of Theorem 4.1.2(a) in this Section.

15. (a) f ′(x) = sec2 x, sec2 c = 0 has no solution. (b) tanx is not continuous on [0, π].

16. (a) f(−1) = 1, f(8) = 4, f ′(x) =
2

3
x−1/3,

2

3
c−1/3 =

4− 1

8− (−1)
=

1

3
, c1/3 = 2, c = 8 which is not in (−1, 8).

(b) x2/3 is not differentiable at x = 0, which is in (−1, 8).

17. (a) Two x-intercepts of f determine two solutions a and b of f(x) = 0; by Rolle’s Theorem there exists a point c
between a and b such that f ′(c) = 0, i.e. c is an x-intercept for f ′.

(b) f(x) = sinx = 0 at x = nπ, and f ′(x) = cosx = 0 at x = nπ + π/2, which lies between nπ and (n + 1)π,
(n = 0,±1,±2, . . .)

18.
f(x1)− f(x0)

x1 − x0
is the average rate of change of y with respect to x on the interval [x0, x1]. By the Mean-Value

Theorem there is a value c in (x0, x1) such that the instantaneous rate of change f ′(c) =
f(x1)− f(x0)

x1 − x0
.
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19. Let s(t) be the position function of the automobile for 0 ≤ t ≤ 5, then by the Mean-Value Theorem there is at
least one point c in (0, 5) where s′(c) = v(c) = [s(5)− s(0)]/(5− 0) = 4/5 = 0.8 mi/min = 48 mi/h.

20. Let T (t) denote the temperature at time with t = 0 denoting 11 AM, then T (0) = 76 and T (12) = 52.

(a) By the Mean-Value Theorem there is a value c between 0 and 12 such that T ′(c) = [T (12)−T (0)]/(12− 0) =
(52− 76)/(12) = −2◦ F/h.

(b) Assume that T (t1) = 88◦F where 0 < t1 < 12, then there is at least one point c in (t1, 12) where T ′(c) =
[T (12)− T (t1)]/(12− t1) = (52− 88)/(12− t1) = −36/(12− t1). But 12− t1 < 12 so T ′(c) < −3◦F.

21. Let f(t) and g(t) denote the distances from the first and second runners to the starting point, and let h(t) =
f(t) − g(t). Since they start (at t = 0) and finish (at t = t1) at the same time, h(0) = h(t1) = 0, so by Rolle’s
Theorem there is a time t2 for which h′(t2) = 0, i.e. f ′(t2) = g′(t2); so they have the same velocity at time t2.

22. Let f(x) = x ln(2 − x). Since f(0) = f(1) = 0 and f is differentiable on (0, 1), Rolle’s Theorem implies that

f ′(x) = 0 for some x in (0, 1). For this x, we have ln(2− x)− x

2− x = f ′(x) = 0, so x = (2− x) ln(2− x).

23. (a) By the Constant Difference Theorem f(x)− g(x) = k for some k; since f(x0) = g(x0), k = 0, so f(x) = g(x)
for all x.

(b) Set f(x) = sin2 x+cos2 x, g(x) = 1; then f ′(x) = 2 sinx cosx−2 cosx sinx = 0 = g′(x). Since f(0) = 1 = g(0),
f(x) = g(x) for all x.

24. (a) By the Constant Difference Theorem f(x) − g(x) = k for some k; since f(x0) − g(x0) = c, k = c, so
f(x)− g(x) = c for all x.

(b) Set f(x) = (x − 1)3, g(x) = (x2 + 3)(x − 3). Then f ′(x) = 3(x − 1)2 and g′(x) = (x2 + 3) + 2x(x − 3) =
3x2 − 6x + 3 = 3(x2 − 2x + 1) = 3(x − 1)2, so f ′(x) = g′(x) and hence f(x) − g(x) = k. To find k, let x = 0:
k = f(0)− g(0) = −1− (−9) = 8.

(c) h(x) = x3 − 3x2 + 3x− 1− (x3 − 3x2 + 3x− 9) = 8.

25. By the Constant Difference Theorem it follows that f(x) = g(x) + c; since g(1) = 0 and f(1) = 2 we get
c = 2; f(x) = xex − ex + 2.

26. By the Constant Difference Theorem f(x) = tan−1 x+ C and 2 = f(1) = tan−1(1) + C = π/4 + C, C = 2− π/4,
f(x) = tan−1 x+ 2− π/4.

27. (a) If x, y belong to I and x < y then for some c in I,
f(y)− f(x)

y − x = f ′(c), so |f(x) − f(y)| = |f ′(c)||x − y| ≤
M |x− y|; if x > y exchange x and y; if x = y the inequality also holds.

(b) f(x) = sinx, f ′(x) = cosx, |f ′(x)| ≤ 1 = M , so |f(x)− f(y)| ≤ |x− y| or | sinx− sin y| ≤ |x− y|.

28. (a) If x, y belong to I and x < y then for some c in I,
f(y)− f(x)

y − x = f ′(c), so |f(x) − f(y)| = |f ′(c)||x − y| ≥
M |x− y|; if x > y exchange x and y; if x = y the inequality also holds.

(b) If x and y belong to (−π/2, π/2) and f(x) = tanx, then |f ′(x)| = sec2 x ≥ 1 and | tanx− tan y| ≥ |x− y|.

(c) y lies in (−π/2, π/2) if and only if −y does; use part (b) and replace y with −y.

29. (a) Let f(x) =
√
x. By the Mean-Value Theorem there is a number c between x and y such that

√
y −√x
y − x =

1

2
√
c
<

1

2
√
x

for c in (x, y), thus
√
y −√x < y − x

2
√
x

.
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(b) Multiply through and rearrange to get
√
xy <

1

2
(x+ y).

30. Suppose that f(x) has at least two distinct real solutions r1 and r2 in I. Then f(r1) = f(r2) = 0 so by Rolle’s
Theorem there is at least one number between r1 and r2 where f ′(x) = 0, but this contradicts the assumption
that f ′(x) 6= 0, so f(x) = 0 must have fewer than two distinct solutions in I.

31. (a) If f(x) = x3 + 4x− 1 then f ′(x) = 3x2 + 4 is never zero, so by Exercise 30 f has at most one real root; since
f is a cubic polynomial it has at least one real root, so it has exactly one real root.

(b) Let f(x) = ax3 + bx2 + cx + d. If f(x) = 0 has at least two distinct real solutions r1 and r2, then
f(r1) = f(r2) = 0 and by Rolle’s Theorem there is at least one number between r1 and r2 where f ′(x) = 0. But
f ′(x) = 3ax2 + 2bx + c = 0 for x = (−2b ±

√
4b2 − 12ac)/(6a) = (−b ±

√
b2 − 3ac)/(3a), which are not real if

b2 − 3ac < 0 so f(x) = 0 must have fewer than two distinct real solutions.

32. f ′(x) =
1

2
√
x

,
1

2
√
c

=

√
4−
√

3

4− 3
= 2 −

√
3. But

1

4
<

1

2
√
c
<

1

2
√

3
for c in (3, 4), so

1

4
< 2 −

√
3 <

1

2
√

3
, so

√
3 < 2− 1

4
= 1.75 and 2−

√
3 <

1

2
√

3
yields

√
3 >

12

7
> 1.7.

33. By the Mean-Value Theorem on the interval [0, x],
tan−1 x− tan−1 0

x− 0
=

tan−1 x

x
=

1

1 + c2
for c in (0, x), but

1

1 + x2
<

1

1 + c2
< 1 for c in (0, x), so

1

1 + x2
<

tan−1 x

x
< 1,

x

1 + x2
< tan−1 x < x.

34. (a)
d

dx
[f2(x)− g2(x)] = 2f(x)f ′(x)− 2g(x)g′(x) = 2f(x)g(x)− 2g(x)f(x) = 0, so f2 − g2 is constant.

(b) f ′(x) =
1

2
(ex − e−x) = g(x), g′(x) =

1

2
(ex + e−x) = f(x).

35. (a)
d

dx
[f2(x) + g2(x)] = 2f(x)f ′(x) + 2g(x)g′(x) = 2f(x)g(x) + 2g(x)[−f(x)] = 0, so f2(x) + g2(x) is constant.

(b) f(x) = sinx and g(x) = cosx.

36. Let h = f−g, then h is continuous on [a, b], differentiable on (a, b), and h(a) = f(a)−g(a) = 0, h(b) = f(b)−g(b) =
0. By Rolle’s Theorem there is some c in (a, b) where h′(c) = 0. But h′(c) = f ′(c) − g′(c) so f ′(c) − g′(c) = 0,
f ′(c) = g′(c).

37.

y

x
c

38. (a) Suppose f ′(x) = 0 more than once in (a, b), say at c1 and c2. Then f ′(c1) = f ′(c2) = 0 and by using Rolle’s
Theorem on f ′, there is some c between c1 and c2 where f ′′(c) = 0, which contradicts the fact that f ′′(x) > 0 so
f ′(x) = 0 at most once in (a, b).

(b) If f ′′(x) > 0 for all x in (a, b), then f is concave up on (a, b) and has at most one relative extremum, which
would be a relative minimum, on (a, b).

39. (a) Similar to the proof of part (a) with f ′(c) < 0.
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(b) Similar to the proof of part (a) with f ′(c) = 0.

40. Let x 6= x0 be sufficiently near x0 so that there exists (by the Mean-Value Theorem) a number c (which depends on

x) between x and x0, such that
f(x)− f(x0)

x− x0
= f ′(c). Since c is between x and x0 it follows that lim

x→x0

f(x)− f(x0)

x− x0

= lim
x→x0

f ′(c) (by the Mean-Value Theorem) = lim
x→x0

f ′(x) (since lim f ′(x) exists and c is between x and x0). So

f ′(x0) exists and equals lim
x→x0

f ′(x).

41. If f is differentiable at x = 1, then f is continuous there; lim
x→1+

f(x) = lim
x→1−

f(x) = f(1) = 3, a + b = 3;

lim
x→1+

f ′(x) = a and lim
x→1−

f ′(x) = 6 so a = 6 and b = 3− 6 = −3.

42. (a) lim
x→0−

f ′(x) = lim
x→0−

2x = 0 and lim
x→0+

f ′(x) = lim
x→0+

2x = 0; f ′(0) does not exist because f is not continuous at

x = 0.

(b) lim
x→0−

f ′(x) = lim
x→0+

f ′(x) = 0 and f is continuous at x = 0, so f ′(0) = 0; lim
x→0−

f ′′(x) = lim
x→0−

(2) = 2 and

lim
x→0+

f ′′(x) = lim
x→0+

6x = 0, so f ′′(0) does not exist.

43. From Section 2.2 a function has a vertical tangent line at a point of its graph if the slopes of secant lines through the
point approach +∞ or −∞. Suppose f is continuous at x = x0 and lim

x→x+
0

f(x) = +∞. Then a secant line through

(x1, f(x1)) and (x0, f(x0)), assuming x1 > x0, will have slope
f(x1)− f(x0)

x1 − x0
. By the Mean Value Theorem, this

quotient is equal to f ′(c) for some c between x0 and x1. But as x1 approaches x0, c must also approach x0, and
it is given that lim

c→x+
0

f ′(c) = +∞, so the slope of the secant line approaches +∞. The argument can be altered

appropriately for x1 < x0, and/or for f ′(c) approaching −∞.

44. The result follows immediately from Rolle’s Theorem. Since the proof of Rolle’s theorem is based on the Extreme
Value Theorem, the result also follows from that theorem.

45. If an object travels s miles in t hours, then at some time during the trip its instantaneous speed is exactly s/t
miles per hour.

Chapter 4 Review Exercises

3. f ′(x) = 2x− 5, f ′′(x) = 2.

(a) [5/2,+∞) (b) (−∞, 5/2] (c) (−∞,+∞) (d) none (e) none

4. f ′(x) = 4x(x2 − 4), f ′′(x) = 12(x2 − 4/3).

(a) [−2, 0], [2,+∞) (b) (−∞,−2], [0, 2] (c) (−∞,−2/
√

3), (2/
√

3,+∞) (d) (−2/
√

3, 2/
√

3)

(e) −2/
√

3, 2/
√

3

5. f ′(x) =
4x

(x2 + 2)2
, f ′′(x) = −4

3x2 − 2

(x2 + 2)3
.

(a) [0,+∞) (b) (−∞, 0] (c) (−
√

2/3,
√

2/3) (d) (−∞,−
√

2/3), (
√

2/3,+∞) (e) −
√

2/3,
√

2/3

6. f ′(x) =
1

3
(x+ 2)−2/3, f ′′(x) = −2

9
(x+ 2)−5/3.

(a) (−∞,+∞) (b) none (c) (−∞,−2) (d) (−2,+∞) (e) −2
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7. f ′(x) =
4(x+ 1)

3x2/3
, f ′′(x) =

4(x− 2)

9x5/3
.

(a) [−1,+∞) (b) (−∞,−1] (c) (−∞, 0), (2,+∞) (d) (0, 2) (e) 0, 2

8. f ′(x) =
4(x− 1/4)

3x2/3
, f ′′(x) =

4(x+ 1/2)

9x5/3
.

(a) [1/4,+∞) (b) (−∞, 1/4] (c) (−∞,−1/2), (0,+∞) (d) (−1/2, 0) (e) −1/2, 0

9. f ′(x) = − 2x

ex2 , f ′′(x) =
2(2x2 − 1)

ex2 .

(a) (−∞, 0] (b) [0,+∞) (c) (−∞,−
√

2/2), (
√

2/2,+∞) (d) (−
√

2/2,
√

2/2) (e) −
√

2/2,
√

2/2

10. f ′(x) =
2x

1 + x4
, f ′′(x) = −2(−1 + 3x4)

(1 + x4)2
.

(a) [0,+∞) (b) (−∞, 0] (c) (−1/31/4, 1/31/4) (d) (−∞,−1/31/4), (1/31/4,+∞) (e) −1/31/4, 1/31/4

11. f ′(x) = − sinx, f ′′(x) = − cosx, increasing: [π, 2π], decreasing: [0, π], concave up: (π/2, 3π/2), concave down:
(0, π/2), (3π/2, 2π), inflection points: π/2, 3π/2.

1

–1

0 o

12. f ′(x) = sec2 x, f ′′(x) = 2 sec2 x tanx, increasing: (−π/2, π/2), decreasing: none, concave up: (0, π/2), concave
down: (−π/2, 0), inflection point: 0.

10

–10

^ 6

13. f ′(x) = cos 2x, f ′′(x) = −2 sin 2x, increasing: [0, π/4], [3π/4, π], decreasing: [π/4, 3π/4], concave up: (π/2, π),
concave down: (0, π/2), inflection point: π/2.

0.5

–0.5

0 p

14. f ′(x) = −2 cosx sinx− 2 cosx = −2 cosx(1 + sinx), f ′′(x) = 2 sinx (sinx+ 1)− 2 cos2 x = 2 sinx(sinx+ 1)− 2 +
2 sin2 x = 4(1 + sinx)(sinx − 1/2) (Note: 1 + sinx ≥ 0), increasing: [π/2, 3π/2], decreasing: [0, π/2], [3π/2, 2π],
concave up: (π/6, 5π/6), concave down: (0, π/6), (5π/6, 2π), inflection points: π/6, 5π/6.
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2

–2

0 o

15. (a) 2

4

x

y

(b) 2

4

x

y

(c) 2

4

x

y

16. (a) p(x) = x3 − x. (b) p(x) = x4 − x2. (c) p(x) = x5 − x4 − x3 + x2. (d) p(x) = x5 − x3.

17. f ′(x) = 2ax + b; f ′(x) > 0 or f ′(x) < 0 on [0,+∞) if f ′(x) = 0 has no positive solution, so the polynomial is
always increasing or always decreasing on [0,+∞) provided −b/2a ≤ 0.

18. f ′(x) = 3ax2 + 2bx + c; f ′(x) > 0 or f ′(x) < 0 on (−∞,+∞) if f ′(x) = 0 has no real solutions so from the
quadratic formula (2b)2 − 4(3a)c < 0, 4b2 − 12ac < 0, b2 − 3ac < 0. If b2 − 3ac = 0, then f ′(x) = 0 has only one
real solution at, say, x = c so f is always increasing or always decreasing on both (−∞, c] and [c,+∞), and hence
on (−∞,+∞) because f is continuous everywhere. Thus f is always increasing or decreasing if b2 − 3ac ≤ 0.

19. The maximum increase in y seems to occur near x = −1, y = 1/4.

–2 –1 1 2

0.25

0.5

x

y

20. y =
ax

1 + ax+k
, y′ =

ax ln a

(1 + ax+k)2
, y′′ = −a

x(ln a)2(ax+k − 1)

(1 + ax+k)3
; y′′ = 0 when x = −k and y′′ changes sign there.

22. (a) False; an example is y =
x3

3
− x2

2
on [−2, 2]; x = 0 is a relative maximum and x = 1 is a relative minimum,

but y = 0 is not the largest value of y on the interval, nor is y = −1

6
the smallest.

(b) True.

(c) False; for example y = x3 on (−1, 1) which has a critical number but no relative extrema.

24. (a) f ′(x) = 3x2 + 6x− 9 = 3(x+ 3)(x− 1), f ′(x) = 0 when x = −3, 1 (stationary points).

(b) f ′(x) = 4x(x2 − 3), f ′(x) = 0 when x = 0, ±
√

3 (stationary points).

25. (a) f ′(x) = (2− x2)/(x2 + 2)2, f ′(x) = 0 when x = ±
√

2 (stationary points).
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(b) f ′(x) = 8x/(x2 + 1)2, f ′(x) = 0 when x = 0 (stationary point).

26. (a) f ′(x) =
4(x+ 1)

3x2/3
, f ′(x) = 0 when x = −1 (stationary point), f ′(x) does not exist when x = 0.

(b) f ′(x) =
4(x− 3/2)

3x2/3
, f ′(x) = 0 when x = 3/2 (stationary point), f ′(x) does not exist when x = 0.

27. (a) f ′(x) =
7(x− 7)(x− 1)

3x2/3
; critical numbers at x = 0, 1, 7; neither at x = 0, relative maximum at x = 1, relative

minimum at x = 7 (First Derivative Test).

(b) f ′(x) = 2 cosx(1+2 sinx); critical numbers at x = π/2, 3π/2, 7π/6, 11π/6; relative maximum at x = π/2, 3π/2,
relative minimum at x = 7π/6, 11π/6.

(c) f ′(x) = 3− 3
√
x− 1

2
; critical number at x = 5; relative maximum at x = 5.

28. (a) f ′(x) =
x− 9

18x3/2
, f ′′(x) =

27− x
36x5/2

; critical number at x = 9; f ′′(9) > 0, relative minimum at x = 9.

(b) f ′(x) = 2
x3 − 4

x2
, f ′′(x) = 2

x3 + 8

x3
; critical number at x = 41/3, f ′′(41/3) > 0, relative minimum at x = 41/3.

(c) f ′(x) = sinx(2 cosx+1), f ′′(x) = 2 cos2 x−2 sin2 x+cosx; critical numbers at x = 2π/3, π, 4π/3; f ′′(2π/3) < 0,
relative maximum at x = 2π/3; f ′′(π) > 0, relative minimum at x = π; f ′′(4π/3) < 0, relative maximum at
x = 4π/3.

29. lim
x→−∞

f(x) = +∞, lim
x→+∞

f(x) = +∞, f ′(x) = x(4x2 − 9x + 6), f ′′(x) = 6(2x − 1)(x − 1), relative minimum at

x = 0, points of inflection when x = 1/2, 1, no asymptotes.
y

x
1

2

3

4

1 2

(0,1)
)(

(1,2)
1
2 ,23

16

30. lim
x→−∞

f(x) = −∞, lim
x→+∞

f(x) = +∞, f(x) = x3(x− 2)2, f ′(x) = x2(5x− 6)(x− 2), f ′′(x) = 4x(5x2 − 12x+ 6),

critical numbers at x = 0, 6/5, 2, relative maximum at x = 6/5, relative minimum at x = 2, points of inflection at

x = 0,
6±
√

6

5
≈ 0, 0.71, 1.69, no asymptotes.

1 3
-1

1

2

x

y
(0.71, 0.60)

(6/5, 1.11) (1.69, 0.46)

(0, 0) (2, 0)

31. lim
x→±∞

f(x) doesn’t exist, f ′(x) = 2x sec2(x2 + 1), f ′′(x) = 2 sec2(x2 + 1)
[
1 + 4x2 tan(x2 + 1)

]
, critical number

at x = 0; relative minimum at x = 0, point of inflection when 1 + 4x2 tan(x2 + 1) = 0, vertical asymptotes at

x = ±
√
π(n+ 1

2 )− 1, n = 0, 1, 2, . . .
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y

x

–4

–2

2

4

–2 –1 1 2

32. lim
x→−∞

f(x) = −∞, lim
x→+∞

f(x) = +∞, f ′(x) = 1 + sinx, f ′′(x) = cosx, critical numbers at x = 2nπ + π/2,

n = 0,±1,±2, . . ., no extrema because f ′ ≥ 0 and by Exercise 59 of Section 5.1, f is increasing on (−∞,+∞),
inflections points at x = nπ + π/2, n = 0,±1,±2, . . ., no asymptotes.

y

x

–6

–4
–2

2

4

-c c

33. f ′(x) = 2
x(x+ 5)

(x2 + 2x+ 5)2
, f ′′(x) = −2

2x3 + 15x2 − 25

(x2 + 2x+ 5)3
, critical numbers at x = −5, 0; relative maximum at x = −5,

relative minimum at x = 0, points of inflection at x ≈ −7.26,−1.44, 1.20, horizontal asymptote y = 1 as x→ ±∞.

y

x
0.2

0.4

0.6

0.8

1

–20 –10 10 20

34. f ′(x) = 3
3x2 − 25

x4
, f ′′(x) = −6

3x2 − 50

x5
, critical numbers at x = ±5

√
3/3; relative maximum at x = −5

√
3/3,

relative minimum at x = +5
√

3/3, inflection points at x = ±5
√

2/3, horizontal asymptote of y = 0 as x → ±∞,
vertical asymptote x = 0.

y

x

–5

5

–4

35. lim
x→−∞

f(x) = +∞, lim
x→+∞

f(x) = −∞, f ′(x) =

{
x,

−2x,

x ≤ 0

x > 0
, critical number at x = 0, no extrema, inflection

point at x = 0 (f changes concavity), no asymptotes.
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x

y

–2

1

2

–2 1

36. f ′(x) =
5− 3x

3(1 + x)1/3(3− x)2/3
, f ′′(x) =

−32

9(1 + x)4/3(3− x)5/3
, critical number at x = 5/3; relative maximum at

x = 5/3, cusp at x = −1; point of inflection at x = 3, oblique asymptote y = −x as x→ ±∞.

y

x

–3

–1

2

4

–4 –2 2

37. f ′(x) = 3x2 + 5; no relative extrema because there are no critical numbers.

38. f ′(x) = 4x(x2 − 1); critical numbers x = 0, 1,−1, f ′′(x) = 12x2 − 4; f ′′(0) < 0, f ′′(1) > 0, f ′′(−1) > 0, relative
minimum of 6 at x = 1,−1, relative maximum of 7 at x = 0.

39. f ′(x) =
4

5
x−1/5; critical number x = 0; relative minimum of 0 at x = 0 (first derivative test).

40. f ′(x) = 2 +
2

3
x−1/3; critical numbers x = 0,−1/27, relative minimum of 0 at x = 0, relative maximum of 1/27 at

x = −1/27

41. f ′(x) = 2x/(x2 + 1)2; critical number x = 0; relative minimum of 0 at x = 0.

42. f ′(x) = 2/(x+ 2)2; no critical numbers (x = −2 is not in the domain of f) no relative extrema.

43. f ′(x) = 2x/(1 + x2); critical point at x = 0; relative minimum of 0 at x = 0 (first derivative test).

44. f ′(x) = x(2 + x)ex; critical points at x = 0,−2; relative minimum of 0 at x = 0 and relative maximum of 4/e2 at
x = −2 (first derivative test).

45. (a)

40

–40

–5 5

(b) f ′(x) = x2 − 1

400
, f ′′(x) = 2x, critical points at x = ± 1

20
; relative maximum at x = − 1

20
, relative minimum

at x =
1

20
.

(c) The finer details can be seen when graphing over a much smaller x-window.
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0.0001

–0.0001

–0.1 0.1

46. (a)

200

–200

–5 5

(b) Critical points at x = ±
√

2,
3

2
, 2; relative maximum at x = −

√
2, relative minimum at x =

√
2, relative

maximum at x =
3

2
, relative minimum at x = 2.

(c)

10

–4

–2.2 3.5

–2.909

–2.912
1.3 1.6

47. (a)

-4 4

-8

4

x

y

y = x appears to be an asymptote for y = (x3 − 8)/(x2 + 1).

(b)
x3 − 8

x2 + 1
= x− x+ 8

x2 + 1
. Since the limit of

x+ 8

x2 + 1
as x→ ±∞ is 0, y = x is an asymptote for y =

x3 − 8

x2 + 1
.

48. cosx− (sin y)
dy

dx
= 2

dy

dx
;
dy

dx
= 0 when cosx = 0. Use the first derivative test:

dy

dx
=

cosx

2 + sin y
and 2 + sin y > 0,

so critical points when cosx = 0, relative maxima when x = 2nπ + π/2, relative minima when x = 2nπ − π/2,
n = 0,±1,±2, . . .

49. f(x) =
(2x− 1)(x2 + x− 7)

(2x− 1)(3x2 + x− 1)
=

x2 + x− 7

3x2 + x− 1
, x 6= 1/2, horizontal asymptote: y = 1/3, vertical asymptotes:

x = (−1±
√

13)/6.
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y

x

–5

5

–4 2 4

50. (a) f(x) =
(x− 2)(x2 + x+ 1)(x2 − 2)

(x− 2)(x2 − 2)2(x2 + 1)
=

x2 + x+ 1

(x2 − 2)(x2 + 1)
, vertical asymptotes: x = ±

√
2.

(b)

–1 1

5

x

y

x = ¤x = –¤

51. (a) f(x) ≤ f(x0) for all x in I.

(b) f(x) ≥ f(x0) for all x in I.

52. f is a continuous function on a finite closed interval [a, b].

53. (a) True. If f has an absolute extremum at a point of (a, b) then it must, by Theorem 4.4.3, be at a critical point
of f ; since f is differentiable on (a, b) the critical point is a stationary point.

(b) False. It could occur at a critical point which is not a stationary point: for example, f(x) = |x| on [−1, 1]
has an absolute minimum at x = 0 but is not differentiable there.

54. (a) f ′(x) = −1/x2 6= 0, no critical points; by inspection M = −1/2 at x = −2; m = −1 at x = −1.

(b) f ′(x) = 3x2 − 4x3 = 0 at x = 0, 3/4; f(−1) = −2, f(0) = 0, f(3/4) = 27/256, f(3/2) = −27/16, so m = −2
at x = −1, M = 27/256 at x = 3/4.

(c) f ′(x) = 1− sec2 x, f ′(x) = 0 for x in (−π/4, π/4) when x = 0; f(−π/4) = 1−π/4, f(0) = 0, f(π/4) = π/4−1
so the maximum value is 1− π/4 at x = −π/4 and the minimum value is π/4− 1 at x = π/4.

(d) Critical point at x = 2; m = −3 at x = 3, M = 0 at x = 2.

55. (a) f ′(x) = 2x− 3; critical point x = 3/2. Minimum value f(3/2) = −13/4, no maximum.

(b) No maximum or minimum because lim
x→+∞

f(x) = +∞ and lim
x→−∞

f(x) = −∞.

(c) lim
x→0+

f(x) = lim
x→+∞

f(x) = +∞ and f ′(x) =
ex(x− 2)

x3
, stationary point at x = 2; by Theorem 4.4.4 f(x) has

absolute minimum value e2/4 at x = 2; no maximum value.

(d) f ′(x) = (1 + lnx)xx, critical point at x = 1/e; lim
x→0+

f(x) = lim
x→0+

ex ln x = 1, lim
x→+∞

f(x) = +∞; no absolute

maximum, absolute minimum m = e−1/e at x = 1/e.
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56. (a) f ′(x) = 10x3(x− 2), critical points at x = 0, 2; lim
x→3−

f(x) = 88, so f(x) has no maximum; m = −9 at x = 2.

(b) lim
x→2−

f(x) = +∞ so no maximum; f ′(x) = 1/(x− 2)2, so f ′(x) is never zero, thus no minimum.

(c) f ′(x) = 2
3− x2

(x2 + 3)2
, critical point at x =

√
3. Since lim

x→0+
f(x) = 0, f(x) has no minimum, and M =

√
3/3 at

x =
√

3.

(d) f ′(x) =
x(7x− 12)

3(x− 2)2/3
, critical points at x = 12/7, 2; m = f(12/7) =

144

49

(
−2

7

)1/3

≈ −1.9356 at x = 12/7,

M = 9 at x = 3.

57. (a) (x2 − 1)2 can never be less than zero because it is the square of x2 − 1; the minimum value is 0 for x = ±1,
no maximum because lim

x→+∞
f(x) = +∞.

10

0
–2 2

(b) f ′(x) = (1− x2)/(x2 + 1)2; critical point x = 1. Maximum value f(1) = 1/2, minimum value 0 because f(x)
is never less than zero on [0,+∞) and f(0) = 0.

0.5

0
0 20

(c) f ′(x) = 2 secx tanx − sec2 x = (2 sinx − 1)/ cos2 x, f ′(x) = 0 for x in (0, π/4) when x = π/6; f(0) = 2,
f(π/6) =

√
3, f(π/4) = 2

√
2− 1 so the maximum value is 2 at x = 0 and the minimum value is

√
3 at x = π/6.

2

1.5
0 3

(d) f ′(x) = 1/2 + 2x/(x2 + 1), f ′(x) = 0 on [−4, 0] for x = −2 ±
√

3; if x = −2 −
√

3,−2 +
√

3, then f(x) =
−1−

√
3/2 + ln 4 + ln(2 +

√
3) ≈ 0.84,−1 +

√
3/2 + ln 4 + ln(2−

√
3) ≈ −0.06, absolute maximum at x = −2−

√
3,

absolute minimum at x = −2 +
√

3.
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1

–0.5

–4 0

58. Let f(x) = sin−1 x− x for 0 ≤ x ≤ 1. f(0) = 0 and f ′(x) =
1√

1− x2
− 1 =

1−
√

1− x2

√
1− x2

. Note that
√

1− x2 ≤ 1,

so f ′(x) ≥ 0. Thus we know that f is increasing. Since f(0) = 0, it follows that f(x) ≥ 0 for 0 ≤ x ≤ 1.

59. (a)

2.1

–0.5

–10 10

(b) Minimum: (−2.111985, −0.355116), maximum: (0.372591, 2.012931).

60. Let k be the amount of light admitted per unit area of clear glass. The total amount of light admitted by the

entire window is T = k · (area of clear glass) +
1

2
k · (area of blue glass) = 2krh+

1

4
πkr2. But P = 2h+ 2r + πr

which gives 2h = P − 2r − πr so T = kr(P − 2r − πr) +
1

4
πkr2 = k

[
Pr −

(
2 + π − π

4

)
r2
]

= k

[
Pr − 8 + 3π

4
r2

]

for 0 < r <
P

2 + π
,
dT

dr
= k

(
P − 8 + 3π

2
r

)
,
dT

dr
= 0 when r =

2P

8 + 3π
. This is the only critical point and

d2T/dr2 < 0 there so the most light is admitted when r = 2P/(8 + 3π) ft.

61. If one corner of the rectangle is at (x, y) with x > 0, y > 0, then A = 4xy, y = 3
√

1− (x/4)2, A =

12x
√

1− (x/4)2 = 3x
√

16− x2,
dA

dx
= 6

8− x2

√
16− x2

, critical point at x = 2
√

2. Since A = 0 when x = 0, 4

and A > 0 otherwise, there is an absolute maximum A = 24 at x = 2
√

2. The rectangle has width 2x = 4
√

2 and
height 2y = A/(2x) = 3

√
2.

62. (a)

y x

–2

–1.5

–1

–0.5

0.2 0.6 1

(b) The distance between the boat and the origin is
√
x2 + y2, where y = (x10/3 − 1)/(2x2/3). The minimum

distance is about 0.8247 mi when x ≈ 0.6598 mi. The boat gets swept downstream.

63. V = x(12 − 2x)2 for 0 ≤ x ≤ 6; dV/dx = 12(x − 2)(x − 6), dV/dx = 0 when x = 2 for 0 < x < 6. If x = 0, 2, 6
then V = 0, 128, 0 so the volume is largest when x = 2 in.
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x

xx

x

x

x

x

x

12

12

12 – 2x

12 – 2x

64. False; speeding up means the velocity and acceleration have the same sign, i.e. av > 0; the velocity is increasing
when the acceleration is positive, i.e. a > 0. These are not the same thing. An example is s = t − t2 at t = 1,
where v = −1 and a = −2, so av > 0 but a < 0.

65. (a) Yes. If s = 2t − t2 then v = ds/dt = 2 − 2t and a = dv/dt = −2 is constant. The velocity changes sign at
t = 1, so the particle reverses direction then.

1

2

t

v

(b) Yes. If s = t+ e−t then v = ds/dt = 1− e−t and a = dv/dt = e−t. For t > 0, v > 0 and a > 0, so the particle
is speeding up. But da/dt = −e−t < 0, so the acceleration is decreasing.

1 2 3 4

1

t

v

66. (a) s(t) = t/(2t2 + 8), v(t) = (4− t2)/2(t2 + 4)2, a(t) = t(t2 − 12)/(t2 + 4)3.

0.20

–0.05

0

0.15

–0.10

0

0.25

0
0 20

20

20

s (t) v(t) a (t)

(b) v changes sign at t = 2.

(c) s = 1/8, v = 0, a = −1/32.

(d) a changes sign at t = 2
√

3, so the particle is speeding up for 2 < t < 2
√

3, and it is slowing down for 0 < t < 2
and 2

√
3 < t.

(e) v(0) = 1/8, lim
t→+∞

v(t) = 0, v(t) has one t-intercept at t = 2 and v(t) has one critical point at t = 2
√

3.

Consequently the maximum velocity occurs when t = 0 and the minimum velocity occurs when t = 2
√

3.
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67. (a) v = −2
t(t4 + 2t2 − 1)

(t4 + 1)2
, a = 2

3t8 + 10t6 − 12t4 − 6t2 + 1

(t4 + 1)3
.

(b)

s

t

1

2

v

t

–0.2

0.2

2

a

t
1

2

(c) It is farthest from the origin at t ≈ 0.64 (when v = 0) and s ≈ 1.2.

(d) Find t so that the velocity v = ds/dt > 0. The particle is moving in the positive direction for 0 ≤ t ≤ 0.64,
approximately.

(e) It is speeding up when a, v > 0 or a, v < 0, so for 0 ≤ t < 0.36 and 0.64 < t < 1.1 approximately, otherwise it
is slowing down.

(f) Find the maximum value of |v| to obtain: maximum speed ≈ 1.05 when t ≈ 1.10.

69. x ≈ −2.11491, 0.25410, 1.86081.

70. x ≈ 2.3561945.

71. At the point of intersection, x3 = 0.5x − 1, x3 − 0.5x + 1 = 0. Let f(x) = x3 − 0.5x + 1. By graphing y = x3

and y = 0.5x − 1 it is evident that there is only one point of intersection and it occurs in the interval [−2,−1];

note that f(−2) < 0 and f(−1) > 0. f ′(x) = 3x2 − 0.5 so xn+1 = xn −
x3
n − 0.5xn + 1

3x2
n − 0.5

; x1 = −1, x2 = −1.2,

x3 ≈ −1.166492147, . . . , x5 ≈ x6 ≈ −1.165373043.
2

–2

–2 2

72. Solve φ− 0.0167 sinφ = 2π(90)/365 to get φ ≈ 1.565978 so r = 150× 106(1− 0.0167 cosφ) ≈ 149.988× 106 km.

73. Solve φ− 0.0934 sinφ = 2π(1)/1.88 to get φ ≈ 3.325078 so r = 228× 106(1− 0.0934 cosφ) ≈ 248.938× 106 km.

74. True; by the Mean-Value Theorem there is a point c in (a, b) such that f ′(c) =
f(b)− f(a)

b− a = 0.

75. (a) Yes; f ′(0) = 0.

(b) No, f is not differentiable on (−1, 1).

(c) Yes, f ′(
√
π/2) = 0.

76. (a) No, f is not differentiable on (−2, 2).

(b) Yes,
f(3)− f(2)

3− 2
= −1 = f ′(1 +

√
2).



240 Chapter 4

(c) Yes, lim
x→1−

f(x) = 2, lim
x→1+

f(x) = 2 so f is continuous on [0, 2]; lim
x→1−

f ′(x) = lim
x→1−

−2x = −2 and lim
x→1+

f ′(x) =

lim
x→1+

(−2/x2) = −2, so f is differentiable on (0, 2); and
f(2)− f(0)

2− 0
= −1 = f ′(

1

2
) = f ′(

√
2).

77. f(x) = x6 − 2x2 + x satisfies f(0) = f(1) = 0, so by Rolle’s Theorem f ′(c) = 0 for some c in (0, 1).

78. If f ′(x) = g′(x), then f(x) = g(x) + k. Let x = 1, f(1) = g(1) + k = (1)3 − 4(1) + 6 + k = 3 + k = 2, so k = −1.
f(x) = x3 − 4x+ 5.

Chapter 4 Making Connections

1. (a) g(x) has no zeros. Since g(x) is concave up for x < 3, its graph lies on or above the line y = 2 − 2

3
x, which

is the tangent line at (0, 2). So for x < 3, g(x) ≥ 2 − 2

3
x > 0. Since g(x) is concave up for 3 ≤ x < 4, its graph

lies above the line y = 3x− 9, which is the tangent line at (4, 3). So for 3 ≤ x < 4, g(x) > 3x− 9 ≥ 0. Finally, if
x ≥ 4, g(x) could only have a zero if g′(a) were negative for some a > 4. But then the graph would lie below the
tangent line at (a, g(a)), which crosses the line y = −10 for some x > a. So g(x) would be less than −10 for some
x.

(b) One, between 0 and 4.

(c) Since g(x) is concave down for x > 4 and g′(4) = 3, g′(x) < 3 for all x > 4. Hence the limit can’t be 5. If it
were −5 then the graph of g(x) would cross the line y = −10 at some point. So the limit must be 0.

3 4

2
3

x

y

2. (a) (−2.2, 4), (2, 1.2), (4.2, 3).

(b) f ′ exists everywhere, so the critical numbers are when f ′ = 0, i.e. when x = ±2 or r(x) = 0, so x ≈
−5.1,−2, 0.2, 2. At x = −5.1 f ′ changes sign from − to +, so minimum; at x = −2 f ′ changes sign from + to −,
so maximum; at x = 0.2 f ′ doesn’t change sign, so neither; at x = 2 f ′ changes sign from − to +, so minimum.
Finally, f ′′(1) = (12 − 4)r′(1) + 2r(1) ≈ −3(0.6) + 2(0.3) = −1.2.

3. g′′(x) = 1−r′(x), so g(x) has an inflection point where the graph of y = r′(x) crosses the line y = 1; i.e. at x = −4
and x = 5.

4. (a) |xn+1 − xn| ≤ |xn+1 − c|+ |c− xn| < 1/n+ 1/n = 2/n.

(b) The closed interval [c−1, c+1] contains all of the xn, since |xn−c| < 1/n. Let M be an upper bound for |f ′(x)|
on [c− 1, c+ 1]. Since xn+1 = xn − f(xn)/f ′(xn) it follows that |f(xn)| ≤ |f ′(xn)||xn+1 − xn| < M |xn+1 − xn| <
2M/n.

(c) Assume that f(c) 6= 0. The sequence xn converges to c, since |xn − c| < 1/n. By the continuity of f ,
f(c) = f( lim

n→+∞
xn) = lim

n→+∞
f(xn). Let ε = |f(c)|/2. Choose N such that |f(xn) − f(c)| < ε/2 for n > N .

Then |f(xn) − f(c)| < |f(c)|/2 for n > N , so −|f(c)|/2 < f(xn) − f(c) < |f(c)/2|. If f(c) > 0 then f(xn) >
f(c)− |f(c)|/2 = f(c)/2. If f(c) < 0, then f(xn) < f(c) + |f(c)|/2 = −|f(c)|/2, or |f(xn)| > |f(c)|/2.
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(d) From (b) it follows that lim
n→+∞

f(xn) = 0. From (c) it follows that if f(c) 6= 0 then lim
n→+∞

f(xn) 6= 0, a

contradiction. The conclusion, then, is that f(c) = 0.

6. (a) Route (i) is 7 inches long, so it would take 7/0.7 = 10 seconds. Route (iv) is 3 inches long, so it would take
3/0.3 = 10 seconds.

(b) x is in the interval [2, 5]. The bug travels x inches on linoleum and
√

22 + (5− x)2 inches on carpet, so its travel

time is f(x) =
x

0.7
+

√
x2 − 10x+ 29

0.3
=

10

21
(3x+ 7

√
x2 − 10x+ 29). We have f ′(x) =

10

21

(
3 +

7(x− 5)√
x2 − 10x+ 29

)
;

solving f ′(x) = 0 with x in [2, 5] gives x = 5 − 3√
10

. So we compute f(x) at x = 2, x = 5, and x = 5 − 3√
10

:

f(2) =
10

21
(6 + 7

√
13) ≈ 14.87565, f(5) =

290

21
≈ 13.80952, f

(
5− 3√

10

)
=

10

21
(15 + 4

√
10) ≈ 13.16624. The

shortest time for route (ii) is
10

21
(15 + 4

√
10) ≈ 13.16624 seconds.

(c) x is in the interval [0, 2]; when x = 0 route (iii) is the same as route (iv). If x > 0 then the bug travels more
than 3 inches on carpet, so it takes longer than it does for x = 0. The shortest time for route (iii) is 10 seconds.

(d) Routes (i) and (iv) (and route (iii) with x = 0) are the quickest, taking 10 seconds each.
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Integration

Exercise Set 5.1

1. Endpoints 0,
1

n
,

2

n
, . . . ,

n− 1

n
, 1; using right endpoints,

An =

[√
1

n
+

√
2

n
+ · · ·+

√
n− 1

n
+ 1

]
1

n
.

n 2 5 10 50 100
An 0.853553 0.749739 0.710509 0.676095 0.671463

2. Endpoints 0,
1

n
,

2

n
, . . . ,

n− 1

n
, 1; using right endpoints,

An =

[
n

n+ 1
+

n

n+ 2
+

n

n+ 3
+ · · ·+ n

2n− 1
+

1

2

]
1

n
.

n 2 5 10 50 100
An 0.583333 0.645635 0.668771 0.688172 0.690653

3. Endpoints 0,
π

n
,

2π

n
, . . . ,

(n− 1)π

n
, π; using right endpoints,

An = [sin(π/n) + sin(2π/n) + · · ·+ sin(π(n− 1)/n) + sinπ]
π

n
.

n 2 5 10 50 100
An 1.57080 1.93376 1.98352 1.99935 1.99984

4. Endpoints 0,
π

2n
,

2π

2n
, . . . ,

(n− 1)π

2n
,
π

2
; using right endpoints,

An = [cos(π/2n) + cos(2π/2n) + · · ·+ cos((n− 1)π/2n) + cos(π/2)]
π

2n
.

n 2 5 10 50 100
An 0.555359 0.834683 0.919405 0.984204 0.992120

5. Endpoints 1,
n+ 1

n
,
n+ 2

n
, . . . ,

2n− 1

n
, 2; using right endpoints,

An =

[
n

n+ 1
+

n

n+ 2
+ · · ·+ n

2n− 1
+

1

2

]
1

n
.

n 2 5 10 50 100
An 0.583333 0.645635 0.668771 0.688172 0.690653

6. Endpoints −π
2
,−π

2
+
π

n
,−π

2
+

2π

n
, . . . ,−π

2
+

(n− 1)π

n
,
π

2
; using right endpoints,

An =

[
cos
(
−π

2
+
π

n

)
+ cos

(
−π

2
+

2π

n

)
+ · · ·+ cos

(
−π

2
+

(n− 1)π

n

)
+ cos

(π
2

)] π
n

.

243
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n 2 5 10 50 100
An 1.57080 1.93376 1.98352 1.99936 1.99985

7. Endpoints 0,
1

n
,

2

n
, . . . ,

n− 1

n
, 1; using right endpoints,

An =



√

1−
(

1

n

)2

+

√
1−

(
2

n

)2

+ · · ·+
√

1−
(
n− 1

n

)2

+ 0


 1

n
.

n 2 5 10 50 100
An 0.433013 0.659262 0.726130 0.774567 0.780106

8. Endpoints −1,−1 +
2

n
,−1 +

4

n
, . . . ,−1 +

2(n− 1)

n
, 1; using right endpoints,

An =



√

1−
(
n− 2

n

)2

+

√
1−

(
n− 4

n

)2

+ · · ·+
√

1−
(
n− 2

n

)2

+ 0


 2

n
.

n 2 5 10 50 100
An 1 1.423837 1.518524 1.566097 1.569136

9. Endpoints −1,−1 +
2

n
,−1 +

4

n
, . . . , 1− 2

n
, 1; using right endpoints,

An =
[
e−1+ 2

n + e−1+ 4
n + e−1+ 6

n + . . .+ e1− 2
n + e1

]
2
n .

n 2 5 10 50 100
An 3.718281 2.851738 2.59327 2.39772 2.37398

10. Endpoints 1, 1 +
1

n
, 1 +

2

n
, . . . , 2− 1

n
, 2; using right endpoints,

An =

[
ln

(
1 +

1

n

)
+ ln

(
1 +

2

n

)
+ . . .+ ln

(
2− 1

n

)
+ ln 2

]
1

n
.

n 2 5 10 50 100
An 0.549 0.454 0.421 0.393 0.390

11. Endpoints 0,
1

n
,

2

n
, . . . ,

n− 1

n
, 1; using right endpoints,

An =

[
sin−1

(
1

n

)
+ sin−1

(
2

n

)
+ . . .+ sin−1

(
n− 1

n

)
+ sin−1(1)

]
1

n
.

n 2 5 10 50 100
An 1.04729 0.75089 0.65781 0.58730 0.57894

12. Endpoints 0,
1

n
,

2

n
, . . . ,

n− 1

n
, 1; using right endpoints,

An =

[
tan−1

(
1

n

)
+ tan−1

(
2

n

)
+ . . .+ tan−1

(
n− 1

n

)
+ tan−1(1)

]
1

n
.

n 2 5 10 50 100
An 0.62452 0.51569 0.47768 0.44666 0.44274

13. 3(x− 1).

14. 5(x− 2).
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15. x(x+ 2).

16.
3

2
(x− 1)2.

17. (x+ 3)(x− 1).

18.
3

2
x(x− 2).

19. False; the area is 4π.

20. False; consider the left endpoint approximation on [1, 2].

21. True.

22. True; a differentiable function is continuous.

23. A(6) represents the area between x = 0 and x = 6;A(3) represents the area between x = 0 and x = 3; their

difference A(6)−A(3) represents the area between x = 3 and x = 6, and A(6)−A(3) =
1

3
(63 − 33) = 63.

24. A(9) = 93/3, A(−3) = (−3)3/3, and the area between x = −3 and x = 9 is given by A(9) − A(−3) = (93 −
(−3)3)/3 = 252.

25. B is also the area between the graph of f(x) =
√
x and the interval [0, 1] on the y−axis, so A + B is the area of

the square.

26. Split A at y = 1/2 and B at y = 1. Then both A and B consist of a rectangle of size 1× (1/2) and a part which
is a symmetric image of the other through the line y = x.

27. The area which is under the curve lies to the right of x = 2 (or to the left of x = −2). Hence f(x) = A′(x) =
2x; 0 = A(a) = a2 − 4, so take a = 2.

28. f(x) = A′(x) = 2x− 1, 0 = A(a) = a2 − a, so take a = 1.

30. Intuitively it is the area represented by a set of tall thin rectangles, stretching from x = a to x = b, each having

height C; in other words C(b− a). Analytically it is given by

∫ b

a

[(f(x) + C)− f(x)] dx = C(b− a).

Exercise Set 5.2

1. (a)

∫
x√

1 + x2
dx =

√
1 + x2 + C. (b)

∫
(x+ 1)exdx = xex + C.

2. (a)
d

dx
(sinx− x cosx+ C) = cosx− cosx+ x sinx = x sinx.

(b)
d

dx

(
x√

1− x2
+ C

)
=

√
1− x2 + x2/

√
1− x2

1− x2
=

1

(1− x2)3/2
.

5.
d

dx

[√
x3 + 5

]
=

3x2

2
√
x3 + 5

, so

∫
3x2

2
√
x3 + 5

dx =
√
x3 + 5 + C.

6.
d

dx

[
x

x2 + 3

]
=

3− x2

(x2 + 3)2
, so

∫
3− x2

(x2 + 3)2
dx =

x

x2 + 3
+ C.
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7.
d

dx

[
sin
(
2
√
x
)]

=
cos (2

√
x)√

x
, so

∫
cos (2

√
x)√

x
dx = sin

(
2
√
x
)

+ C.

8.
d

dx
[sinx− x cosx] = x sinx, so

∫
x sinx dx = sinx− x cosx+ C.

9. (a) x9/9 + C. (b)
7

12
x12/7 + C. (c)

2

9
x9/2 + C.

10. (a)
3

5
x5/3 + C. (b) −1

5
x−5 + C = − 1

5x5
+ C. (c) 8x1/8 + C.

11.

∫ [
5x+

2

3x5

]
dx =

∫
5x dx+

2

3

∫
1

x5
dx =

5

2
x2 +

2

3

(−1

4

)
1

x4
C =

5

2
x2 − 1

6x4
+ C.

12.

∫ [
x−1/2 − 3x7/5 +

1

9

]
dx =

∫
x−1/2 dx− 3

∫
x7/5 dx+

∫
1

9
dx = 2x1/2 − 5

4
x12/5 +

1

9
x+ C.

13.

∫ [
x−3 − 3x1/4 + 8x2

]
dx =

∫
x−3 dx− 3

∫
x1/4 dx+ 8

∫
x2 dx = −1

2
x−2 − 12

5
x5/4 +

8

3
x3 + C.

14.

∫ [
10

y3/4
− 3
√
y +

4√
y

]
dy = 10

∫
1

y3/4
dy−

∫
3
√
y dy+ 4

∫
1√
y
dy = 10(4)y1/4 − 3

4
y4/3 + 4(2)y1/2 +C = 40y1/4 −

3

4
y4/3 + 8

√
y + C.

15.

∫
(x+ x4)dx = x2/2 + x5/5 + C.

16.

∫
(4 + 4y2 + y4)dy = 4y +

4

3
y3 +

1

5
y5 + C.

17.

∫
x1/3(4− 4x+ x2)dx =

∫
(4x1/3 − 4x4/3 + x7/3)dx = 3x4/3 − 12

7
x7/3 +

3

10
x10/3 + C.

18.

∫
(2− x+ 2x2 − x3)dx = 2x− 1

2
x2 +

2

3
x3 − 1

4
x4 + C.

19.

∫
(x+ 2x−2 − x−4)dx = x2/2− 2/x+ 1/(3x3) + C.

20.

∫
(t−3 − 2)dt = −1

2
t−2 − 2t+ C.

21.

∫ [
2

x
+ 3ex

]
dx = 2 ln |x|+ 3ex + C.

22.

∫ [
1

2
t−1 −

√
2et
]
dt =

1

2
ln |t| −

√
2et + C.

23.

∫
[3 sinx− 2 sec2 x] dx = −3 cosx− 2 tanx+ C.

24.

∫
[csc2 t− sec t tan t] dt = − cot t− sec t+ C.
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25.

∫
(sec2 x+ secx tanx)dx = tanx+ secx+ C.

26.

∫
cscx(sinx+ cotx) dx =

∫
(1 + cscx cotx) dx = x− cscx+ C.

27.

∫
sec θ

cos θ
dθ =

∫
sec2 θ dθ = tan θ + C.

28.

∫
sin y dy = − cos y + C.

29.

∫
secx tanx dx = secx+ C.

30.

∫
(φ+ 2 csc2 φ)dφ = φ2/2− 2 cotφ+ C.

31.

∫
(1 + sin θ)dθ = θ − cos θ + C.

32.

∫ [
1

2
sec2 x+

1

2

]
dx =

1

2
tanx+

1

2
x+ C.

33.

∫ [
1

2
√

1− x2
− 3

1 + x2

]
dx =

1

2
sin−1 x− 3 tan−1 x+ C.

34.

∫ [
4

x
√
x2 − 1

+
1 + x+ x3

1 + x2

]
dx = 4 sec−1 |x|+

∫ (
x+

1

x2 + 1

)
dx = 4 sec−1 |x|+ 1

2
x2 + tan−1 x+ C.

35.

∫
1− sinx

1− sin2 x
dx =

∫
1− sinx

cos2 x
dx =

∫ (
sec2 x− secx tanx

)
dx = tanx− secx+ C.

36.

∫
1

1 + cos 2x
dx =

∫
1

2 cos2 x
dx =

∫
1

2
sec2 x dx =

1

2
tanx+ C.

37. True.

38. True; both are antiderivatives (not the same C though).

39. False; y(0) = 2.

40. True.

41.
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27.

�
sec θ

cos θ
dθ =

�
sec2 θ dθ = tan θ + C

28.

�
sin y dy = − cos y + C 29.

�
sec x tanx dx = sec x + C

30.

�
(φ+ 2 csc2 φ)dφ = φ2/2 − 2 cotφ+ C 31.

�
(1 + sin θ)dθ = θ − cos θ + C

32.

� �
1

2
sec2 x +

1

2

�
dx =

1

2
tanx +

1

2
x + C

33.

� �
1

2
√

1 − x2
− 3

1 + x2

�
dx =

1

2
sin−1 x − 3 tan−1 x + C

34.

� �
4

x
√

x2 − 1
+

1 + x + x3

1 + x2

�
dx = 4 sec−1 x+

� �
x +

1

x2 + 1

�
dx = 4 sec−1 x+

1

2
x2+tan−1 x+C

35.

�
1 − sinx

1 − sin2 x
dx =

�
1 − sinx

cos2 x
dx =

� �
sec2 x − sec x tanx

�
dx = tanx − sec x + C

36.

�
1

1 + cos 2x
dx =

�
1

2 cos2 x
dx =

�
1

2
sec2 x dx =

1

2
tanx + C

37. true

38. true; both are antiderivatives (not the same C though)

39. false; y(0) = 2

40. true

41. y

x

-5

5

c/4 c/2

42.

–4

2

y

x
1 2

43. (a) y(x) =

�
x1/3dx =

3

4
x4/3 + C, y(1) =

3

4
+ C = 2, C =

5

4
; y(x) =

3

4
x4/3 +

5

4

(b) y(t) =

�
(sin t + 1) dt = − cos t + t + C, y

�π
3

�
= −1

2
+
π

3
+ C = 1/2, C = 1 − π

3
;

y(t) = − cos t + t + 1 − π

3

(c) y(x) =

�
(x1/2 + x−1/2)dx =

2

3
x3/2 + 2x1/2 + C, y(1) = 0 =

8

3
+ C, C = −8

3
,

y(x) =
2

3
x3/2 + 2x1/2 − 8

3

44. (a) y(x) =

� �
1

8
x−3

�
dx = − 1

16
x−2 + C, y(1) = 0 = − 1

16
+ C, C =

1

16
; y(x) = − 1

16
x−2 +

1

16
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42.
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27.

�
sec θ

cos θ
dθ =

�
sec2 θ dθ = tan θ + C

28.

�
sin y dy = − cos y + C 29.

�
sec x tanx dx = sec x + C

30.

�
(φ+ 2 csc2 φ)dφ = φ2/2 − 2 cotφ+ C 31.

�
(1 + sin θ)dθ = θ − cos θ + C

32.

� �
1

2
sec2 x +

1

2

�
dx =

1

2
tanx +

1

2
x + C

33.

� �
1

2
√

1 − x2
− 3

1 + x2

�
dx =

1

2
sin−1 x − 3 tan−1 x + C

34.

� �
4

x
√

x2 − 1
+

1 + x + x3

1 + x2

�
dx = 4 sec−1 x+

� �
x +

1

x2 + 1

�
dx = 4 sec−1 x+

1

2
x2+tan−1 x+C

35.

�
1 − sinx

1 − sin2 x
dx =

�
1 − sinx

cos2 x
dx =

� �
sec2 x − sec x tanx

�
dx = tanx − sec x + C

36.

�
1

1 + cos 2x
dx =

�
1

2 cos2 x
dx =

�
1

2
sec2 x dx =

1

2
tanx + C

37. true

38. true; both are antiderivatives (not the same C though)

39. false; y(0) = 2

40. true

41. y

x

-5

5

c/4 c/2

42.

–4

2

y

x
1 2

43. (a) y(x) =

�
x1/3dx =

3

4
x4/3 + C, y(1) =

3

4
+ C = 2, C =

5

4
; y(x) =

3

4
x4/3 +

5

4

(b) y(t) =

�
(sin t + 1) dt = − cos t + t + C, y

�π
3

�
= −1

2
+
π

3
+ C = 1/2, C = 1 − π

3
;

y(t) = − cos t + t + 1 − π

3

(c) y(x) =

�
(x1/2 + x−1/2)dx =

2

3
x3/2 + 2x1/2 + C, y(1) = 0 =

8

3
+ C, C = −8

3
,

y(x) =
2

3
x3/2 + 2x1/2 − 8

3

44. (a) y(x) =

� �
1

8
x−3

�
dx = − 1

16
x−2 + C, y(1) = 0 = − 1

16
+ C, C =

1

16
; y(x) = − 1

16
x−2 +

1

16

43. (a) y(x) =

∫
x1/3dx =

3

4
x4/3 + C, y(1) =

3

4
+ C = 2, C =

5

4
; y(x) =

3

4
x4/3 +

5

4
.

(b) y(t) =

∫
(sin t+ 1) dt = − cos t+ t+C, y

(π
3

)
= −1

2
+
π

3
+C = 1/2, C = 1− π

3
; y(t) = − cos t+ t+ 1− π

3
.

(c) y(x) =

∫
(x1/2 + x−1/2)dx =

2

3
x3/2 + 2x1/2 + C, y(1) = 0 =

8

3
+ C, C = −8

3
, y(x) =

2

3
x3/2 + 2x1/2 − 8

3
.

44. (a) y(x) =

∫ (
1

8
x−3

)
dx = − 1

16
x−2 + C, y(1) = 0 = − 1

16
+ C, C =

1

16
; y(x) = − 1

16
x−2 +

1

16
.

(b) y(t) =

∫
(sec2 t− sin t) dt = tan t+ cos t+C, y(

π

4
) = 1 = 1 +

√
2

2
+C, C = −

√
2

2
; y(t) = tan t+ cos t−

√
2

2
.

(c) y(x) =

∫
x7/2dx =

2

9
x9/2 + C, y(0) = 0 = C, C = 0; y(x) =

2

9
x9/2.

45. (a) y =

∫
4ex dx = 4ex + C, 1 = y(0) = 4 + C,C = −3, y = 4ex − 3.

(b) y(t) =

∫
t−1dt = ln |t|+ C, y(−1) = C = 5, C = 5; y(t) = ln |t|+ 5.

46. (a) y =

∫
3√

1− t2
dt = 3 sin−1 t+ C, y

(√
3

2

)
= 0 = π + C,C = −π, y = 3 sin−1 t− π.

(b)
dy

dx
= 1 − 2

x2 + 1
, y =

∫ [
1− 2

x2 + 1

]
dx = x − 2 tan−1 x + C, y(1) =

π

2
= 1 − 2

π

4
+ C,C = π − 1, y =

x− 2 tan−1 x+ π − 1.

47. s(t) = 16t2 + C; s(t) = 16t2 + 20.

48. s(t) = sin t+ C; s(t) = sin t+ 2.

49. s(t) = 2t3/2 + C; s(t) = 2t3/2 − 15.

50. s(t) = 3et + C; s(t) = 3et − 3e.

51. f ′(x) =
2

3
x3/2 + C1; f(x) =

4

15
x5/2 + C1x+ C2.

52. f ′(x) = x2/2 + sinx+C1, use f ′(0) = 2 to get C1 = 2 so f ′(x) = x2/2 + sinx+ 2, f(x) = x3/6− cosx+ 2x+C2,
use f(0) = 1 to get C2 = 2 so f(x) = x3/6− cosx+ 2x+ 2.

53. dy/dx = 2x + 1, y =

∫
(2x + 1)dx = x2 + x + C; y = 0 when x = −3, so (−3)2 + (−3) + C = 0, C = −6 thus

y = x2 + x− 6.
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54. f ′(x) = m = (x + 1)2, so f(x) =

∫
(x + 1)2dx =

1

3
(x + 1)3 + C; f(−2) = 8 =

1

3
(−2 + 1)3 + C = −1

3
+ C,

C = 8 +
1

3
=

25

3
, f(x) =

1

3
(x+ 1)3 +

25

3
.

55. f ′(x) = m = − sinx, so f(x) =

∫
(− sinx)dx = cosx+ C; f(0) = 2 = 1 + C, so C = 1, f(x) = cosx+ 1.

56. dy/dx = x2, y =

∫
x2dx = x3/3 + C; y = 2 when x = −1, so (−1)3/3 + C = 2, C = 7/3, thus y = x3/3 + 7/3.

57. dy/dx =

∫
6xdx = 3x2+C1. The slope of the tangent line is −3 so dy/dx = −3 when x = 1. Thus 3(1)2+C1 = −3,

C1 = −6 so dy/dx = 3x2 − 6, y =

∫
(3x2 − 6)dx = x3 − 6x + C2. If x = 1, then y = 5 − 3(1) = 2 so

(1)2 − 6(1) + C2 = 2, C2 = 7 thus y = x3 − 6x+ 7.

58. (a) f(x) =
1

3
x2 sin 3x− 2

27
sin 3x+

2

9
x cos 3x+

9π2 − 116

108
.

(b) f(x) =
√

4 + x2 +
4√

4 + x2
− 6.

59. (a)
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58. (a) f(x) =
1

3
x2 sin 3x − 2

27
sin 3x +

2

9
x cos 3x − 0.251607

(b) f(x) =
�

4 + x2 +
4√

4 + x2
− 6

59. (a)

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y

x

(b)

(c) f(x) = x2/2 − 1

60. (a)

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y

x

(b)

(c) y = (ex + 1)/2

61. This slope field is zero along the y-axis, and so corresponds to (b).

–3 –1 1 3

–10

–5

5

10

x

y

62. This slope field is independent of y, is near zero for large negative values of x, and is very large
for large positive x. It must correspond to (d).

(b)
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58. (a) f(x) =
1

3
x2 sin 3x − 2

27
sin 3x +

2

9
x cos 3x − 0.251607

(b) f(x) =
�

4 + x2 +
4√

4 + x2
− 6

59. (a)

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y

x

(b)

(c) f(x) = x2/2 − 1

60. (a)

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y

x

(b)

(c) y = (ex + 1)/2

61. This slope field is zero along the y-axis, and so corresponds to (b).

–3 –1 1 3

–10

–5

5

10

x

y

62. This slope field is independent of y, is near zero for large negative values of x, and is very large
for large positive x. It must correspond to (d).

(c) f(x) = x2/2− 1.

60. (a)
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58. (a) f(x) =
1

3
x2 sin 3x − 2

27
sin 3x +

2

9
x cos 3x − 0.251607

(b) f(x) =
�

4 + x2 +
4√

4 + x2
− 6

59. (a)

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y

x

(b)

(c) f(x) = x2/2 − 1

60. (a)

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y

x

(b)

(c) y = (ex + 1)/2

61. This slope field is zero along the y-axis, and so corresponds to (b).

–3 –1 1 3

–10

–5

5

10

x

y

62. This slope field is independent of y, is near zero for large negative values of x, and is very large
for large positive x. It must correspond to (d).

(b)
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58. (a) f(x) =
1

3
x2 sin 3x − 2

27
sin 3x +

2

9
x cos 3x − 0.251607

(b) f(x) =
�

4 + x2 +
4√

4 + x2
− 6

59. (a)

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y

x

(b)

(c) f(x) = x2/2 − 1

60. (a)

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y

x

(b)

(c) y = (ex + 1)/2

61. This slope field is zero along the y-axis, and so corresponds to (b).

–3 –1 1 3

–10

–5

5

10

x

y

62. This slope field is independent of y, is near zero for large negative values of x, and is very large
for large positive x. It must correspond to (d).

(c) y = (ex + 1)/2.

61. This slope field is zero along the y-axis, and so corresponds to (b).



250 Chapter 5

November 10, 2008 16:01 ”ISM ET chapter 5” Sheet number 7 Page number 231 black

Exercise Set 5.2 231

58. (a) f(x) =
1

3
x2 sin 3x − 2

27
sin 3x +

2

9
x cos 3x − 0.251607

(b) f(x) =
�

4 + x2 +
4√

4 + x2
− 6

59. (a)

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y

x

(b)

(c) f(x) = x2/2 − 1

60. (a)

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y

x

(b)

(c) y = (ex + 1)/2

61. This slope field is zero along the y-axis, and so corresponds to (b).

–3 –1 1 3

–10

–5

5

10

x

y

62. This slope field is independent of y, is near zero for large negative values of x, and is very large
for large positive x. It must correspond to (d).

62. This slope field is near zero for large negative values of x, and is very large for large positive x. It must correspond
to (d).
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–4 –2 2 4

–10

–5

5

10

x

y

63. This slope field has a negative value along the y-axis, and thus corresponds to (c).

–2 1 3

–9

–3

3

9

x

y

64. This slope field appears to be constant (approximately 2), and thus corresponds to differential
equation (a).

–3 –1 2 4

–10

5

10

x

y

65. Theorm 5.2.2 says that every antiderivative is of the form F (x) + C, for some C. In particular,
the antiderivative of 0 is C for some C, not for every C. (Different problems will have different
values of C).

66. The first equality is incorrect because the right hand side evaluates to x2/2 + C1 − (x2/2 + C2) =
C1 − C2.

67. (a) F �(x) =
1

1 + x2
, G�(x) = +

�
1

x2

�
1

1 + 1/x2
=

1

1 + x2
= F �(x)

(b) F (1) = π/4;G(1) = tan−1(1) = π/4, tan−1 x + tan−1(1/x) = π/2

(c) Draw a triangle with sides 1 and x and hypotenuse
√

1 + x2. If α denotes the angle opposite
the side of length x and if β denotes its complement, then tanα = x and tanβ = 1/x, and

sin(α+ β) = sinα cosβ + sinβ cosα =
x2

1 + x2
+

1

1 + x2
= 1, and cos(α+ β) = cosα cosβ −

sinα sinβ =
x · 1

1 + x2
− 1 · x

1 + x2
= 0, so the cosine of α + β is zero and the sine of α + β is 1;

consequently α+ β = π/2, i.e. tan−1 x + tan−1(1/x) = π/2.

63. This slope field has a negative value along the y-axis, and thus corresponds to (c).
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–4 –2 2 4

–10

–5

5

10

x

y

63. This slope field has a negative value along the y-axis, and thus corresponds to (c).

–2 1 3

–9

–3

3

9

x

y

64. This slope field appears to be constant (approximately 2), and thus corresponds to differential
equation (a).

–3 –1 2 4

–10

5

10

x

y

65. Theorm 5.2.2 says that every antiderivative is of the form F (x) + C, for some C. In particular,
the antiderivative of 0 is C for some C, not for every C. (Different problems will have different
values of C).

66. The first equality is incorrect because the right hand side evaluates to x2/2 + C1 − (x2/2 + C2) =
C1 − C2.

67. (a) F �(x) =
1

1 + x2
, G�(x) = +

�
1

x2

�
1

1 + 1/x2
=

1

1 + x2
= F �(x)

(b) F (1) = π/4;G(1) = tan−1(1) = π/4, tan−1 x + tan−1(1/x) = π/2

(c) Draw a triangle with sides 1 and x and hypotenuse
√

1 + x2. If α denotes the angle opposite
the side of length x and if β denotes its complement, then tanα = x and tanβ = 1/x, and

sin(α+ β) = sinα cosβ + sinβ cosα =
x2

1 + x2
+

1

1 + x2
= 1, and cos(α+ β) = cosα cosβ −

sinα sinβ =
x · 1

1 + x2
− 1 · x

1 + x2
= 0, so the cosine of α + β is zero and the sine of α + β is 1;

consequently α+ β = π/2, i.e. tan−1 x + tan−1(1/x) = π/2.

64. This slope field appears to be constant (approximately 2), and thus corresponds to differential equation (a).
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–4 –2 2 4

–10

–5

5

10

x

y

63. This slope field has a negative value along the y-axis, and thus corresponds to (c).

–2 1 3

–9

–3

3

9

x

y

64. This slope field appears to be constant (approximately 2), and thus corresponds to differential
equation (a).

–3 –1 2 4

–10

5

10

x

y

65. Theorm 5.2.2 says that every antiderivative is of the form F (x) + C, for some C. In particular,
the antiderivative of 0 is C for some C, not for every C. (Different problems will have different
values of C).

66. The first equality is incorrect because the right hand side evaluates to x2/2 + C1 − (x2/2 + C2) =
C1 − C2.

67. (a) F �(x) =
1

1 + x2
, G�(x) = +

�
1

x2

�
1

1 + 1/x2
=

1

1 + x2
= F �(x)

(b) F (1) = π/4;G(1) = tan−1(1) = π/4, tan−1 x + tan−1(1/x) = π/2

(c) Draw a triangle with sides 1 and x and hypotenuse
√

1 + x2. If α denotes the angle opposite
the side of length x and if β denotes its complement, then tanα = x and tanβ = 1/x, and

sin(α+ β) = sinα cosβ + sinβ cosα =
x2

1 + x2
+

1

1 + x2
= 1, and cos(α+ β) = cosα cosβ −

sinα sinβ =
x · 1

1 + x2
− 1 · x

1 + x2
= 0, so the cosine of α + β is zero and the sine of α + β is 1;

consequently α+ β = π/2, i.e. tan−1 x + tan−1(1/x) = π/2.

65. Theorem 5.2.3(a) says that

∫
cf(x) dx = cF (x) + C, which means that

∫
0 · 0 dx = 0

∫
0 dx+ C, so the ”proof”

is not valid.

66. The first equality is incorrect because the right hand side evaluates to x2/2 + C1 − (x2/2 + C2) = C1 − C2.

67. (a) F ′(x) =
1

1 + x2
, G′(x) = +

(
1

x2

)
1

1 + 1/x2
=

1

1 + x2
= F ′(x).
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(b) F (1) = π/4;G(1) = − tan−1(1) = −π/4, tan−1 x+ tan−1(1/x) = π/2.

(c) Draw a triangle with sides 1 and x and hypotenuse
√

1 + x2. If α denotes the angle opposite the side of length
x and if β denotes its complement, then tanα = x and tanβ = 1/x, and sin(α + β) = sinα cosβ + sinβ cosα =
x2

1 + x2
+

1

1 + x2
= 1, and cos(α + β) = cosα cosβ − sinα sinβ =

x · 1
1 + x2

− 1 · x
1 + x2

= 0, so the cosine of α + β is

zero and the sine of α+ β is 1; consequently α+ β = π/2, i.e. tan−1 x+ tan−1(1/x) = π/2.

68. (a) For x 6= 0, F ′(x) = G′(x) = 1. But if I is an interval containing 0 then neither F nor G has a derivative at
0, so neither F nor G is an antiderivative on I.

(b) Suppose G(x) = F (x) + C for some C. Then F (1) = 4 and G(1) = 4 + C, so C = 0, but F (−1) = 2 and
G(−1) = −1, a contradiction.

(c) No, because neither F nor G is an antiderivative on (−∞,+∞).

69.

∫
(sec2 x− 1)dx = tanx− x+ C.

70.

∫
(csc2 x− 1)dx = − cotx− x+ C.

71. (a)
1

2

∫
(1− cosx)dx =

1

2
(x− sinx) + C. (b)

1

2

∫
(1 + cosx) dx =

1

2
(x+ sinx) + C.

72. For x > 0,
d

dx
[sec−1 x] =

1

|x|
√
x2 − 1

, and for x < 0,
d

dx
[sec−1 |x|] =

d

dx
[sec−1(−x)] = (−1)

1

|x|
√
x2 − 1

=

1

x
√
x2 − 1

, which yields formula (14) in both cases.

73. v =
1087

2
√

273

∫
T−1/2 dT =

1087√
273

T 1/2 + C, v(273) = 1087 = 1087 + C so C = 0, v =
1087√

273
T 1/2 ft/s.

74. dT/dx = C1, T = C1x + C2; T = 25 when x = 0, so C2 = 25, T = C1x + 25. T = 85 when x = 50, so
50C1 + 25 = 85, C1 = 1.2, T = 1.2x+ 25.

Exercise Set 5.3

1. (a)

∫
u23du = u24/24 + C = (x2 + 1)24/24 + C.

(b) −
∫
u3du = −u4/4 + C = −(cos4 x)/4 + C.

2. (a) 2

∫
sinu du = −2 cosu+ C = −2 cos

√
x+ C.

(b)
3

8

∫
u−1/2du =

3

4
u1/2 + C =

3

4

√
4x2 + 5 + C.

3. (a)
1

4

∫
sec2 u du =

1

4
tanu+ C =

1

4
tan(4x+ 1) + C.

(b)
1

4

∫
u1/2du =

1

6
u3/2 + C =

1

6
(1 + 2y2)3/2 + C.
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4. (a)
1

π

∫
u1/2du =

2

3π
u3/2 + C =

2

3π
sin3/2(πθ) + C.

(b)

∫
u4/5du =

5

9
u9/5 + C =

5

9
(x2 + 7x+ 3)9/5 + C.

5. (a) −
∫
u du = −1

2
u2 + C = −1

2
cot2 x+ C.

(b)

∫
u9du =

1

10
u10 + C =

1

10
(1 + sin t)10 + C.

6. (a)
1

2

∫
cosu du =

1

2
sinu+ C =

1

2
sin 2x+ C.

(b)
1

2

∫
sec2 u du =

1

2
tanu+ C =

1

2
tanx2 + C.

7. (a)

∫
(u− 1)2u1/2du =

∫
(u5/2 − 2u3/2 + u1/2)du =

2

7
u7/2 − 4

5
u5/2 +

2

3
u3/2 + C =

2

7
(1 + x)7/2 − 4

5
(1 + x)5/2 +

2

3
(1 + x)3/2 + C.

(b)

∫
csc2 u du = − cotu+ C = − cot(sinx) + C.

8. (a)

∫
sinu du = − cosu+ C = − cos(x− π) + C.

(b)

∫
du

u2
= − 1

u
+ C = − 1

x5 + 1
+ C.

9. (a)

∫
1

u
du = ln |u|+ C = ln | lnx|+ C.

(b) −1

5

∫
eu du = −1

5
eu + C = −1

5
e−5x + C.

10. (a) −1

3

∫
1

u
du = −1

3
ln |u|+ C = −1

3
ln |1 + cos 3θ|+ C.

(b)

∫
du

u
= lnu+ C = ln(1 + ex) + C.

11. (a) u = x3,
1

3

∫
du

1 + u2
=

1

3
tan−1(x3) + C.

(b) u = lnx,

∫
1√

1− u2
du = sin−1(lnx) + C.

12. (a) u = 3x,

∫
1

u
√
u2 − 1

du = sec−1 |3x|+ C.

(b) u =
√
x, 2

∫
du

1 + u2
= 2 tan−1 u+ C = 2 tan−1(

√
x) + C.

15. u = 4x− 3,
1

4

∫
u9 du =

1

40
u10 + C =

1

40
(4x− 3)10 + C.
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16. u = 5 + x4,
1

4

∫ √
u du =

1

6
u3/2 + C =

1

6
(5 + x4)3/2 + C.

17. u = 7x,
1

7

∫
sinu du = −1

7
cosu+ C = −1

7
cos 7x+ C.

18. u = x/3, 3

∫
cosu du = 3 sinu+ C = 3 sin(x/3) + C.

19. u = 4x, du = 4dx;
1

4

∫
secu tanu du =

1

4
secu+ C =

1

4
sec 4x+ C.

20. u = 5x, du = 5dx;
1

5

∫
sec2 u du =

1

5
tanu+ C =

1

5
tan 5x+ C.

21. u = 2x, du = 2dx;
1

2

∫
eu du =

1

2
eu + C =

1

2
e2x + C.

22. u = 2x, du = 2dx;
1

2

∫
1

u
du =

1

2
ln |u|+ C =

1

2
ln |2x|+ C.

23. u = 2x,
1

2

∫
1√

1− u2
du =

1

2
sin−1(2x) + C.

24. u = 4x,
1

4

∫
1

1 + u2
du =

1

4
tan−1(4x) + C.

25. u = 7t2 + 12, du = 14t dt;
1

14

∫
u1/2du =

1

21
u3/2 + C =

1

21
(7t2 + 12)3/2 + C.

26. u = 4− 5x2, du = −10x dx; − 1

10

∫
u−1/2du = −1

5
u1/2 + C = −1

5

√
4− 5x2 + C.

27. u = 1− 2x, du = −2dx,−3

∫
1

u3
du = (−3)

(
−1

2

)
1

u2
+ C =

3

2

1

(1− 2x)2
+ C.

28. u = x3 + 3x, du = (3x2 + 3) dx,
1

3

∫
1√
u
du =

2

3

√
x3 + 3x+ C.

29. u = 5x4 + 2, du = 20x3 dx,
1

20

∫
du

u3
du = − 1

40

1

u2
+ C = − 1

40(5x4 + 2)2
+ C.

30. u =
1

x
, du = − 1

x2
dx, −1

3

∫
sinu du =

1

3
cosu+ C =

1

3
cos

(
1

x

)
+ C.

31. u = sinx, du = cosx dx;

∫
eu du = eu + C = esin x + C.

32. u = x4, du = 4x3dx;
1

4

∫
eu du =

1

4
eu + C =

1

4
ex

4

+ C.

33. u = −2x3, du = −6x2, −1

6

∫
eudu = −1

6
eu + C = −1

6
e−2x3

+ C.

34. u = ex − e−x, du = (ex + e−x)dx,

∫
1

u
du = ln |u|+ C = ln

∣∣ex − e−x
∣∣+ C.
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35. u = ex,

∫
1

1 + u2
du = tan−1(ex) + C.

36. u = t2,
1

2

∫
1

u2 + 1
du =

1

2
tan−1(t2) + C.

37. u = 5/x, du = −(5/x2)dx; −1

5

∫
sinu du =

1

5
cosu+ C =

1

5
cos(5/x) + C.

38. u =
√
x, du =

1

2
√
x
dx; 2

∫
sec2 u du = 2 tanu+ C = 2 tan

√
x+ C.

39. u = cos 3t, du = −3 sin 3t dt, −1

3

∫
u4 du = − 1

15
u5 + C = − 1

15
cos5 3t+ C.

40. u = sin 2t, du = 2 cos 2t dt;
1

2

∫
u5 du =

1

12
u6 + C =

1

12
sin6 2t+ C.

41. u = x2, du = 2x dx;
1

2

∫
sec2 u du =

1

2
tanu+ C =

1

2
tan

(
x2
)

+ C.

42. u = 1 + 2 sin 4θ, du = 8 cos 4θ dθ;
1

8

∫
1

u4
du = − 1

24

1

u3
+ C = − 1

24

1

(1 + 2 sin 4θ)3
+ C.

43. u = 2− sin 4θ, du = −4 cos 4θ dθ; −1

4

∫
u1/2du = −1

6
u3/2 + C = −1

6
(2− sin 4θ)3/2 + C.

44. u = tan 5x, du = 5 sec2 5x dx;
1

5

∫
u3du =

1

20
u4 + C =

1

20
tan4 5x+ C.

45. u = tanx,

∫
1√

1− u2
du = sin−1(tanx) + C.

46. u = cos θ, −
∫

1

u2 + 1
du = − tan−1(cos θ) + C.

47. u = sec 2x, du = 2 sec 2x tan 2x dx;
1

2

∫
u2du =

1

6
u3 + C =

1

6
sec3 2x+ C.

48. u = sin θ, du = cos θ dθ;

∫
sinu du = − cosu+ C = − cos(sin θ) + C.

49.

∫
e−xdx; u = −x, du = −dx; −

∫
eudu = −eu + C = −e−x + C.

50.

∫
ex/2dx; u = x/2, du = dx/2; 2

∫
eudu = 2eu + C = 2ex/2 + C = 2

√
ex + C.

51. u = 2
√
x, du =

1√
x
dx; ,

∫
1

eu
du = −e−u + C = −e−2

√
x + C.

52. u =
√

2y + 1, du =
1√

2y + 1
dy;

∫
eu du = eu + C = e

√
2y+1 + C.

53. u = 2y + 1, du = 2dy;

∫
1

4
(u− 1)

1√
u
du =

1

6
u3/2 − 1

2

√
u+ C =

1

6
(2y + 1)3/2 − 1

2

√
2y + 1 + C.
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54. u = 4− x, du = −dx;−
∫

(4− u)
√
u du = −8

3
u3/2 +

2

5
u5/2 + C =

2

5
(4− x)5/2 − 8

3
(4− x)3/2 + C.

55.

∫
sin2 2θ sin 2θ dθ =

∫
(1− cos2 2θ) sin 2θ dθ; u = cos 2θ, du = −2 sin 2θ dθ, −1

2

∫
(1− u2)du = −1

2
u+

1

6
u3 +C =

−1

2
cos 2θ +

1

6
cos3 2θ + C.

56. sec2 3θ = tan2 3θ + 1, u = 3θ, du = 3dθ,

∫
sec4 3θ dθ =

1

3

∫
(tan2 u + 1) sec2 u du =

1

9
tan3 u +

1

3
tanu + C =

1

9
tan3 3θ +

1

3
tan 3θ + C.

57.

∫ (
1 +

1

t

)
dt = t+ ln |t|+ C.

58. e2 ln x = eln x2

= x2, x > 0, so

∫
e2 ln xdx =

∫
x2dx =

1

3
x3 + C.

59. ln(ex) + ln(e−x) = ln(exe−x) = ln 1 = 0, so

∫
[ln(ex) + ln(e−x)]dx = C.

60.

∫
cosx

sinx
dx; u = sinx, du = cosxdx;

∫
1

u
du = ln |u|+ C = ln | sinx|+ C.

61. (a) sin−1(x/3) + C. (b) (1/
√

5) tan−1(x/
√

5) + C. (c) (1/
√
π) sec−1 |x/√π|+ C .

62. (a) u = ex,

∫
1

4 + u2
du =

1

2
tan−1(ex/2) + C.

(b) u = 2x,
1

2

∫
1√

9− u2
du =

1

2
sin−1(2x/3) + C.

(c) u =
√

5y,

∫
1

u
√
u2 − 3

du =
1√
3

sec−1 |
√

5y/
√

3|+ C.

63. u = a+ bx, du = b dx,

∫
(a+ bx)n dx =

1

b

∫
undu =

(a+ bx)n+1

b(n+ 1)
+ C.

64. u = a+ bx, du = b dx, dx =
1

b
du,

1

b

∫
u1/ndu =

n

b(n+ 1)
u(n+1)/n + C =

n

b(n+ 1)
(a+ bx)(n+1)/n + C.

65. u = sin(a+ bx), du = b cos(a+ bx)dx,
1

b

∫
undu =

1

b(n+ 1)
un+1 + C =

1

b(n+ 1)
sinn+1(a+ bx) + C.

67. (a) With u = sinx, du = cosx dx;

∫
u du =

1

2
u2 + C1 =

1

2
sin2 x+ C1;

with u = cosx, du = − sinx dx; −
∫
u du = −1

2
u2 + C2 = −1

2
cos2 x+ C2.

(b) Because they differ by a constant:
(

1

2
sin2 x+ C1

)
−
(
−1

2
cos2 x+ C2

)
=

1

2
(sin2 x+ cos2 x) + C1 − C2 = 1/2 + C1 − C2.

68. (a) First method:

∫
(25x2 − 10x+ 1)dx =

25

3
x3 − 5x2 + x+ C1;
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second method:
1

5

∫
u2du =

1

15
u3 + C2 =

1

15
(5x− 1)3 + C2.

(b)
1

15
(5x− 1)3 + C2 =

1

15
(125x3 − 75x2 + 15x− 1) + C2 =

25

3
x3 − 5x2 + x− 1

15
+ C2; the answers differ by a

constant.

69. y =

∫ √
5x+ 1 dx =

2

15
(5x + 1)3/2 + C;−2 = y(3) =

2

15
64 + C, so C = −2 − 2

15
64 = −158

15
, and y =

2

15
(5x+ 1)3/2 − 158

15
.

70. y =

∫
(2+sin 3x) dx = 2x− 1

3
cos 3x+C and 0 = y

(π
3

)
=

2π

3
+

1

3
+C, C = −2π + 1

3
, y = 2x− 1

3
cos 3x− 2π + 1

3
.

71. y = −
∫
e2t dt = −1

2
e2t + C, 6 = y(0) = −1

2
+ C, y = −1

2
e2t +

13

2
.

72. y =

∫
1

25 + 9t2
dt =

1

15
tan−1

(
3

5
t

)
+ C,

π

30
= y

(
−5

3

)
= − 1

15

π

4
+ C,C =

π

20
, y =

1

15
tan−1

(
3

5
t

)
+

π

20
.

73. (a) u = x2 + 1, du = 2x dx;
1

2

∫
1√
u
du =

√
u+ C =

√
x2 + 1 + C.

(b)
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(b)
1

15
(5x − 1)3 + C2 =

1

15
(125x3 − 75x2 + 15x − 1) + C2 =

25

3
x3 − 5x2 + x − 1

15
+ C2;

the answers differ by a constant.

69. y =

� √
5x + 1 dx =

2

15
(5x + 1)3/2 + C;−2 = y(3) =

2

15
64 + C,

so C = −2 − 2

15
64 = −158

15
, and y =

2

15
(5x + 1)3/2 − 158

15

70. y =

�
(2 + sin 3x) dx = 2x − 1

3
cos 3x + C and

0 = y
�π

3

�
=

2π

3
+

1

3
+ C, C = −2π + 1

3
, y = 2x − 1

3
cos 3x − 2π + 1

3

71. y = −
�

e2t dt = −1

2
e2t + C, 6 = y(0) = −1

2
+ C, y = −1

2
e2t +

13

2

72. y =

�
1

25 + 9t2
dt =

1

15
tan−1

�
3

5
t

�
+ C,

π

30
= y

�
−5

3

�
= − 1

15

π

4
+ C,

C =
π

60
, y =

1

15
tan−1

�
3

5
t

�
+

π

60

73. (a) u = x2 + 1, du = 2x dx;
1

2

�
1√
u

du =
√

u + C =
�

x2 + 1 + C

(b) 5

0
–5 5

74. (a) u = x2 + 1, du = 2x dx;
1

2

�
1

u
du =

1

2
lnu + C =

1

2
ln(x2 + 1) + C

(b) y

x

4

–4 4

75. f �(x) = m =
√

3x + 1, f(x) =

�
(3x + 1)1/2dx =

2

9
(3x + 1)3/2 + C

f(0) = 1 =
2

9
+ C, C =

7

9
, so f(x) =

2

9
(3x + 1)3/2 +

7

9

76. p(t) =

�
(3 + 0.12t)3/2 dt =

10

3
(3 + 0.12t)5/2 + C;

100 = p(0) =
10

3
35/2 + C, C = 100 − 10 · 33/2 ≈ 48.038 so that

74. (a) u = x2 + 1, du = 2x dx;
1

2

∫
1

u
du =

1

2
lnu+ C =

1

2
ln(x2 + 1) + C.

(b)
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(b)
1

15
(5x − 1)3 + C2 =

1

15
(125x3 − 75x2 + 15x − 1) + C2 =

25

3
x3 − 5x2 + x − 1

15
+ C2;

the answers differ by a constant.

69. y =

� √
5x + 1 dx =

2

15
(5x + 1)3/2 + C;−2 = y(3) =

2

15
64 + C,

so C = −2 − 2

15
64 = −158

15
, and y =

2

15
(5x + 1)3/2 − 158

15

70. y =

�
(2 + sin 3x) dx = 2x − 1

3
cos 3x + C and

0 = y
�π

3

�
=

2π

3
+

1

3
+ C, C = −2π + 1

3
, y = 2x − 1

3
cos 3x − 2π + 1

3

71. y = −
�

e2t dt = −1

2
e2t + C, 6 = y(0) = −1

2
+ C, y = −1

2
e2t +

13

2

72. y =

�
1

25 + 9t2
dt =

1

15
tan−1

�
3

5
t

�
+ C,

π

30
= y

�
−5

3

�
= − 1

15

π

4
+ C,

C =
π

60
, y =

1

15
tan−1

�
3

5
t

�
+

π

60

73. (a) u = x2 + 1, du = 2x dx;
1

2

�
1√
u

du =
√

u + C =
�

x2 + 1 + C

(b) 5

0
–5 5

74. (a) u = x2 + 1, du = 2x dx;
1

2

�
1

u
du =

1

2
lnu + C =

1

2
ln(x2 + 1) + C

(b) y

x

4

–4 4

75. f �(x) = m =
√

3x + 1, f(x) =

�
(3x + 1)1/2dx =

2

9
(3x + 1)3/2 + C

f(0) = 1 =
2

9
+ C, C =

7

9
, so f(x) =

2

9
(3x + 1)3/2 +

7

9

76. p(t) =

�
(3 + 0.12t)3/2 dt =

10

3
(3 + 0.12t)5/2 + C;

100 = p(0) =
10

3
35/2 + C, C = 100 − 10 · 33/2 ≈ 48.038 so that

75. f ′(x) = m =
√

3x+ 1, f(x) =

∫
(3x + 1)1/2dx =

2

9
(3x + 1)3/2 + C, f(0) = 1 =

2

9
+ C, C =

7

9
, so f(x) =

2

9
(3x+ 1)3/2 +

7

9
.

76. p(t) =

∫
(3 + 0.12t)3/2 dt =

10

3
(3 + 0.12t)5/2 + C; 100 = p(0) =

10

3
35/2 + C,C = 100− 10 · 33/2 ≈ 48.038 so that

p(5) =
10

3
(3 + 5 · (0.12))5/2 + 100− 10 · 33/2 ≈ 130.005 so that the population at the beginning of the year 2015 is

approximately 130,005.
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77. y(t) =

∫
(ln 2) 2t/20 dt = 20 · 2t/20 + C; 20 = y(0) = 20 + C, so C = 0 and y(t) = 20 · 2t/20. This implies that

y(120) = 20 · 2120/20 = 1280 cells.

78. u = a sin θ, du = a cos θ dθ;

∫
du√
a2 − u2

= θ + C = sin−1 u

a
+ C.

79. If u > 0 then u = a sec θ, du = a sec θ tan θ dθ;

∫
du

u
√
u2 − a2

=
1

a
θ =

1

a
sec−1 u

a
+ C.

Exercise Set 5.4

1. (a) 1 + 8 + 27 = 36. (b) 5 + 8 + 11 + 14 + 17 = 55. (c) 20 + 12 + 6 + 2 + 0 + 0 = 40

(d) 1 + 1 + 1 + 1 + 1 + 1 = 6. (e) 1− 2 + 4− 8 + 16 = 11. (f) 0 + 0 + 0 + 0 + 0 + 0 = 0.

2. (a) 1 + 0− 3 + 0 = −2. (b) 1− 1 + 1− 1 + 1− 1 = 0. (c) π2 + π2 + · · ·+ π2 = 14π2 (14 terms).

(d) 24 +25 +26 = 112. (e)
√

1+
√

2+
√

3+
√

4+
√

5+
√

6 (f) 1−1+1−1+1−1+1−1+1−1+1 = 1.

3.
10∑

k=1

k

4.

20∑

k=1

3k

5.
10∑

k=1

2k

6.
8∑

k=1

(2k − 1)

7.
6∑

k=1

(−1)k+1(2k − 1)

8.
5∑

k=1

(−1)k+1 1

k

9. (a)
50∑

k=1

2k (b)
50∑

k=1

(2k − 1)

10. (a)
5∑

k=1

(−1)k+1ak (b)
5∑

k=0

(−1)k+1bk (c)
n∑

k=0

akx
k (d)

5∑

k=0

a5−kbk

11.
1

2
(100)(100 + 1) = 5050.

12. 7
100∑

k=1

k +
100∑

k=1

1 =
7

2
(100)(101) + 100 = 35,450.
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13.
1

6
(20)(21)(41) = 2870.

14.
20∑

k=1

k2 −
3∑

k=1

k2 = 2870− 14 = 2856.

15.
30∑

k=1

k(k2 − 4) =
30∑

k=1

(k3 − 4k) =
30∑

k=1

k3 − 4
30∑

k=1

k =
1

4
(30)2(31)2 − 4 · 1

2
(30)(31) = 214,365.

16.
6∑

k=1

k −
6∑

k=1

k3 =
1

2
(6)(7)− 1

4
(6)2(7)2 = −420.

17.
n∑

k=1

3k

n
=

3

n

n∑

k=1

k =
3

n
· 1

2
n(n+ 1) =

3

2
(n+ 1).

18.
n−1∑

k=1

k2

n
=

1

n

n−1∑

k=1

k2 =
1

n
· 1

6
(n− 1)(n)(2n− 1) =

1

6
(n− 1)(2n− 1).

19.
n−1∑

k=1

k3

n2
=

1

n2

n−1∑

k=1

k3 =
1

n2
· 1

4
(n− 1)2n2 =

1

4
(n− 1)2.

20.
n∑

k=1

(
5

n
− 2k

n

)
=

5

n

n∑

k=1

1− 2

n

n∑

k=1

k =
5

n
(n)− 2

n
· 1

2
n(n+ 1) = 4− n.

21. True.

22. False; the value of a function at the midpoint of an interval need not be the average of the values of the function
at the endpoints of the interval.

23. False; if [a, b] consists of positive reals, true; but false on, e.g. [−2, 1].

24. False; e.g. sinx on [0, 2π].

25. (a)

(
2 +

3

n

)4
3

n
,

(
2 +

6

n

)4
3

n
,

(
2 +

9

n

)4
3

n
, . . . ,

(
2 +

3(n− 1)

n

)4
3

n
, (2 + 3)4 3

n
. When [2, 5] is subdivided into n

equal intervals, the endpoints are 2, 2 +
3

n
, 2 + 2 · 3

n
, 2 + 3 · 3

n
, . . . , 2 + (n− 1)

3

n
, 2 + 3 = 5, and the right endpoint

approximation to the area under the curve y = x4 is given by the summands above.

(b)

n−1∑

k=0

(
2 + k · 3

n

)4
3

n
gives the left endpoint approximation.

26. n is the number of elements of the partition, x∗k is an arbitrary point in the k-th interval, k = 0, 1, 2, . . . , n− 1, n,
and ∆x is the width of an interval in the partition. In the usual definition of area, the parts above the curve are
given a + sign, and the parts below the curve are given a − sign. These numbers are then replaced with their
absolute values and summed. In the definition of net signed area, the parts given above are summed without
considering absolute values. In this case there could be lots of cancellation of ’positive’ areas with ’negative’ areas.

27. Endpoints 2, 3, 4, 5, 6; ∆x = 1;

(a) Left endpoints:
4∑

k=1

f(x∗k)∆x = 7 + 10 + 13 + 16 = 46.
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(b) Midpoints:
4∑

k=1

f(x∗k)∆x = 8.5 + 11.5 + 14.5 + 17.5 = 52.

(c) Right endpoints:
4∑

k=1

f(x∗k)∆x = 10 + 13 + 16 + 19 = 58.

28. Endpoints 1, 3, 5, 7, 9,∆x = 2;

(a) Left endpoints:
4∑

k=1

f(x∗k)∆x =

(
1 +

1

3
+

1

5
+

1

7

)
2 =

352

105
.

(b) Midpoints:
4∑

k=1

f(x∗k)∆x =

(
1

2
+

1

4
+

1

6
+

1

8

)
2 =

25

12
.

(c) Right endpoints:
4∑

k=1

f(x∗k)∆x =

(
1

3
+

1

5
+

1

7
+

1

9

)
2 =

496

315
.

29. Endpoints: 0, π/4, π/2, 3π/4, π; ∆x = π/4.

(a) Left endpoints:
4∑

k=1

f(x∗k)∆x =
(

1 +
√

2/2 + 0−
√

2/2
)

(π/4) = π/4.

(b) Midpoints:
4∑

k=1

f(x∗k)∆x = [cos(π/8) + cos(3π/8) + cos(5π/8) + cos(7π/8)] (π/4) =

= [cos(π/8) + cos(3π/8)− cos(3π/8)− cos(π/8)] (π/4) = 0.

(c) Right endpoints:
4∑

k=1

f(x∗k)∆x =
(√

2/2 + 0−
√

2/2− 1
)

(π/4) = −π/4.

30. Endpoints −1, 0, 1, 2, 3; ∆x = 1.

(a)
4∑

k=1

f(x∗k)∆x = −3 + 0 + 1 + 0 = −2.

(b)
4∑

k=1

f(x∗k)∆x = −5

4
+

3

4
+

3

4
− 5

4
= −1.

(c)
4∑

k=1

f(x∗k)∆x = 0 + 1 + 0− 3 = −2.

31. (a) 0.718771403, 0.705803382, 0.698172179.

(b) 0.692835360, 0.693069098, 0.693134682.

(c) 0.668771403, 0.680803382, 0.688172179.

32. (a) 0.761923639, 0.712712753, 0.684701150.

(b) 0.663501867, 0.665867079, 0.666538346.
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(c) 0.584145862, 0.623823864, 0.649145594.

33. (a) 4.884074734, 5.115572731, 5.248762738.

(b) 5.34707029, 5.338362719, 5.334644416.

(c) 5.684074734, 5.515572731, 5.408762738.

34. (a) 0.919403170, 0.960215997, 0.984209789.

(b) 1.001028824, 1.000257067, 1.000041125.

(c) 1.076482803, 1.038755813, 1.015625715.

35. ∆x =
3

n
, x∗k = 1 +

3

n
k; f(x∗k)∆x =

1

2
x∗k∆x =

1

2

(
1 +

3

n
k

)
3

n
=

3

2

[
1

n
+

3

n2
k

]
,

n∑

k=1

f(x∗k)∆x =
3

2

[
n∑

k=1

1

n
+

n∑

k=1

3

n2
k

]
=

3

2

[
1 +

3

n2
· 1

2
n(n+ 1)

]
=

3

2

[
1 +

3

2

n+ 1

n

]
,

A = lim
n→+∞

3

2

[
1 +

3

2

(
1 +

1

n

)]
=

3

2

(
1 +

3

2

)
=

15

4
.

36. ∆x =
5

n
, x∗k = 0 + k

5

n
; f(x∗k)∆x = (5− x∗k)∆x =

(
5− 5

n
k

)
5

n
=

25

n
− 25

n2
k,

n∑

k=1

f(x∗k)∆x =
n∑

k=1

25

n
− 25

n2

n∑

k=1

k = 25− 25

n2
· 1

2
n(n+ 1) = 25− 25

2

(
n+ 1

n

)
,

A = lim
n→+∞

[
25− 25

2

(
1 +

1

n

)]
= 25− 25

2
=

25

2
.

37. ∆x =
3

n
, x∗k = 0 + k

3

n
; f(x∗k)∆x =

(
9− 9

k2

n2

)
3

n
,

n∑

k=1

f(x∗k)∆x =
n∑

k=1

(
9− 9

k2

n2

)
3

n
=

27

n

n∑

k=1

(
1− k2

n2

)
= 27− 27

n3

n∑

k=1

k2,

A = lim
n→+∞

[
27− 27

n3

n∑

k=1

k2

]
= 27− 27

(
1

3

)
= 18.

38. ∆x =
3

n
, x∗k = k

3

n
; f(x∗k)∆x =

[
4− 1

4
(x∗k)2

]
∆x =

[
4− 1

4

9k2

n2

]
3

n
=

12

n
− 27k2

4n3
,

n∑

k=1

f(x∗k)∆x =
n∑

k=1

12

n
− 27

4n3

n∑

k=1

k2 = 12− 27

4n3
· 1

6
n(n+ 1)(2n+ 1) = 12− 9

8

(n+ 1)(2n+ 1)

n2
,

A = lim
n→+∞

[
12− 9

8

(
1 +

1

n

)(
2 +

1

n

)]
= 12− 9

8
(1)(2) = 39/4.

39. ∆x =
4

n
, x∗k = 2 + k

4

n
; f(x∗k)∆x = (x∗k)3∆x =

[
2 +

4

n
k

]3
4

n
=

32

n

[
1 +

2

n
k

]3

=
32

n

[
1 +

6

n
k +

12

n2
k2 +

8

n3
k3

]
,

n∑

k=1

f(x∗k)∆x =
32

n

[
n∑

k=1

1 +
6

n

n∑

k=1

k +
12

n2

n∑

k=1

k2 +
8

n3

n∑

k=1

k3

]
=

=
32

n

[
n+

6

n
· 1

2
n(n+ 1) +

12

n2
· 1

6
n(n+ 1)(2n+ 1) +

8

n3
· 1

4
n2(n+ 1)2

]
=
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= 32

[
1 + 3

n+ 1

n
+ 2

(n+ 1)(2n+ 1)

n2
+ 2

(n+ 1)2

n2

]
,

A = lim
n→+∞

32

[
1 + 3

(
1 +

1

n

)
+ 2

(
1 +

1

n

)(
2 +

1

n

)
+ 2

(
1 +

1

n

)2
]

= 32[1 + 3(1) + 2(1)(2) + 2(1)2] = 320.

40. ∆x =
2

n
, x∗k = −3 + k

2

n
; f(x∗k)∆x = [1− (x∗k)3]∆x =

[
1−

(
−3 +

2

n
k

)3
]

2

n
=

2

n

[
28− 54

n
k +

36

n2
k2 − 8

n3
k3

]
,

n∑

k=1

f(x∗k)∆x =
2

n

[
28n− 27(n+ 1) + 6

(n+ 1)(2n+ 1)

n
− 2

(n+ 1)2

n

]
,

A = lim
n→+∞

2

[
28− 27

(
1 +

1

n

)
+ 6

(
1 +

1

n

)(
2 +

1

n

)
− 2

(
1 +

1

n

)2
]

= 2(28− 27 + 12− 2) = 22.

41. ∆x =
3

n
, x∗k = 1 + (k − 1)

3

n
; f(x∗k)∆x =

1

2
x∗k∆x =

1

2

[
1 + (k − 1)

3

n

]
3

n
=

1

2

[
3

n
+ (k − 1)

9

n2

]
,

n∑

k=1

f(x∗k)∆x =
1

2

[
n∑

k=1

3

n
+

9

n2

n∑

k=1

(k − 1)

]
=

1

2

[
3 +

9

n2
· 1

2
(n− 1)n

]
=

3

2
+

9

4

n− 1

n
,

A = lim
n→+∞

[
3

2
+

9

4

(
1− 1

n

)]
=

3

2
+

9

4
=

15

4
.

42. ∆x =
5

n
, x∗k =

5

n
(k − 1); f(x∗k)∆x = (5− x∗k)∆x =

[
5− 5

n
(k − 1)

]
5

n
=

25

n
− 25

n2
(k − 1),

n∑

k=1

f(x∗k)∆x =
25

n

n∑

k=1

1− 25

n2

n∑

k=1

(k − 1) = 25− 25

2

n− 1

n
,

A = lim
n→+∞

[
25− 25

2

(
1− 1

n

)]
= 25− 25

2
=

25

2
.

43. ∆x =
3

n
, x∗k = 0 + (k − 1)

3

n
; f(x∗k)∆x =

[
9− 9

(k − 1)2

n2

]
3

n
,

n∑

k=1

f(x∗k)∆x =
n∑

k=1

[
9− 9

(k − 1)2

n2

]
3

n
=

27

n

n∑

k=1

(
1− (k − 1)2

n2

)
= 27− 27

n3

n∑

k=1

k2 +
54

n3

n∑

k=1

k − 27

n2
,

A = lim
n→+∞

= 27− 27

(
1

3

)
+ 0 + 0 = 18.

44. ∆x =
3

n
, x∗k = (k − 1)

3

n
; f(x∗k)∆x =

[
4− 1

4
(x∗k)2

]
∆x =

[
4− 1

4

9(k − 1)2

n2

]
3

n
=

12

n
− 27k2

4n3
+

27k

2n3
− 27

4n3
,

n∑

k=1

f(x∗k)∆x =
n∑

k=1

12

n
− 27

4n3

n∑

k=1

k2 +
27

2n3

n∑

k=1

k− 27

4n3

n∑

k=1

1 = 12− 27

4n3
· 1
6
n(n+1)(2n+1)+

27

2n3

n(n+ 1)

2
− 27

4n2
=

= 12− 9

8

(n+ 1)(2n+ 1)

n2
+

27

4n
+

27

4n2
− 27

4n2
,

A = lim
n→+∞

[
12− 9

8

(
1 +

1

n

)(
2 +

1

n

)]
+ 0 + 0− 0 = 12− 9

8
(1)(2) = 39/4.

45. Endpoints 0,
4

n
,

8

n
, . . . ,

4(n− 1)

n
,

4n

n
= 4, and midpoints

2

n
,

6

n
,

10

n
, . . . ,

4n− 6

n
,

4n− 2

n
. Approximate the area with

the sum
n∑

k=1

2

(
4k − 2

n

)
4

n
=

16

n2

[
2
n(n+ 1)

2
− n

]
→ 16 (exact) as n→ +∞.
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46. Endpoints 1, 1+
4

n
, 1+

8

n
, . . . , 1+

4(n− 1)

n
, 1+4 = 5, and midpoints 1+

2

n
, 1+

6

n
, 1+

10

n
, . . . , 1+

4(n− 1)− 2

n
,

4n− 2

n
.

Approximate the area with the sum
n∑

k=1

(
6−

(
1 +

4k − 2

n

))
4

n
=

n∑

k=1

(
5

4

n
− 16

n2
k +

8

n2

)
= 20 − 16

n2

n(n+ 1)

2
+

8

n
= 20− 8 = 12, which is exact, because f is linear.

47. ∆x =
1

n
, x∗k =

2k − 1

2n
; f(x∗k)∆x =

(2k − 1)2

(2n)2

1

n
=
k2

n3
− k

n3
+

1

4n3
,
n∑

k=1

f(x∗k)∆x =
1

n3

n∑

k=1

k2− 1

n3

n∑

k=1

k+
1

4n3

n∑

k=1

1.

Using Theorem 5.4.4, A = lim
n→+∞

n∑

k=1

f(x∗k)∆x =
1

3
+ 0 + 0 =

1

3
.

48. ∆x =
2

n
, x∗k = −1 +

2k − 1

n
; f(x∗k)∆x =

(
−1 +

2k − 1

n

)2
2

n
=

8k2

n3
− 8k

n3
+

2

n3
− 2

n
,

n∑

k=1

f(x∗k)∆x =
8

n3

n∑

k=1

k2 −

8

n3

n∑

k=1

k +
2

n2
− 2, A = lim

n→+∞

n∑

k=1

f(x∗k)∆x =
8

3
+ 0 + 0− 2 =

2

3
.

49. ∆x =
2

n
, x∗k = −1 +

2k

n
; f(x∗k)∆x =

(
−1 +

2k

n

)
2

n
= − 2

n
+ 4

k

n2
,

n∑

k=1

f(x∗k)∆x = −2 +
4

n2

n∑

k=1

k = −2 +

4

n2

n(n+ 1)

2
= −2 + 2 +

2

n
, A = lim

n→+∞

n∑

k=1

f(x∗k)∆x = 0.

The area below the x-axis cancels the area above the x-axis.

50. ∆x =
3

n
, x∗k = −1 +

3k

n
; f(x∗k)∆x =

(
−1 +

3k

n

)
3

n
= − 3

n
+

9

n2
k,

n∑

k=1

f(x∗k)∆x = −3 +
9

n2

n(n+ 1)

2
, A =

lim
n→+∞

n∑

k=1

f(x∗k)∆x = −3 +
9

2
+ 0 =

3

2
.

The area below the x-axis cancels the area above the x-axis that lies to the left of the line x = 1; the remaining

area is a trapezoid of width 1 and heights 1, 2, hence its area is
1 + 2

2
=

3

2
.

51. ∆x =
2

n
, x∗k =

2k

n
; f(x∗k) =

[(
2k

n

)2

− 1

]
2

n
=

8k2

n3
− 2

n
,
n∑

k=1

f(x∗k)∆x =
8

n3

n∑

k=1

k2− 2

n

n∑

k=1

1 =
8

n3

n(n+ 1)(2n+ 1)

6
−

2, A = lim
n→+∞

n∑

k=1

f(x∗k)∆x =
16

6
− 2 =

2

3
.

52. ∆x =
2

n
, x∗k = −1+

2k

n
; f(x∗k)∆x =

(
−1 + 2k

n

)3 2
n = − 2

n +12 k
n2 −24 k

2

n3 +16 k
3

n4 ,
n∑

k=1

f(x∗k)∆x = −2+
12

n2

n(n+ 1)

2
−

24

n3

n(n+ 1)(2n+ 1)

6
+

16

n4

(
n(n+ 1)

2

)2

, A = lim
n→+∞

n∑

k=1

f(x∗k) = −2 +
12

2
− 48

6
+

16

22
= 0.

53. (a) With x∗k as the right endpoint, ∆x =
b

n
, x∗k =

b

n
k; f(x∗k)∆x = (x∗k)3∆x =

b4

n4
k3,

n∑

k=1

f(x∗k)∆x =
b4

n4

n∑

k=1

k3 =

b4

4

(n+ 1)2

n2
, A = lim

n→+∞
b4

4

(
1 +

1

n

)2

= b4/4.

(b) First Method (tedious): ∆x =
b− a
n

, x∗k = a +
b− a
n

k; f(x∗k)∆x = (x∗k)3∆x =

[
a+

b− a
n

k

]3
b− a
n

=
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b− a
n

[
a3 +

3a2(b− a)

n
k +

3a(b− a)2

n2
k2 +

(b− a)3

n3
k3

]
,

n∑

k=1

f(x∗k)∆x = (b− a)

[
a3 +

3

2
a2(b− a)

n+ 1

n
+

1

2
a(b− a)2 (n+ 1)(2n+ 1)

n2
+

1

4
(b− a)3 (n+ 1)2

n2

]
,

A = lim
n→+∞

n∑

k=1

f(x∗k)∆x = (b− a)

[
a3 +

3

2
a2(b− a) + a(b− a)2 +

1

4
(b− a)3

]
=

1

4
(b4 − a4).

Alternative method: Apply part (a) of the Exercise to the interval [0, a] and observe that the area under the curve

and above that interval is given by
1

4
a4. Apply part (a) again, this time to the interval [0, b] and obtain

1

4
b4. Now

subtract to obtain the correct area and the formula A =
1

4
(b4 − a4).

54. Let A be the area of the region under the curve and above the interval 0 ≤ x ≤ 1 on the x-axis, and let B be the
area of the region between the curve and the interval 0 ≤ y ≤ 1 on the y-axis. Together A and B form the square
of side 1, so A + B = 1. But B can also be considered as the area between the curve x = y2 and the interval

0 ≤ y ≤ 1 on the y-axis. By Exercise 47 above, B =
1

3
, so A = 1− 1

3
=

2

3
.

55. If n = 2m then 2m + 2(m − 1) + · · · + 2 · 2 + 2 = 2
m∑

k=1

k = 2 · m(m+ 1)

2
= m(m + 1) =

n2 + 2n

4
; if n = 2m + 1

then (2m + 1) + (2m − 1) + · · · + 5 + 3 + 1 =
m+1∑

k=1

(2k − 1) = 2
m+1∑

k=1

k −
m+1∑

k=1

1 = 2 · (m+ 1)(m+ 2)

2
− (m + 1) =

(m+ 1)2 =
n2 + 2n+ 1

4
.

56. 50 · 30 + 49 · 29 + · · ·+ 22 · 2 + 21 · 1 =
30∑

k=1

k(k + 20) =
30∑

k=1

k2 + 20
30∑

k=1

k =
30 · 31 · 61

6
+ 20

30 · 31

2
= 18,755.

57. (35 − 34) + (36 − 35) + · · ·+ (317 − 316) = 317 − 34.

58.

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

50
− 1

51

)
=

50

51
.

59.

(
1

22
− 1

12

)
+

(
1

32
− 1

22

)
+ · · ·+

(
1

202
− 1

192

)
=

1

202
− 1 = −399

400
.

60. (22 − 2) + (23 − 22) + · · ·+ (2101 − 2100) = 2101 − 2.

61. (a)
n∑

k=1

1

(2k − 1)(2k + 1)
=

1

2

n∑

k=1

(
1

2k − 1
− 1

2k + 1

)
=

=
1

2

[(
1− 1

3

)
+

(
1

3
− 1

5

)
+

(
1

5
− 1

7

)
+ · · ·+

(
1

2n− 1
− 1

2n+ 1

)]
=

1

2

[
1− 1

2n+ 1

]
=

n

2n+ 1
.

(b) lim
n→+∞

n

2n+ 1
=

1

2
.

62. (a)

n∑

k=1

1

k(k + 1)
=

n∑

k=1

(
1

k
− 1

k + 1

)
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · · +

(
1

n
− 1

n+ 1

)
= 1 − 1

n+ 1
=

n

n+ 1
.

(b) lim
n→+∞

n

n+ 1
= 1.
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63.
n∑

i=1

(xi − x̄) =
n∑

i=1

xi −
n∑

i=1

x̄ =
n∑

i=1

xi − nx̄, but x̄ =
1

n

n∑

i=1

xi, thus
n∑

i=1

xi = nx̄, so
n∑

i=1

(xi − x̄) = nx̄− nx̄ = 0.

64. S−rS =
n∑

k=0

ark−
n∑

k=0

ark+1 = (a+ar+ar2 + · · ·+arn)−(ar+ar2 +ar3 + · · ·+arn+1) = a−arn+1 = a(1−rn+1),

so (1− r)S = a(1− rn+1), hence S = a(1− rn+1)/(1− r).

65. Both are valid.

66. (d) is valid.

67.
n∑

k=1

(ak − bk) = (a1− b1) + (a2− b2) + · · ·+ (an− bn) = (a1 + a2 + · · ·+ an)− (b1 + b2 + · · ·+ bn) =
n∑

k=1

ak −
n∑

k=1

bk.

68. (a)
n∑

k=1

1 means add 1 to itself n times, which gives the result.

(b)
1

n2

n∑

k=1

k =
1

n2

n(n+ 1)

2
=

1

2
+

1

2n
, so lim

n→+∞
1

n2

n∑

k=1

k =
1

2
.

(c)
1

n3

n∑

k=1

k2 =
1

n3

n(n+ 1)(2n+ 1)

6
=

2

6
+

3

6n
+

1

6n2
, so lim

n→+∞
1

n3

n∑

k=1

k2 =
1

3
.

(d)
1

n4

n∑

k=1

k3 =
1

n4

(
n(n+ 1)

2

)2

=
1

4
+

1

2n
+

1

4n2
, so lim

n→+∞
1

n4

n∑

k=1

k3 =
1

4
.

Exercise Set 5.5

1. (a) (4/3)(1) + (5/2)(1) + (4)(2) = 71/6. (b) 2.

2. (a) (
√

2/2)(π/2) + (−1)(3π/4) + (0)(π/2) + (
√

2/2)(π/4) = 3(
√

2− 2)π/8. (b) 3π/4.

3. (a) (−9/4)(1) + (3)(2) + (63/16)(1) + (−5)(3) = −117/16. (b) 3.

4. (a) (−8)(2) + (0)(1) + (0)(1) + (8)(2) = 0. (b) 2.

5.

∫ 2

−1

x2 dx

6.

∫ 2

1

x3dx

7.

∫ 3

−3

4x(1− 3x)dx

8.

∫ π/2

0

sin2 x dx

9. (a) lim
max ∆xk→0

n∑

k=1

2x∗k∆xk; a = 1, b = 2. (b) lim
max ∆xk→0

n∑

k=1

x∗k
x∗k + 1

∆xk; a = 0, b = 1.
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10. (a) lim
max ∆xk→0

n∑

k=1

√
x∗k ∆xk; a = 1, b = 2. (b) lim

max ∆xk→0

n∑

k=1

(1 + cosx∗k) ∆xk; a = −π/2, b = π/2.

11. Theorem 5.5.4(a) depends on the fact that a constant can move past an integral sign, which by Definition 5.5.1 is
possible because a constant can move past a limit and/or a summation sign.

12. If f(x) ≥ 0 for all x in [a, b] then we know that positivity (or nonnegativity) is preserved under limits and sums,
hence also (by Definition 5.5.1) for integrals.

13. (a)
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(c)
1

n3

n∑

k=1

k2 =
1

n3

n(n + 1)(2n + 1)

6
=

2

6
+

3

6n
+

1

6n2
, so lim

n→+∞
1

n3

n∑

k=1

k2 =
1

3

(d)
1

n4

n∑

k=1

k3 =
1

n4

(
n(n + 1)

2

)2

=
1

4
+

1

2n
+

1

4n2
, so lim

n→+∞
1

n4

n∑

k=1

k3 =
1

4

EXERCISE SET 5.5

1. (a) (4/3)(1) + (5/2)(1) + (4)(2) = 71/6 (b) 2

2. (a) (
√

2/2)(π/2) + (−1)(3π/4) + (0)(π/2) + (
√

2/2)(π/4) = 3(
√

2 − 2)π/8

(b) 3π/4

3. (a) (−9/4)(1) + (3)(2) + (63/16)(1) + (−5)(3) = −117/16

(b) 3

4. (a) (−8)(2) + (0)(1) + (0)(1) + (8)(2) = 0 (b) 2

5.

∫ 2

−1

x2 dx 6.

∫ 2

1

x3dx

7.

∫ 3

−3

4x(1 − 3x)dx 8.

∫ π/2

0

sin2 x dx

9. (a) lim
max ∆xk→0

n∑

k=1

2x∗
k∆xk; a = 1, b = 2 (b) lim

max ∆xk→0

n∑

k=1

x∗
k

x∗
k + 1

∆xk; a = 0, b = 1

10. (a) lim
max ∆xk→0

n∑

k=1

√
x∗

k ∆xk, a = 1, b = 2

(b) lim
max ∆xk→0

n∑

k=1

(1 + cos x∗
k) ∆xk, a = −π/2, b = π/2

11. (a) A =
1

2
(3)(3) = 9/2

3
x

y

A

(b) −A = −1

2
(1)(1 + 2) = −3/2

–2 –1 x

y

A

(c) −A1 + A2 = −1

2
+ 8 = 15/2

–1
4

x

y

A1

A2

(d) −A1 + A2 = 0

–5
5

x

y

A1

A2

A =
1

2
(3)(3) = 9/2. (b)
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(c)
1

n3

n∑

k=1

k2 =
1

n3

n(n + 1)(2n + 1)

6
=

2

6
+

3

6n
+

1

6n2
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1

n3

n∑

k=1

k2 =
1

3

(d)
1

n4

n∑

k=1

k3 =
1

n4

(
n(n + 1)

2

)2

=
1

4
+

1

2n
+

1

4n2
, so lim

n→+∞
1

n4

n∑

k=1

k3 =
1

4
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2. (a) (
√

2/2)(π/2) + (−1)(3π/4) + (0)(π/2) + (
√

2/2)(π/4) = 3(
√

2 − 2)π/8

(b) 3π/4

3. (a) (−9/4)(1) + (3)(2) + (63/16)(1) + (−5)(3) = −117/16

(b) 3

4. (a) (−8)(2) + (0)(1) + (0)(1) + (8)(2) = 0 (b) 2

5.

∫ 2

−1

x2 dx 6.

∫ 2

1

x3dx

7.

∫ 3

−3

4x(1 − 3x)dx 8.

∫ π/2

0

sin2 x dx

9. (a) lim
max ∆xk→0

n∑

k=1

2x∗
k∆xk; a = 1, b = 2 (b) lim

max ∆xk→0

n∑

k=1

x∗
k

x∗
k + 1

∆xk; a = 0, b = 1

10. (a) lim
max ∆xk→0

n∑

k=1

√
x∗

k ∆xk, a = 1, b = 2

(b) lim
max ∆xk→0

n∑

k=1

(1 + cos x∗
k) ∆xk, a = −π/2, b = π/2

11. (a) A =
1

2
(3)(3) = 9/2

3
x

y

A

(b) −A = −1

2
(1)(1 + 2) = −3/2

–2 –1 x

y

A

(c) −A1 + A2 = −1

2
+ 8 = 15/2

–1
4

x

y

A1

A2

(d) −A1 + A2 = 0

–5
5

x

y

A1

A2

−A = −1

2
(1)(1 + 2) = −3/2.

(c)
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(c)
1

n3

n∑

k=1

k2 =
1

n3

n(n + 1)(2n + 1)

6
=

2

6
+

3

6n
+

1

6n2
, so lim

n→+∞
1

n3

n∑

k=1

k2 =
1

3

(d)
1

n4

n∑

k=1

k3 =
1

n4

(
n(n + 1)

2

)2

=
1

4
+

1

2n
+

1

4n2
, so lim

n→+∞
1

n4

n∑

k=1

k3 =
1

4
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1. (a) (4/3)(1) + (5/2)(1) + (4)(2) = 71/6 (b) 2

2. (a) (
√

2/2)(π/2) + (−1)(3π/4) + (0)(π/2) + (
√

2/2)(π/4) = 3(
√

2 − 2)π/8

(b) 3π/4

3. (a) (−9/4)(1) + (3)(2) + (63/16)(1) + (−5)(3) = −117/16

(b) 3

4. (a) (−8)(2) + (0)(1) + (0)(1) + (8)(2) = 0 (b) 2

5.

∫ 2

−1

x2 dx 6.

∫ 2

1

x3dx

7.

∫ 3

−3

4x(1 − 3x)dx 8.

∫ π/2

0

sin2 x dx

9. (a) lim
max ∆xk→0

n∑

k=1

2x∗
k∆xk; a = 1, b = 2 (b) lim

max ∆xk→0

n∑

k=1

x∗
k

x∗
k + 1

∆xk; a = 0, b = 1

10. (a) lim
max ∆xk→0

n∑

k=1

√
x∗

k ∆xk, a = 1, b = 2

(b) lim
max ∆xk→0

n∑

k=1

(1 + cos x∗
k) ∆xk, a = −π/2, b = π/2

11. (a) A =
1

2
(3)(3) = 9/2

3
x

y

A

(b) −A = −1

2
(1)(1 + 2) = −3/2

–2 –1 x

y

A

(c) −A1 + A2 = −1

2
+ 8 = 15/2

–1
4

x

y

A1

A2

(d) −A1 + A2 = 0

–5
5

x

y

A1

A2

−A1 +A2 = −1

2
+ 8 = 15/2. (d)
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(c)
1

n3

n∑

k=1

k2 =
1

n3

n(n + 1)(2n + 1)

6
=

2

6
+

3

6n
+

1

6n2
, so lim
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1

n3

n∑

k=1

k2 =
1

3

(d)
1

n4

n∑

k=1

k3 =
1

n4

(
n(n + 1)

2

)2

=
1

4
+

1

2n
+

1

4n2
, so lim

n→+∞
1

n4

n∑

k=1

k3 =
1

4
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√

2/2)(π/2) + (−1)(3π/4) + (0)(π/2) + (
√
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√

2 − 2)π/8

(b) 3π/4

3. (a) (−9/4)(1) + (3)(2) + (63/16)(1) + (−5)(3) = −117/16

(b) 3

4. (a) (−8)(2) + (0)(1) + (0)(1) + (8)(2) = 0 (b) 2

5.

∫ 2

−1

x2 dx 6.

∫ 2

1

x3dx

7.

∫ 3

−3

4x(1 − 3x)dx 8.

∫ π/2

0

sin2 x dx

9. (a) lim
max ∆xk→0

n∑

k=1

2x∗
k∆xk; a = 1, b = 2 (b) lim

max ∆xk→0

n∑

k=1

x∗
k

x∗
k + 1

∆xk; a = 0, b = 1

10. (a) lim
max ∆xk→0

n∑

k=1

√
x∗

k ∆xk, a = 1, b = 2

(b) lim
max ∆xk→0

n∑

k=1

(1 + cos x∗
k) ∆xk, a = −π/2, b = π/2

11. (a) A =
1

2
(3)(3) = 9/2

3
x

y

A

(b) −A = −1

2
(1)(1 + 2) = −3/2

–2 –1 x

y

A

(c) −A1 + A2 = −1

2
+ 8 = 15/2

–1
4

x

y

A1

A2

(d) −A1 + A2 = 0

–5
5

x

y

A1

A2

−A1 +A2 = 0.

14. (a)
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12. (a) A =
1

2
(1)(2) = 1

2

1
x

y

A

(b) A =
1

2
(2)(3/2 + 1/2) = 2

–1 1

1

x

y

A

(c) −A = −1

2
(1/2)(1) = −1/4

2

1
x

y

A

(d) A1 − A2 = 1 − 1/4 = 3/4

2

1
x

y

A2
A1

13. (a) A = 2(5) = 10

y

x

1

2

5

A

(b) 0; A1 = A2 by symmetry

6
c x

y

A1
A2

(c) A1 + A2 =
1

2
(5)(5/2) +

1

2
(1)(1/2)

= 13/2

–1

5

2

x

y

3
2

A1
A2

(d)
1

2
[π(1)2] = π/2

y

x

1

–1 1

A

14. (a) A = (6)(5) = 30

–10 –5

6

x

y

A

(b) −A1 + A2 = 0 because
A1 = A2 by symmetry

$
4

x

y

A1

A2

(c) A1 + A2 =
1

2
(2)(2) +

1

2
(1)(1) = 5/2

2

2

x

y

A1 A2

(d)
1

4
π(2)2 = π

y

x

2

2

A

15. (a)

∫ 0

−2

f(x) dx =

∫ 0

−2

(x + 2) dx

Triangle of height 2 and width 2, above x-axis, so answer is 2.

A =
1

2
(1)(2) = 1. (b)
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2
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y
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1
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2
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5

2

x

y

3
2

A1
A2

(d)
1

2
[π(1)2] = π/2

y

x

1

–1 1

A

14. (a) A = (6)(5) = 30

–10 –5

6

x

y

A

(b) −A1 + A2 = 0 because
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$
4

x

y

A1

A2

(c) A1 + A2 =
1

2
(2)(2) +

1

2
(1)(1) = 5/2

2

2

x

y

A1 A2

(d)
1

4
π(2)2 = π

y

x

2

2

A

15. (a)

∫ 0

−2

f(x) dx =

∫ 0

−2

(x + 2) dx

Triangle of height 2 and width 2, above x-axis, so answer is 2.

A =
1

2
(2)(3/2 + 1/2) = 2.

(c)
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12. (a) A =
1

2
(1)(2) = 1

2

1
x

y

A

(b) A =
1

2
(2)(3/2 + 1/2) = 2

–1 1

1

x

y

A

(c) −A = −1

2
(1/2)(1) = −1/4

2

1
x

y

A

(d) A1 − A2 = 1 − 1/4 = 3/4

2

1
x

y

A2
A1

13. (a) A = 2(5) = 10

y

x

1

2

5

A

(b) 0; A1 = A2 by symmetry

6
c x

y

A1
A2

(c) A1 + A2 =
1

2
(5)(5/2) +

1

2
(1)(1/2)

= 13/2

–1

5

2

x

y

3
2

A1
A2

(d)
1

2
[π(1)2] = π/2

y

x

1

–1 1

A

14. (a) A = (6)(5) = 30

–10 –5

6

x

y

A

(b) −A1 + A2 = 0 because
A1 = A2 by symmetry

$
4

x

y

A1

A2

(c) A1 + A2 =
1

2
(2)(2) +

1

2
(1)(1) = 5/2

2

2

x

y

A1 A2

(d)
1

4
π(2)2 = π

y

x

2

2

A

15. (a)

∫ 0

−2

f(x) dx =

∫ 0

−2

(x + 2) dx

Triangle of height 2 and width 2, above x-axis, so answer is 2.

−A = −1

2
(1/2)(1) = −1/4. (d)
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12. (a) A =
1

2
(1)(2) = 1
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1
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y
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(b) A =
1

2
(2)(3/2 + 1/2) = 2

–1 1

1
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y

A

(c) −A = −1

2
(1/2)(1) = −1/4

2

1
x

y

A

(d) A1 − A2 = 1 − 1/4 = 3/4
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1
x

y

A2
A1

13. (a) A = 2(5) = 10

y

x

1

2

5

A

(b) 0; A1 = A2 by symmetry

6
c x

y

A1
A2

(c) A1 + A2 =
1

2
(5)(5/2) +

1

2
(1)(1/2)

= 13/2

–1

5

2

x

y

3
2

A1
A2

(d)
1

2
[π(1)2] = π/2

y

x

1

–1 1

A

14. (a) A = (6)(5) = 30

–10 –5

6

x

y

A

(b) −A1 + A2 = 0 because
A1 = A2 by symmetry

$
4

x

y

A1

A2

(c) A1 + A2 =
1

2
(2)(2) +

1

2
(1)(1) = 5/2

2

2

x

y

A1 A2

(d)
1

4
π(2)2 = π

y

x

2

2

A

15. (a)

∫ 0

−2

f(x) dx =

∫ 0

−2

(x + 2) dx

Triangle of height 2 and width 2, above x-axis, so answer is 2.

A1−A2 = 1−1/4 = 3/4.

15. (a)
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9. (a) lim
max∆xk→0

n�

k=1

2x∗
k∆xk; a = 1, b = 2 (b) lim

max∆xk→0

n�

k=1

x∗
k

x∗
k + 1

∆xk; a = 0, b = 1

10. (a) lim
max∆xk→0

n�

k=1

�
x∗

k ∆xk, a = 1, b = 2

(b) lim
max∆xk→0

n�

k=1

(1 + cos x∗
k)∆xk, a = −π/2, b = π/2

11. Theorem 5.5.4(a) depends on the fact that a constant can move past an integral sign, which by
Definition 5.5.1 is possible because a constant can move past a limit and/or a summation sign.

12. If f(x) ≥ 0 for all x in [a, b] then we know that positivity (or nonnegativity) is preserved under
limits and sums, hence also (by Definition 5.5.1) for integrals.

13. (a) A =
1

2
(3)(3) = 9/2

y

x

1

2

5

A

(b) −A = −1

2
(1)(1 + 2) = −3/2

6
c x

y

A1
A2

(c) −A1 + A2 = −1

2
+ 8 = 15/2

–1

5

2

x

y

3
2

A1
A2

(d) −A1 + A2 = 0

y

x

1

–1 1

A

14. (a) A =
1

2
(1)(2) = 1

–10 –5

6

x

y

A

(b) A =
1

2
(2)(3/2 + 1/2) = 2

$
4

x

y

A1

A2

(c) −A = −1

2
(1/2)(1) = −1/4

2

2

x

y

A1 A2

(d) A1 − A2 = 1 − 1/4 = 3/4

y

x

2

2

A

A = 2(5) = 10. (b)
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9. (a) lim
max∆xk→0

n�

k=1

2x∗
k∆xk; a = 1, b = 2 (b) lim

max∆xk→0

n�

k=1

x∗
k

x∗
k + 1

∆xk; a = 0, b = 1

10. (a) lim
max∆xk→0

n�

k=1

�
x∗

k ∆xk, a = 1, b = 2

(b) lim
max∆xk→0

n�

k=1

(1 + cos x∗
k)∆xk, a = −π/2, b = π/2

11. Theorem 5.5.4(a) depends on the fact that a constant can move past an integral sign, which by
Definition 5.5.1 is possible because a constant can move past a limit and/or a summation sign.

12. If f(x) ≥ 0 for all x in [a, b] then we know that positivity (or nonnegativity) is preserved under
limits and sums, hence also (by Definition 5.5.1) for integrals.

13. (a) A =
1

2
(3)(3) = 9/2

y

x

1

2

5

A

(b) −A = −1

2
(1)(1 + 2) = −3/2

6
c x

y

A1
A2

(c) −A1 + A2 = −1

2
+ 8 = 15/2

–1

5

2

x

y

3
2

A1
A2

(d) −A1 + A2 = 0

y

x

1

–1 1

A

14. (a) A =
1

2
(1)(2) = 1

–10 –5

6

x

y

A

(b) A =
1

2
(2)(3/2 + 1/2) = 2

$
4

x

y

A1

A2

(c) −A = −1

2
(1/2)(1) = −1/4

2

2

x

y

A1 A2

(d) A1 − A2 = 1 − 1/4 = 3/4

y

x

2

2

A

0; A1 = A2 by symmetry.

(c)
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9. (a) lim
max∆xk→0

n�

k=1

2x∗
k∆xk; a = 1, b = 2 (b) lim

max∆xk→0

n�

k=1

x∗
k

x∗
k + 1

∆xk; a = 0, b = 1

10. (a) lim
max∆xk→0

n�

k=1

�
x∗

k ∆xk, a = 1, b = 2

(b) lim
max∆xk→0

n�

k=1

(1 + cos x∗
k)∆xk, a = −π/2, b = π/2

11. Theorem 5.5.4(a) depends on the fact that a constant can move past an integral sign, which by
Definition 5.5.1 is possible because a constant can move past a limit and/or a summation sign.

12. If f(x) ≥ 0 for all x in [a, b] then we know that positivity (or nonnegativity) is preserved under
limits and sums, hence also (by Definition 5.5.1) for integrals.

13. (a) A =
1

2
(3)(3) = 9/2

y

x

1

2

5

A

(b) −A = −1

2
(1)(1 + 2) = −3/2

6
c x

y

A1
A2

(c) −A1 + A2 = −1

2
+ 8 = 15/2

–1

5

2

x

y

3
2

A1
A2

(d) −A1 + A2 = 0

y

x

1

–1 1

A

14. (a) A =
1

2
(1)(2) = 1

–10 –5

6

x

y

A

(b) A =
1

2
(2)(3/2 + 1/2) = 2

$
4

x

y

A1

A2

(c) −A = −1

2
(1/2)(1) = −1/4

2

2

x

y

A1 A2

(d) A1 − A2 = 1 − 1/4 = 3/4

y

x

2

2

A

A1 +A2 =
1

2
(5)

5

2
+

1

2
(1)

1

2
=

13

2
. (d)
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9. (a) lim
max∆xk→0

n�

k=1

2x∗
k∆xk; a = 1, b = 2 (b) lim

max∆xk→0

n�

k=1

x∗
k

x∗
k + 1

∆xk; a = 0, b = 1

10. (a) lim
max∆xk→0

n�

k=1

�
x∗

k ∆xk, a = 1, b = 2

(b) lim
max∆xk→0

n�

k=1

(1 + cos x∗
k)∆xk, a = −π/2, b = π/2

11. Theorem 5.5.4(a) depends on the fact that a constant can move past an integral sign, which by
Definition 5.5.1 is possible because a constant can move past a limit and/or a summation sign.

12. If f(x) ≥ 0 for all x in [a, b] then we know that positivity (or nonnegativity) is preserved under
limits and sums, hence also (by Definition 5.5.1) for integrals.

13. (a) A =
1

2
(3)(3) = 9/2

y

x

1

2

5

A

(b) −A = −1

2
(1)(1 + 2) = −3/2

6
c x

y

A1
A2

(c) −A1 + A2 = −1

2
+ 8 = 15/2
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A1
A2

(d) −A1 + A2 = 0

y
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1
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14. (a) A =
1

2
(1)(2) = 1

–10 –5

6

x

y

A

(b) A =
1

2
(2)(3/2 + 1/2) = 2

$
4

x

y

A1

A2

(c) −A = −1

2
(1/2)(1) = −1/4

2

2

x

y

A1 A2

(d) A1 − A2 = 1 − 1/4 = 3/4

y

x

2

2

A

A =
1

2
[π(1)2] = π/2.
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15. (a) A = 2(5) = 10

y

x

1

2

5

A

(b) 0; A1 = A2 by symmetry

6
c x

y

A1
A2

(c) A1 + A2 =
1

2
(5)(5/2) +

1

2
(1)(1/2)

= 13/2

–1

5

2

x

y

3
2

A1
A2

(d)
1

2
[π(1)2] = π/2

y

x

1

–1 1

A

16. (a) A = (6)(5) = 30

–10 –5

6

x

y

A

(b) −A1 + A2 = 0 because
A1 = A2 by symmetry

$
4

x

y

A1

A2

(c) A1 + A2 =
1

2
(2)(2) +

1

2
(1)(1) = 5/2

2

2

x

y

A1 A2

(d)
1

4
π(2)2 = π

y

x

2

2

A

17. (a)

� 0

−2

f(x) dx =

� 0

−2

(x + 2) dx

Triangle of height 2 and width 2, above x-axis, so answer is 2.

(b)

� 2

−2

f(x) dx =

� 0

−2

(x + 2) dx +

� 0

2

(2 − x) dx

Two triangles of height 2 and base 2; answer is 4.

(c)

� 6

0

|x − 2| dx =

� 2

0

(2 − x) dx +

� 6

2

(x − 2) dx

Triangle of height 2 and base 2 together with a triangle of height 4 and base 4, so 2+8 = 10.

(d)

� 6

−4

f(x) dx =

� −2

−4

(x + 2) dx +

� 0

−2

(x + 2) dx +

� 2

0

(2 − x) dx +

� 6

2

(x − 2) dx

Triangle of height 2 and base 2, below axis, plus a triangle of height 2, base 2 above axis,
another of height 2 and base 2 above axis, and a triangle of height 4 and base 4, above axis.
Thus

�
f(x) = −2 + 2 + 2 + 8 = 10.

18. (a)

� 1

0

2x dx =area of a triangle with height 2 and base 1, so 1.

A = (6)(5) = 30 (b)
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15. (a) A = 2(5) = 10

y

x

1

2

5

A

(b) 0; A1 = A2 by symmetry

6
c x

y

A1
A2

(c) A1 + A2 =
1

2
(5)(5/2) +

1

2
(1)(1/2)

= 13/2

–1

5

2

x

y

3
2

A1
A2

(d)
1

2
[π(1)2] = π/2

y

x

1

–1 1

A

16. (a) A = (6)(5) = 30

–10 –5

6

x

y

A

(b) −A1 + A2 = 0 because
A1 = A2 by symmetry

$
4

x

y

A1

A2

(c) A1 + A2 =
1

2
(2)(2) +

1

2
(1)(1) = 5/2

2

2

x

y

A1 A2

(d)
1

4
π(2)2 = π

y

x

2

2

A

17. (a)

� 0

−2

f(x) dx =

� 0

−2

(x + 2) dx

Triangle of height 2 and width 2, above x-axis, so answer is 2.

(b)

� 2

−2

f(x) dx =

� 0

−2

(x + 2) dx +

� 0

2

(2 − x) dx

Two triangles of height 2 and base 2; answer is 4.

(c)

� 6

0

|x − 2| dx =

� 2

0

(2 − x) dx +

� 6

2

(x − 2) dx

Triangle of height 2 and base 2 together with a triangle of height 4 and base 4, so 2+8 = 10.

(d)

� 6

−4

f(x) dx =

� −2

−4

(x + 2) dx +

� 0

−2

(x + 2) dx +

� 2

0

(2 − x) dx +

� 6

2

(x − 2) dx

Triangle of height 2 and base 2, below axis, plus a triangle of height 2, base 2 above axis,
another of height 2 and base 2 above axis, and a triangle of height 4 and base 4, above axis.
Thus

�
f(x) = −2 + 2 + 2 + 8 = 10.

18. (a)

� 1

0

2x dx =area of a triangle with height 2 and base 1, so 1.

0; A1 = A2 by symmetry.

(c)
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15. (a) A = 2(5) = 10
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(b) 0; A1 = A2 by symmetry

6
c x

y

A1
A2

(c) A1 + A2 =
1

2
(5)(5/2) +

1

2
(1)(1/2)

= 13/2
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A1
A2

(d)
1

2
[π(1)2] = π/2

y

x

1
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A

16. (a) A = (6)(5) = 30

–10 –5

6

x

y

A

(b) −A1 + A2 = 0 because
A1 = A2 by symmetry

$
4

x

y

A1

A2

(c) A1 + A2 =
1

2
(2)(2) +

1

2
(1)(1) = 5/2

2

2

x

y

A1 A2

(d)
1

4
π(2)2 = π

y

x

2

2

A

17. (a)

� 0

−2

f(x) dx =

� 0

−2

(x + 2) dx

Triangle of height 2 and width 2, above x-axis, so answer is 2.

(b)

� 2

−2

f(x) dx =

� 0

−2

(x + 2) dx +

� 0

2

(2 − x) dx

Two triangles of height 2 and base 2; answer is 4.

(c)

� 6

0

|x − 2| dx =

� 2

0

(2 − x) dx +

� 6

2

(x − 2) dx

Triangle of height 2 and base 2 together with a triangle of height 4 and base 4, so 2+8 = 10.

(d)

� 6

−4

f(x) dx =

� −2

−4

(x + 2) dx +

� 0

−2

(x + 2) dx +

� 2

0

(2 − x) dx +

� 6

2

(x − 2) dx

Triangle of height 2 and base 2, below axis, plus a triangle of height 2, base 2 above axis,
another of height 2 and base 2 above axis, and a triangle of height 4 and base 4, above axis.
Thus

�
f(x) = −2 + 2 + 2 + 8 = 10.

18. (a)

� 1

0

2x dx =area of a triangle with height 2 and base 1, so 1.

A1 +A2 =
1

2
(2)(2) +

1

2
(1)(1) = 5/2. (d)
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15. (a) A = 2(5) = 10

y
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1
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5

A

(b) 0; A1 = A2 by symmetry

6
c x

y

A1
A2

(c) A1 + A2 =
1

2
(5)(5/2) +

1

2
(1)(1/2)

= 13/2

–1

5

2
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3
2

A1
A2

(d)
1

2
[π(1)2] = π/2

y
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1

–1 1

A

16. (a) A = (6)(5) = 30

–10 –5

6

x

y

A

(b) −A1 + A2 = 0 because
A1 = A2 by symmetry

$
4

x

y

A1

A2

(c) A1 + A2 =
1

2
(2)(2) +

1

2
(1)(1) = 5/2

2

2

x

y

A1 A2

(d)
1

4
π(2)2 = π

y

x

2

2

A

17. (a)

� 0

−2

f(x) dx =

� 0

−2

(x + 2) dx

Triangle of height 2 and width 2, above x-axis, so answer is 2.

(b)

� 2

−2

f(x) dx =

� 0

−2

(x + 2) dx +

� 0

2

(2 − x) dx

Two triangles of height 2 and base 2; answer is 4.

(c)

� 6

0

|x − 2| dx =

� 2

0

(2 − x) dx +

� 6

2

(x − 2) dx

Triangle of height 2 and base 2 together with a triangle of height 4 and base 4, so 2+8 = 10.

(d)

� 6

−4

f(x) dx =

� −2

−4

(x + 2) dx +

� 0

−2

(x + 2) dx +

� 2

0

(2 − x) dx +

� 6

2

(x − 2) dx

Triangle of height 2 and base 2, below axis, plus a triangle of height 2, base 2 above axis,
another of height 2 and base 2 above axis, and a triangle of height 4 and base 4, above axis.
Thus

�
f(x) = −2 + 2 + 2 + 8 = 10.

18. (a)

� 1

0

2x dx =area of a triangle with height 2 and base 1, so 1.

A =
1

4
π(2)2 = π.

17. (a)

∫ 0

−2

f(x) dx =

∫ 0

−2

(x+ 2) dx.

Triangle of height 2 and width 2, above x-axis, so answer is 2.

(b)

∫ 2

−2

f(x) dx =

∫ 0

−2

(x+ 2) dx+

∫ 0

2

(2− x) dx.

Two triangles of height 2 and base 2; answer is 4.

(c)

∫ 6

0

|x− 2| dx =

∫ 2

0

(2− x) dx+

∫ 6

2

(x− 2) dx.

Triangle of height 2 and base 2 together with a triangle of height 4 and base 4, so 2 + 8 = 10.

(d)

∫ 6

−4

f(x) dx =

∫ −2

−4

(x+ 2) dx+

∫ 0

−2

(x+ 2) dx+

∫ 2

0

(2− x) dx+

∫ 6

2

(x− 2) dx.

Triangle of height 2 and base 2, below axis, plus a triangle of height 2, base 2 above axis, another of height 2 and
base 2 above axis, and a triangle of height 4 and base 4, above axis. Thus

∫
f(x) = −2 + 2 + 2 + 8 = 10.

18. (a)

∫ 1

0

2x dx = area of a triangle with height 2 and base 1, so 1.

(b)

∫ 1

−1

2x dx =

∫ 0

−1

2x dx+

∫ 1

0

2x dx.

Two triangles of height 2 and base 1 on opposite sides of the x-axis, so they cancel to yield 0.

(c)

∫ 10

1

2 dx.

Rectangle of height 2 and base 9, area = 18.

(d)

∫ 1

1/2

2x dx+

∫ 5

1

2 dx.

Trapezoid of width 1/2 and heights 1 and 2, together with a rectangle of height 2 and base 4, so 1/2
1 + 2

2
+ 2 ·4 =

3/4 + 8 = 35/4.

19. (a) 0.8 (b) −2.6 (c) −1.8 (d) −0.3

20. (a) 10 (b) −94 (c) −84 (d) −75
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21.

∫ 2

−1

f(x)dx+ 2

∫ 2

−1

g(x)dx = 5 + 2(−3) = −1.

22. 3

∫ 4

1

f(x)dx−
∫ 4

1

g(x)dx = 3(2)− 10 = −4.

23.

∫ 5

1

f(x)dx =

∫ 5

0

f(x)dx−
∫ 1

0

f(x)dx = 1− (−2) = 3.

24.

∫ −2

3

f(x)dx = −
∫ 3

−2

f(x)dx = −
[∫ 1

−2

f(x)dx+

∫ 3

1

f(x)dx

]
= −(2− 6) = 4.

25. 4

∫ 3

−1

dx− 5

∫ 3

−1

xdx = 4 · 4− 5(−1/2 + (3 · 3)/2) = −4.

26.

∫ 2

−2

dx− 3

∫ 2

−2

|x|dx = 4 · 1− 3(2)(2 · 2)/2 = −8.

27.

∫ 1

0

xdx+ 2

∫ 1

0

√
1− x2dx = 1/2 + 2(π/4) = (1 + π)/2.

28.

∫ 0

−3

2dx+

∫ 0

−3

√
9− x2dx = 2 · 3 + (π(3)2)/4 = 6 + 9π/4.

29. False; e.g. f(x) = 1 if x > 0, f(x) = 0 otherwise, then f is integrable on [−1, 1] but not continuous.

30. True; cosx is strictly positive on [−1, 1], so the integrand is positive there, so the integral is positive.

31. False; e.g. f(x) = x on [−2,+1].

32. True; Theorem 5.5.8.

33. (a)
√
x > 0, 1− x < 0 on [2, 3] so the integral is negative.

(b) 3− cosx > 0 for all x and x2 ≥ 0 for all x and x2 > 0 for all x > 0 so the integral is positive.

34. (a) x4 > 0,
√

3− x > 0 on [−3,−1] so the integral is positive.

(b) x3 − 9 < 0, |x|+ 1 > 0 on [−2, 2] so the integral is negative.

35. If f is continuous on [a, b] then f is integrable on [a, b], and, considering Definition 5.5.1, for every partition and

choice of f(x∗) we have

n∑

k=1

m∆xk ≤
n∑

k=1

f(x∗k)∆xk ≤
n∑

k=1

M∆xk. This is equivalent to m(b−a) ≤
n∑

k=1

f(x∗k)∆xk ≤

M(b− a), and, taking the limit over max ∆xk → 0 we obtain the result.

36.
√

2 ≤
√
x3 + 2 ≤

√
29, so 3

√
2 ≤

∫ 3

0

√
x3 + 2 dx ≤ 3

√
29.

37.

∫ 10

0

√
25− (x− 5)2dx = π(5)2/2 = 25π/2.

38.

∫ 3

0

√
9− (x− 3)2dx = π(3)2/4 = 9π/4.
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39.

∫ 1

0

(3x+ 1)dx = 5/2.

40.

∫ 2

−2

√
4− x2dx = π(2)2/2 = 2π.

41. (a) The graph of the integrand is the horizontal line y = C. At first, assume that C > 0. Then the region is a

rectangle of height C whose base extends from x = a to x = b. Thus

∫ b

a

C dx = (area of rectangle) = C(b− a). If

C ≤ 0 then the rectangle lies below the axis and its integral is the negative area, i.e. −|C|(b− a) = C(b− a).

(b) Since f(x) = C, the Riemann sum becomes lim
max ∆xk→0

n∑

k=1

f(x∗k)∆xk = lim
max ∆xk→0

n∑

k=1

C∆xk =

= lim
max ∆xk→0

C(b− a) = C(b− a). By Definition 5.5.1,

∫ b

a

f(x) dx = C(b− a).

42. For any partition of [0, 1] we have f(x∗1) = 0 or f(x∗1) = 1; accordingly, either we have
n∑

k=1

f(x∗k)∆xk =
n∑

k=2

∆xk =

1 −∆x1, or we have

n∑

k=1

f(x∗k)∆xk =

n∑

k=1

∆xk = 1. This is because f(x) = 1 for all x except possibly x∗1, which

could be 0. Both possibilities tend to 1 in the limit, and thus

∫ 1

0

f(x) dx = 1.

43. Each subinterval of a partition of [a, b] contains both rational and irrational numbers. If all x∗k are chosen to be

rational then

n∑

k=1

f(x∗k)∆xk =

n∑

k=1

(1)∆xk =

n∑

k=1

∆xk = b − a so lim
max ∆xk→0

n∑

k=1

f(x∗k)∆xk = b − a. If all x∗k are

irrational then lim
max ∆xk→0

n∑

k=1

f(x∗k)∆xk = 0. Thus f is not integrable on [a, b] because the preceding limits are not

equal.

44. Choose any large positive integer N and any partition of [0, a]. Then choose x∗1 in the first interval so small that

f(x∗1)∆x1 > N . For example choose x∗1 < ∆x1/N . Then with this partition and choice of x∗1,
n∑

k=1

f(x∗k)∆xk >

f(x∗1)∆x1 > N . This shows that the sum is dependent on partition and/or points, so Definition 5.5.1 is not
satisfied.

45. (a) f is continuous on [−1, 1] so f is integrable there by Theorem 5.5.2.

(b) |f(x)| ≤ 1 so f is bounded on [−1, 1], and f has one point of discontinuity, so by part (a) of Theorem 5.5.8
f is integrable on [−1, 1].

(c) f is not bounded on [-1,1] because lim
x→0

f(x) = +∞, so f is not integrable on [0,1].

(d) f(x) is discontinuous at the point x = 0 because lim
x→0

sin
1

x
does not exist. f is continuous elsewhere.

−1 ≤ f(x) ≤ 1 for x in [−1, 1] so f is bounded there. By part (a), Theorem 5.5.8, f is integrable on [−1, 1].

Exercise Set 5.6

1. (a)

∫ 2

0

(2− x)dx = (2x− x2/2)
]2

0
= 4− 4/2 = 2.
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(b)

∫ 1

−1

2dx = 2x

]1

−1

= 2(1)− 2(−1) = 4.

(c)

∫ 3

1

(x+ 1)dx = (x2/2 + x)
]3

1
= 9/2 + 3− (1/2 + 1) = 6.

2. (a)

∫ 5

0

xdx = x2/2

]5

0

= 25/2.

(b)

∫ 9

3

5dx = 5x

]9

3

= 5(9)− 5(3) = 30.

(c)

∫ 2

−1

(x+ 3)dx = (x2/2 + 3x)

]2

−1

= 4/2 + 6− (1/2− 3) = 21/2.

3. (a)
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44. Choose any large positive integer N and any partition of [0, a]. Then choose x∗
1 in the first interval

so small that f(x∗
1)∆x1 > N . For example choose x∗

1 < ∆x1/N . Then with this partition and

choice of x∗
1,

n�

k=1

f(x∗
k)∆xk > f(x∗

1)∆x1 > N . This shows that the sum is dependent on partition

and/or points, so Definition 5.5.1 is not satisfied.

45. (a) f is continuous on [−1, 1] so f is integrable there by Theorem 5.5.2

(b) |f(x)| ≤ 1 so f is bounded on [−1, 1], and f has one point of discontinuity, so by Part (a) of
Theorem 5.5.8 f is integrable on [−1, 1]

(c) f is not bounded on [-1,1] because lim
x→0

f(x) = +∞, so f is not integrable on [0,1]

(d) f(x) is discontinuous at the point x = 0 because lim
x→0

sin
1

x
does not exist. f is continuous

elsewhere. −1 ≤ f(x) ≤ 1 for x in [−1, 1] so f is bounded there. By Part (a), Theorem 5.5.8,
f is integrable on [−1, 1].
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0
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� 3

1

(x + 1)dx = (x2/2 + x)
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� 5

0

xdx = x2/2

�5

0

= 25/2 (b)

� 9

3

5dx = 5x

�9

3

= 5(9) − 5(3) = 30

(c)

� 2

−1

(x + 3)dx = (x2/2 + 3x)

�2

−1

= 4/2 + 6 − (1/2 − 3) = 21/2

3. (a)

210

2

1

x

y

y = 2 − x
(x*, f(x*))

(b)

1−1

1

x

y

y = 2

f(x*) = 2
(c)

2 310

2

3

1

x

y y = x + 1

(x*, f(x*))

4. (a)

52.50

5

2.5

x

y

y = x

(x*, f(x*))

(b)

5

93
x

y

y = 5

f(x*) = 5

(c)

0.5 2

(x*, f(x*))

-10

x

2

3

1

y y = x + 3

5.

� 3

2

x3dx = x4/4

�3

2

= 81/4 − 16/4 = 65/4 6.

� 1

−1

x4dx = x5/5

�1

−1

= 1/5 − (−1)/5 = 2/5

(b)
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so small that f(x∗
1)∆x1 > N . For example choose x∗

1 < ∆x1/N . Then with this partition and

choice of x∗
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k=1
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k)∆xk > f(x∗

1)∆x1 > N . This shows that the sum is dependent on partition

and/or points, so Definition 5.5.1 is not satisfied.

45. (a) f is continuous on [−1, 1] so f is integrable there by Theorem 5.5.2

(b) |f(x)| ≤ 1 so f is bounded on [−1, 1], and f has one point of discontinuity, so by Part (a) of
Theorem 5.5.8 f is integrable on [−1, 1]

(c) f is not bounded on [-1,1] because lim
x→0

f(x) = +∞, so f is not integrable on [0,1]

(d) f(x) is discontinuous at the point x = 0 because lim
x→0

sin
1

x
does not exist. f is continuous

elsewhere. −1 ≤ f(x) ≤ 1 for x in [−1, 1] so f is bounded there. By Part (a), Theorem 5.5.8,
f is integrable on [−1, 1].
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44. Choose any large positive integer N and any partition of [0, a]. Then choose x∗
1 in the first interval

so small that f(x∗
1)∆x1 > N . For example choose x∗

1 < ∆x1/N . Then with this partition and

choice of x∗
1,

n�

k=1

f(x∗
k)∆xk > f(x∗

1)∆x1 > N . This shows that the sum is dependent on partition

and/or points, so Definition 5.5.1 is not satisfied.

45. (a) f is continuous on [−1, 1] so f is integrable there by Theorem 5.5.2

(b) |f(x)| ≤ 1 so f is bounded on [−1, 1], and f has one point of discontinuity, so by Part (a) of
Theorem 5.5.8 f is integrable on [−1, 1]

(c) f is not bounded on [-1,1] because lim
x→0

f(x) = +∞, so f is not integrable on [0,1]

(d) f(x) is discontinuous at the point x = 0 because lim
x→0

sin
1

x
does not exist. f is continuous

elsewhere. −1 ≤ f(x) ≤ 1 for x in [−1, 1] so f is bounded there. By Part (a), Theorem 5.5.8,
f is integrable on [−1, 1].
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44. Choose any large positive integer N and any partition of [0, a]. Then choose x∗
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so small that f(x∗
1)∆x1 > N . For example choose x∗

1 < ∆x1/N . Then with this partition and

choice of x∗
1,
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k=1

f(x∗
k)∆xk > f(x∗

1)∆x1 > N . This shows that the sum is dependent on partition

and/or points, so Definition 5.5.1 is not satisfied.

45. (a) f is continuous on [−1, 1] so f is integrable there by Theorem 5.5.2

(b) |f(x)| ≤ 1 so f is bounded on [−1, 1], and f has one point of discontinuity, so by Part (a) of
Theorem 5.5.8 f is integrable on [−1, 1]

(c) f is not bounded on [-1,1] because lim
x→0

f(x) = +∞, so f is not integrable on [0,1]

(d) f(x) is discontinuous at the point x = 0 because lim
x→0

sin
1

x
does not exist. f is continuous

elsewhere. −1 ≤ f(x) ≤ 1 for x in [−1, 1] so f is bounded there. By Part (a), Theorem 5.5.8,
f is integrable on [−1, 1].
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and/or points, so Definition 5.5.1 is not satisfied.
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(b) |f(x)| ≤ 1 so f is bounded on [−1, 1], and f has one point of discontinuity, so by Part (a) of
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(c) f is not bounded on [-1,1] because lim
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f(x) = +∞, so f is not integrable on [0,1]

(d) f(x) is discontinuous at the point x = 0 because lim
x→0
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1
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does not exist. f is continuous

elsewhere. −1 ≤ f(x) ≤ 1 for x in [−1, 1] so f is bounded there. By Part (a), Theorem 5.5.8,
f is integrable on [−1, 1].
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1)∆x1 > N . This shows that the sum is dependent on partition

and/or points, so Definition 5.5.1 is not satisfied.

45. (a) f is continuous on [−1, 1] so f is integrable there by Theorem 5.5.2

(b) |f(x)| ≤ 1 so f is bounded on [−1, 1], and f has one point of discontinuity, so by Part (a) of
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(c) f is not bounded on [-1,1] because lim
x→0

f(x) = +∞, so f is not integrable on [0,1]
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1
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does not exist. f is continuous

elsewhere. −1 ≤ f(x) ≤ 1 for x in [−1, 1] so f is bounded there. By Part (a), Theorem 5.5.8,
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= 25/2 (b)

� 9

3

5dx = 5x

�9

3

= 5(9) − 5(3) = 30

(c)

� 2

−1

(x + 3)dx = (x2/2 + 3x)

�2

−1

= 4/2 + 6 − (1/2 − 3) = 21/2

3. (a)

210

2

1

x

y

y = 2 − x
(x*, f(x*))

(b)

1−1

1

x

y

y = 2

f(x*) = 2
(c)

2 310

2

3

1

x

y y = x + 1

(x*, f(x*))

4. (a)

52.50

5

2.5

x

y

y = x

(x*, f(x*))

(b)

5

93
x

y

y = 5

f(x*) = 5

(c)

0.5 2

(x*, f(x*))

-10

x

2

3

1

y y = x + 3

5.

� 3

2

x3dx = x4/4

�3

2

= 81/4 − 16/4 = 65/4 6.

� 1

−1

x4dx = x5/5

�1

−1

= 1/5 − (−1)/5 = 2/5
5.

∫ 3

2

x3dx = x4/4

]3

2

= 81/4− 16/4 = 65/4.

6.

∫ 1

−1

x4dx = x5/5

]1

−1

= 1/5− (−1)/5 = 2/5.

7.

∫ 4

1

3
√
x dx = 2x3/2

]4

1

= 16− 2 = 14.

8.

∫ 27

1

x−2/3 dx = 3x1/3

]27

1

= 3(3− 1) = 6.

9.

∫ ln 2

0

e2x dx =
1

2
e2x

]ln 2

0

=
1

2
(4− 1) =

3

2
.

10.

∫ 5

1

1

x
dx = lnx

]5

1

= ln 5− ln 1 = ln 5.
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11. (a)

∫ 3

0

√
x dx =

2

3
x3/2

]3

0

= 2
√

3 = f(x∗)(3− 0), so f(x∗) =
2√
3
, x∗ =

4

3
.

(b)

∫ 0

−12

(x2 + x) dx =
1

3
x3 +

1

2
x2

]0

−12

= 504, so f(x∗)(0 − (−12)) = 504, (x∗)2 + x∗ = 42, x∗ = 6,−7 but only

−7 lies in the interval. f(−7) = 49− 7 = 42, so the area is that of a rectangle 12 wide and 42 high.

12. (a) fave =
1

2π

∫ π

−π
sinx dx = 0; sinx∗ = 0, x∗ = −π, 0, π.

(b) fave =
1

2

∫ 3

1

1

x2
dx =

1

3
;

1

(x∗)2
=

1

3
, x∗ =

√
3.

13.

∫ 1

−2

(x2 − 6x+ 12) dx =
1

3
x3 − 3x2 + 12x

]1

−2

=
1

3
− 3 + 12−

(
−8

3
− 12− 24

)
= 48.

14.

∫ 2

−1

4x(1− x2) dx = (2x2 − x4)

]2

−1

= 8− 16− (2− 1) = −9.

15.

∫ 4

1

4

x2
dx = −4x−1

]4

1

= −1 + 4 = 3.

16.

∫ 2

1

x−6dx = − 1

5x5

]2

1

= 31/160.

17.
4

5
x5/2

]9

4

= 844/5.

18.

∫ 4

1

1

x
√
x
dx = − 2√

x

]4

1

= −2

2
+

2

1
= 1.

19. − cos θ]
π/2
−π/2 = 0.

20. tan θ]
π/4
0 = 1.

21. sinx]
π/4
−π/4 =

√
2.

22. (x2 − secx)
]π/3
0

=
π2

9
− 1.

23. 5ex]
3
ln 2 = 5e3 − 5(2) = 5e3 − 10.

24. (lnx)/2]
1
1/2 = (ln 2)/2.

25. sin−1 x

]1/
√

2

0

= sin−1(1/
√

2)− sin−1 0 = π/4.

26. tan−1 x

]1

−1

= tan−1 1− tan−1(−1) = π/4− (−π/4) = π/2.
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27. sec−1 x

]2

√
2

= sec−1 2− sec−1
√

2 = π/3− π/4 = π/12.

28. sec−1 |x|
]−2/

√
3

−
√

2

= sec−1(2/
√

3)− sec−1(
√

2) = π/6− π/4 = −π/12.

29.
(

2
√
t− 2t3/2

)]4
1

= −12.

30.

(
1

2
x2 − 2 cotx

)]π/2

π/6

= π2/9 + 2
√

3.

31. (a)

∫ 1

−1

|2x− 1| dx =

∫ 1/2

−1

(1− 2x) dx+

∫ 1

1/2

(2x− 1) dx = (x− x2)

]1/2

−1

+ (x2 − x)

]1

1/2

=
5

2
.

(b)

∫ π/2

0

cosx dx+

∫ 3π/4

π/2

(− cosx)dx = sinx

]π/2

0

− sinx

]3π/4

π/2

= 2−
√

2/2.

32. (a)

∫ 0

−1

√
2− x dx +

∫ 2

0

√
2 + x dx = −2

3
(2− x)3/2

]0

−1

+
2

3
(2 + x)3/2

]2

0

= −2

3
(2
√

2 − 3
√

3) +
2

3
(8 − 2

√
2) =

2

3
(8− 4

√
2 + 3

√
3).

(b)

∫ π/3

0

(cosx− 1/2) dx+

∫ π/2

π/3

(1/2− cosx) dx = (sinx− x/2)

]π/3

0

+ (x/2− sinx)

]π/2

π/3

= (
√

3/2− π/6) + π/4−

1− (π/6−
√

3/2) =
√

3− π/12− 1.

33. (a)

∫ 0

−1

(1− ex)dx+

∫ 1

0

(ex − 1)dx = (x− ex)

]0

−1

+ (ex − x)

]1

0

= −1− (−1− e−1) + e− 1− 1 = e+ 1/e− 2.

(b)

∫ 2

1

2− x
x

dx+

∫ 4

2

x− 2

x
dx = 2 lnx

]2

1

− 1 + 2− 2 lnx

]4

2

= 2 ln 2 + 1− 2 ln 4 + 2 ln 2 = 1.

34. (a) The function f(x) = x2 − 1 − 15

x2 + 1
is an even function and changes sign at x = 2, thus

∫ 3

−3

|f(x)| dx =

2

∫ 3

0

|f(x)| dx = −2

∫ 2

0

f(x) dx+ 2

∫ 3

2

f(x) dx =
28

3
− 30 tan−1(3) + 60 tan−1(2).

(b)

∫ √3/2

0

∣∣∣∣
1√

1− x2
−
√

2

∣∣∣∣ dx = −
∫ √2/2

0

[
1√

1− x2
−
√

2

]
dx+

∫ √3/2

√
2/2

[
1√

1− x2
−
√

2

]
dx = −2 sin−1

(√
2

2

)
+

sin−1

(√
3

2

)
−
√

2

(√
3

2
−
√

2

2

)
+ 1 = −2

π

4
+
π

3
−
√

3√
2

+ 2 = 2−
√

3√
2
− π

6
.

35. (a) 17/6 (b) F (x) =





1

2
x2, x ≤ 1

1

3
x3 +

1

6
, x > 1

36. (a)

∫ 1

0

√
x dx+

∫ 4

1

1

x2
dx =

2

3
x3/2

]1

0

− 1

x

]4

1

= 17/12. (b) F (x) =





2

3
x3/2, x < 1

− 1

x
+

5

3
, x ≥ 1
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37. False; consider F (x) = x2/2 if x ≥ 0 and F (x) = −x2/2 if x ≤ 0.

38. True.

39. True.

40. True, x = 0.

41. 0.665867079;

∫ 3

1

1

x2
dx = − 1

x

]3

1

= 2/3.

42. 1.000257067;

∫ π/2

0

sinx dx = − cosx]
π/2
0 = 1.

43. 3.106017890;

∫ 1

−1

sec2 x dx = tanx

]1

−1

= 2 tan 1 ≈ 3.114815450.

44. 1.098242635;

∫ 3

1

1

x
dx = lnx

]3

1

= ln 3 ≈ 1.098612289.

45. A =

∫ 3

0

(x2 + 1)dx =

(
1

3
x3 + x

)]3

0

= 12.

46. A =

∫ 1

0

(x− x2) dx =

(
1

2
x2 − 1

3
x3

)]1

0

=
1

2
− 1

3
=

1

6
.

47. A =

∫ 2π/3

0

3 sinx dx = −3 cosx

]2π/3

0

= 9/2.

48. A = −
∫ −1

−2

x3dx = −1

4
x4

]−1

−2

= 15/4.

49. Area = −
∫ 1

0

(x2 − x) dx+

∫ 2

1

(x2 − x) dx = 5/6 + 1/6 = 1.
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36. (a)

� 1

0

√
x dx +

� 4

1

1

x2
dx =

2

3
x3/2

�1

0

− 1

x

�4

1

= 17/12

(b) F (x) =





2

3
x3/2, x < 1

− 1

x
+

5

3
, x ≥ 1

37. false; consider F (x) = x2/2 if x ≥ 0 and F (x) = −x2/2 if x ≤ 0

38. true

39. true

40. true, x = 0

41. 0.665867079;

� 3

1

1

x2
dx = − 1

x

�3

1

= 2/3

42. 1.000257067;

� π/2

0

sinx dx = − cos x

�π/2

0

= 1

43. 3.106017890;

� 1

−1

sec2 x dx = tanx

�����

1

−1

= 2 tan 1 ≈ 3.114815450

44. 1.098242635;

� 3

1

1

x
dx = lnx

�3

1

= ln 3 ≈ 1.098612289

45. A =

� 3

0

(x2 + 1)dx =

�
1

3
x3 + x

��3

0

= 12

46. A =

� 1

0

(x − x2) dx =

�
1

2
x2 − 1

3
x3

��1

0

=
1

2
− 1

3
=

1

6

47. A =

� 2π/3

0

3 sinx dx = −3 cos x

�2π/3

0

= 9/2

48. A = −
� −1

−2

x3dx = −1

4
x4

�−1

−2

= 15/4

49. Area = −
� 1

0

(x2 − x) dx +

� 2

1

(x2 − x) dx = 5/6 + 1/6 = 1

2

1

2

x

y

A1 A2

50. Area =

∫ π

0

sinx dx−
∫ 3π/2

π

sinx dx = 2 + 1 = 3.
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50. Area =

� π

0

sin x dx −
� 3π/2

π

sin x dx = 2 + 1 = 3

–1

1

6

i x

y

A1

A2

51. Area = −
� 0

−1

(ex − 1) dx +

� 1

0

(ex − 1) dx = 1/e + e − 2

A1

A2–1
1

–1

1

2

x

y

52. Area =

� 1

1/2

(x2 − 1)/x2 dx +

� 2

1

(x2 − 1)/x2 dx = 1/2 + 1/2 = 1

2

–3

–1

1

x

y

A1

A2

53. (a) A =

� 0.8

0

1√
1 − x2

dx = sin−1 x

�0.8

0

= sin−1(0.8)

(b) The calculator was in degree mode instead of radian mode; the correct answer is 0.93.

55. (a) the increase in height in inches, during the first ten years

(b) the change in the radius in centimeters, during the time interval t = 1 to t = 2 seconds

(c) the change in the speed of sound in ft/s, during an increase in temperature from t = 32◦F
to t = 100◦F

(d) the displacement of the particle in cm, during the time interval t = t1 to t = t2 hours

56. (a) Let the areas in quadrants IV, III, I and II be A4, A3, A1 and A2 respectively. Then it appears
that A3 > A4, and A2 > A1. Since the total area is given by A2 + A3 −A1 −A4, the area is
positive.

(b) Area =

� 5

−2

1

100
(x4 − 5x3 − 7x2 + 29x + 30) dx =

4459

6000

57. (a) F �(x) = 3x2 − 3

(b)

� x

1

(3t2 − 3) dt = (t3 − 3t)

�x

1

= x3 − 3x + 2, and
d

dx
(x3 − 3x + 2) = 3x2 − 3

51. Area = −
∫ 0

−1

(ex − 1) dx+

∫ 1

0

(ex − 1) dx = 1/e+ e− 2.
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50. Area =

� π

0

sin x dx −
� 3π/2

π

sin x dx = 2 + 1 = 3

–1

1

6

i x

y

A1

A2

51. Area = −
� 0

−1

(ex − 1) dx +

� 1

0

(ex − 1) dx = 1/e + e − 2

A1

A2–1
1

–1

1

2

x

y

52. Area =

� 1

1/2

(x2 − 1)/x2 dx +

� 2

1

(x2 − 1)/x2 dx = 1/2 + 1/2 = 1

2

–3

–1

1

x

y

A1

A2

53. (a) A =

� 0.8

0

1√
1 − x2

dx = sin−1 x

�0.8

0

= sin−1(0.8)

(b) The calculator was in degree mode instead of radian mode; the correct answer is 0.93.

55. (a) the increase in height in inches, during the first ten years

(b) the change in the radius in centimeters, during the time interval t = 1 to t = 2 seconds

(c) the change in the speed of sound in ft/s, during an increase in temperature from t = 32◦F
to t = 100◦F

(d) the displacement of the particle in cm, during the time interval t = t1 to t = t2 hours

56. (a) Let the areas in quadrants IV, III, I and II be A4, A3, A1 and A2 respectively. Then it appears
that A3 > A4, and A2 > A1. Since the total area is given by A2 + A3 −A1 −A4, the area is
positive.

(b) Area =

� 5

−2

1

100
(x4 − 5x3 − 7x2 + 29x + 30) dx =

4459

6000

57. (a) F �(x) = 3x2 − 3

(b)

� x

1

(3t2 − 3) dt = (t3 − 3t)

�x

1

= x3 − 3x + 2, and
d

dx
(x3 − 3x + 2) = 3x2 − 3

52. Area = −
∫ 1

1/2

(x2 − 1)/x2 dx+

∫ 2

1

(x2 − 1)/x2 dx = 1/2 + 1/2 = 1.
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50. Area =

� π

0

sin x dx −
� 3π/2

π

sin x dx = 2 + 1 = 3

–1

1

6

i x

y

A1

A2

51. Area = −
� 0

−1

(ex − 1) dx +

� 1

0

(ex − 1) dx = 1/e + e − 2

A1

A2–1
1

–1

1

2

x

y

52. Area =

� 1

1/2

(x2 − 1)/x2 dx +

� 2

1

(x2 − 1)/x2 dx = 1/2 + 1/2 = 1

2

–3

–1

1

x

y

A1

A2

53. (a) A =

� 0.8

0

1√
1 − x2

dx = sin−1 x

�0.8

0

= sin−1(0.8)

(b) The calculator was in degree mode instead of radian mode; the correct answer is 0.93.

55. (a) the increase in height in inches, during the first ten years

(b) the change in the radius in centimeters, during the time interval t = 1 to t = 2 seconds

(c) the change in the speed of sound in ft/s, during an increase in temperature from t = 32◦F
to t = 100◦F

(d) the displacement of the particle in cm, during the time interval t = t1 to t = t2 hours

56. (a) Let the areas in quadrants IV, III, I and II be A4, A3, A1 and A2 respectively. Then it appears
that A3 > A4, and A2 > A1. Since the total area is given by A2 + A3 −A1 −A4, the area is
positive.

(b) Area =

� 5

−2

1

100
(x4 − 5x3 − 7x2 + 29x + 30) dx =

4459

6000

57. (a) F �(x) = 3x2 − 3

(b)

� x

1

(3t2 − 3) dt = (t3 − 3t)

�x

1

= x3 − 3x + 2, and
d

dx
(x3 − 3x + 2) = 3x2 − 3

53. (a) A =

∫ 0.8

0

1√
1− x2

dx = sin−1 x

]0.8

0

= sin−1(0.8).

(b) The calculator was in degree mode instead of radian mode; the correct answer is 0.93.

55. (a) The increase in height in inches, during the first ten years.

(b) The change in the radius in centimeters, during the time interval t = 1 to t = 2 seconds.

(c) The change in the speed of sound in ft/s, during an increase in temperature from t = 32◦F
to t = 100◦F.

(d) The displacement of the particle in cm, during the time interval t = t1 to t = t2 hours.

56. (a) Let the areas in quadrants IV, III, I and II be A4, A3, A1 and A2 respectively. Then it appears that A3 < A2,
and A1 > A4. Since the total area is given by A1 +A2 −A3 −A4, the area is positive.

(b) Area =

∫ 5

−2

1

100
(x4 − 5x3 − 7x2 + 29x+ 30) dx =

4459

6000
.
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57. (a) F ′(x) = 3x2 − 3. (b)

∫ x

1

(3t2 − 3) dt = (t3 − 3t)

]x

1

= x3 − 3x+ 2, and
d

dx
(x3 − 3x+ 2) = 3x2 − 3.

58. (a) F ′(x) = cos 2x (b) F (x) =
1

2
sin 2t

]x

π/4

=
1

2
sin 2x− 1

2
, F ′(x) = cos 2x.

59. (a) sinx2 (b) e
√
x

60. (a)
1

1 +
√
x

(b) lnx

61. − x

cosx

62. |u|

63. F ′(x) =
√
x2 + 9, F ′′(x) =

x√
x2 + 9

. (a) 0 (b) 5 (c)
4

5

64. F ′(x) = tan−1 x, F ′′(x) =
1

1 + x2
. (a) 0 (b) π/3 (c) 1/4

65. (a) F ′(x) =
x− 3

x2 + 7
= 0 when x = 3, which is a relative minimum, and hence the absolute minimum, by the first

derivative test.

(b) Increasing on [3,+∞), decreasing on (−∞, 3].

(c) F ′′(x) =
7 + 6x− x2

(x2 + 7)2
=

(7− x)(1 + x)

(x2 + 7)2
; concave up on (−1, 7), concave down on (−∞,−1) and on (7,+∞).

66.

November 10, 2008 16:01 ”ISM ET chapter 5” Sheet number 33 Page number 257 black

Exercise Set 5.6 257

58. (a) cos 2x (b) F (x) =
1

2
sin 2t

�x

π/4

=
1

2
sin 2x − 1

2
, F �(x) = cos 2x

59. (a) sinx2 (b) e
√

x 60. (a)
1

1 +
√

x
(b) lnx

61. − x

cos x
62. |u|

63. F �(x) =
√

x2 + 9, F ��(x) =
x√

x2 + 9

(a) 0 (b) 5 (c)
4

5

64. F �(x) = tan−1 x, F ��(x) =
1

1 + x2

(a) 0 (b) π/3 (c) 1/4

65. (a) F �(x) =
x − 3

x2 + 7
= 0 when x = 3, which is a relative minimum, and hence the absolute

minimum, by the first derivative test.

(b) increasing on [3,+∞), decreasing on (−∞, 3]

(c) F ��(x) =
7 + 6x − x2

(x2 + 7)2
=

(7 − x)(1 + x)

(x2 + 7)2
; concave up on (−1, 7), concave down on (−∞,−1)

and on (7,+∞)

66. F

t

2

3

–20 –10 20

67. (a) (0,+∞) because f is continuous there and 1 is in (0,+∞)

(b) at x = 1 because F (1) = 0

68. (a) (−3, 3) because f is continuous there and 1 is in (−3, 3)

(b) at x = 1 because F (1) = 0

69. (a) amount of water = (rate of flow)(time) = 4t gal, total amount = 4(30) = 120 gal

(b) amount of water =

� 60

0

(4 + t/10)dt = 420 gal

(c) amount of water =

� 120

0

(10 +
√

t)dt = 1200 + 160
√

30 ≈ 2076.36 gal

70. (a) The maximum value of R occurs at 4:30 P.M. when t = 0.

(b)

� 60

0

100(1 − 0.0001t2)dt = 5280 cars

67. (a) (0,+∞) because f is continuous there and 1 is in (0,+∞).

(b) At x = 1 because F (1) = 0.

68. (a) (−3, 3) because f is continuous there and 1 is in (−3, 3).

(b) At x = 1 because F (1) = 0.

69. (a) Amount of water = (rate of flow)(time) = 4t gal, total amount = 4(30) = 120 gal.

(b) Amount of water =

∫ 60

0

(4 + t/10)dt = 420 gal.

(c) Amount of water =

∫ 120

0

(10 +
√
t)dt = 1200 + 160

√
30 ≈ 2076.36 gal.
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70. (a) The maximum value of R occurs at 4:30 P.M. when t = 0.

(b)

∫ 60

0

100(1− 0.0001t2)dt = 5280 cars.

71.
n∑

k=1

π

4n
sec2

(
πk

4n

)
=

n∑

k=1

f(x∗k)∆x where f(x) = sec2 x, x∗k =
πk

4n
and ∆x =

π

4n
for 0 ≤ x ≤ π

4
. Thus

lim
n→+∞

n∑

k=1

π

4n
sec2

(
πk

4n

)
= lim
n→+∞

n∑

k=1

f(x∗k)∆x =

∫ π/4

0

sec2 x dx = tanx

]π/4

0

= 1.

72.
n

n2 + k2
=

1

1 + k2/n2

1

n
so

n∑

k=1

n

n2 + k2
=

n∑

k=1

f(x∗k)∆x where f(x) =
1

1 + x2
, x∗k =

k

n
, and ∆x =

1

n
for 0 ≤ x ≤ 1.

Thus lim
n→+∞

n∑

k=1

n

n2 + k2
= lim
n→+∞

n∑

k=1

f(x∗k)∆x =

∫ 1

0

1

1 + x2
dx =

π

4
.

73. Let f be continuous on a closed interval [a, b] and let F be an antiderivative of f on [a, b]. By Theorem 5.7.2,

F (b)− F (a)

b− a = F ′(x∗) for some x∗ in (a, b). By Theorem 5.6.1,

∫ b

a

f(x) dx = F (b) − F (a), i.e.

∫ b

a

f(x) dx =

F ′(x∗)(b− a) = f(x∗)(b− a).

Exercise Set 5.7

1. (a) displ = s(3)− s(0) =

∫ 3

0

dt = 3; dist =

∫ 3

0

dt = 3.

(b) displ = s(3)− s(0) = −
∫ 3

0

dt = −3; dist =

∫ 3

0

|v(t)| dt = 3.

(c) displ = s(3) − s(0) =

∫ 3

0

v(t)dt =

∫ 2

0

(1 − t)dt +

∫ 3

2

(t − 3)dt = (t − t2/2)

]2

0

+ (t2/2 − 3t)

]3

2

= −1/2; dist =

∫ 3

0

|v(t)|dt = (t− t2/2)

]1

0

+ (t2/2− t)
]2

1

− (t2/2− 3t)

]3

2

= 3/2.

(d) displ = s(3)− s(0) =

∫ 3

0

v(t)dt =

∫ 1

0

tdt+

∫ 2

1

dt+

∫ 3

2

(5− 2t)dt = t2/2

]1

0

+ t

]2

1

+ (5t− t2)

]3

2

= 3/2; dist =

∫ 1

0

tdt+

∫ 2

1

dt+

∫ 5/2

2

(5− 2t)dt+

∫ 3

5/2

(2t− 5)dt = t2/2

]1

0

+ t

]2

1

+ (5t− t2)

]5/2

2

+ (t2 − 5t)

]3

5/2

= 2.

2.

0 1 2 3 4

-8

8

t

v

3. (a) v(t) = 20 +

∫ t

0

a(u)du; add areas of the small blocks to get v(4) ≈ 20 + 1.4 + 3.0 + 4.7 + 6.2 = 35.3 m/s.

(b) v(6) = v(4) +

∫ 6

4

a(u)du ≈ 35.3 + 7.5 + 8.6 = 51.4 m/s.
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4. (a) Negative, because v is decreasing.

(b) Speeding up when av > 0, so 2 < t < 5; slowing down when 1 < t < 2.

(c) At t = 5, the particle’s location is to the left of its location at t = 1, because the area between the graph of
v(t) and the t-axis appears to be greater where v < 0 compared to where v > 0.

5. (a) s(t) = t3 − t2 + C; 1 = s(0) = C, so s(t) = t3 − t2 + 1.

(b) v(t) = − cos 3t + C1; 3 = v(0) = −1 + C1, C1 = 4, so v(t) = − cos 3t + 4. Then s(t) = −1

3
sin 3t + 4t + C2;

3 = s(0) = C2, so s(t) = −1

3
sin 3t+ 4t+ 3.

6. (a) s(t) = t− cos t+ C1;−3 = s(0) = −1 + C1, C1 = −2, so s(t) = t− cos t− 2.

(b) v(t) =
1

3
t3− 3

2
t2 + t+C1; 0 = v(0) = C1, so C1 = 0, v(t) =

1

3
t3− 3

2
t2 + t. Then s(t) =

1

12
t4− 1

2
t3 +

1

2
t2 +C2;

0 = s(0) = C2, so C2 = 0, s(t) =
1

12
t4 − 1

2
t3 +

1

2
t2.

7. (a) s(t) =
3

2
t2 + t+ C; 4 = s(2) = 6 + 2 + C,C = −4 and s(t) =

3

2
t2 + t− 4.

(b) v(t) = −t−1 + C1, 0 = v(1) = −1 + C1, C1 = 1 and v(t) = −t−1 + 1 so s(t) = − ln t + t + C2, 2 = s(1) =
1 + C2, C2 = 1 and s(t) = − ln t+ t+ 1.

8. (a) s(t) =

∫
t2/3dt =

3

5
t5/3 + C, s(8) = 0 =

3

5
32 + C, C = −96

5
, s(t) =

3

5
t5/3 − 96

5
.

(b) v(t) =

∫ √
tdt =

2

3
t3/2 +C1, v(4) = 1 =

2

3
8+C1, C1 = −13

3
, v(t) =

2

3
t3/2− 13

3
, s(t) =

∫ (
2

3
t3/2 − 13

3

)
dt =

4

15
t5/2 − 13

3
t+ C2, s(4) = −5 =

4

15
32− 13

3
4 + C2 = −44

5
+ C2, C2 =

19

5
, s(t) =

4

15
t5/2 − 13

3
t+

19

5
.

9. (a) displacement = s(π/2)− s(0) =

∫ π/2

0

sin tdt = − cos t

]π/2

0

= 1 m; distance =

∫ π/2

0

| sin t|dt = 1 m.

(b) displacement = s(2π)−s(π/2) =

∫ 2π

π/2

cos tdt = sin t

]2π

π/2

= −1 m; distance =

∫ 2π

π/2

| cos t|dt = −
∫ 3π/2

π/2

cos tdt+

∫ 2π

3π/2

cos tdt = 3 m.

10. (a) displacement =

∫ 2

0

(3t−2) dt = 2; distance =

∫ 2

0

|3t−2| dt = −
∫ 2/3

0

(3t−2) dt+

∫ 2

2/3

(3t−2) dt =
2

3
+

8

3
=

10

3
m.

(b) displacement =

∫ 2

0

|1− 2t| dt =
5

2
m; distance =

∫ 2

0

|1− 2t| dt =
5

2
m.

11. (a) v(t) = t3 − 3t2 + 2t = t(t− 1)(t− 2), displacement =

∫ 3

0

(t3 − 3t2 + 2t)dt = 9/4 m; distance =

∫ 3

0

|v(t)|dt =
∫ 1

0

v(t)dt+

∫ 2

1

−v(t)dt+

∫ 3

2

v(t)dt = 11/4 m.

(b) displacement =

∫ 3

0

(
√
t− 2)dt = 2

√
3− 6 m; distance =

∫ 3

0

|v(t)|dt = −
∫ 3

0

v(t)dt = 6− 2
√

3 m.
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12. (a) displacement =

∫ 4

0

(t−
√
t) dt =

8

3
m; distance =

∫ 4

0

|t−
√
t| dt = 3 m.

(b) displacement =

∫ 3

0

1√
t+ 1

dt = 2 m; distance =

∫ 3

0

1√
t+ 1

dt = 2 m.

13. v = 3t− 1, displacement =

∫ 2

0

(3t− 1) dt = 4 m; distance =

∫ 2

0

|3t− 1| dt =
13

3
m.

14. v(t) =
1

2
t2−2t, displacement =

∫ 5

1

(
1

2
t2 − 2t

)
dt = −10/3 m; distance =

∫ 5

1

∣∣∣∣
1

2
t2 − 2t

∣∣∣∣ dt =

∫ 4

1

−
(

1

2
t2 − 2t

)
dt+

∫ 5

4

(
1

2
t2 − 2t

)
dt = 17/3 m.

15. v =

∫
1/
√

3t+ 1 dt =
2

3

√
3t+ 1 + C; v(0) = 4/3 so C = 2/3, v =

2

3

√
3t+ 1 + 2/3, displacement

=

∫ 5

1

(
2

3

√
3t+ 1 +

2

3

)
dt =

296

27
m; distance =

∫ 5

1

(
2

3

√
3t+ 1 +

2

3

)
dt =

296

27
m.

16. v(t) = − cos t + 2, displacement =

∫ π/2

π/4

(− cos t + 2)dt = (π +
√

2 − 2)/2 m; distance =

∫ π/2

π/4

| − cos t + 2|dt =

∫ π/2

π/4

(− cos t+ 2)dt = (π +
√

2− 2)/2 m.

17. (a) s =

∫
sin

1

2
πt dt = − 2

π
cos

1

2
πt+ C, s = 0 when t = 0 which gives C =

2

π
so s = − 2

π
cos

1

2
πt+

2

π
.

a =
dv

dt
=
π

2
cos

1

2
πt. When t = 1 : s = 2/π, v = 1, |v| = 1, a = 0.

(b) v = −3

∫
t dt = −3

2
t2 + C1, v = 0 when t = 0 which gives C1 = 0 so v = −3

2
t2.

s = −3

2

∫
t2dt = −1

2
t3 + C2, s = 1 when t = 0 which gives C2 = 1 so s = −1

2
t3 + 1. When t = 1 : s = 1/2,

v = −3/2, |v| = 3/2, a = −3.

18. (a) s =

∫
cos

πt

3
dt =

3

π
sin

πt

3
+ C, s = 0 when t =

3

2
which gives C = − 3

π
so s =

3

π
sin

πt

3
− 3

π
.

a =
dv

dt
= −π

3
sin

πt

3
; when t = 1 : s =

3

π

√
3

2
− 3

π
, speed = v =

1

2
, a = −π

3

√
3

2
.

(b) v =

∫
4e2t−2 dt = 2e2t−2 + C, v =

2

e2
− 3 when t = 0, hence C = −3 so v = 2e2t−2 − 3. Then s(t) =

∫
v(t) dt = e2t−2 − 3t+ C ′, s = e−2 when t = 0, so C ′ = 0 and s(t) = e2t−2 − 3t. When t = 1, s(1) = −2, v(1) =

−1, speed = 1, a(1) = 4.

19. By inspection the velocity is positive for t > 0, and during the first second the ant is at most 5/2 cm from the

starting position. For T > 1 the displacement of the ant during the time interval [0, T ] is given by

∫ T

0

v(t) dt =

5/2 +

∫ T

1

(6
√
t − 1/t) dt = 5/2 + (4t3/2 − ln t)

]T

1

= −3/2 + 4T 3/2 − lnT , and the displacement equals 4 cm if

4T 3/2 − lnT = 11/2, T ≈ 1.272 s.
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20. The displacement of the mouse during the time interval [0, T ] is given by

∫ T

0

v(t)dt = 3 tan−1 T − 0.25T 2. The

mouse is 2 m from its starting position when 3 tan−1 T − 0.25T 2 = 2 or when 3 tan−1 T − 0.25T 2 = −2; solve for
T to get T = 0.90, 2.51, and 4.95 s.

21. s(t) =

∫
(20t2−110t+120) dt =

20

3
t3−55t2 +120t+C. But s = 0 when t = 0, so C = 0 and s =

20

3
t3−55t2 +120t.

Moreover, a(t) =
d

dt
v(t) = 40t− 110.
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180

–40

0

130

–130

0

180

0
0 6

6

6

s (t) v(t) a (t)

22. a(t) = 4t − 30, v(t) = 2t2 − 30t + 3, s(t) =
2

3
t3 − 15t2 + 3t − 5;

500

–110

1100

–1100

0

70

–30

0

0 25

25
25

s (t) v(t) a (t)

23. true; if a(t) = a0 then v(t) = a0t + v0 24. true

25. false; consider v(t) = t on [−1, 1] 26. true

27. (a) positive on (0, 0.74) and (2.97, 5), negative on (0.75, 2.97) 5.5

–1.5

0 5

(b) For 0 < T < 5 the displacement is
disp = T/2 − sin(T ) + T cos(T )

28. (a) the displacement is positive on (0, 1) 1.5

0
0 1

(b) For 0 < T < 1 the displacement is

disp =
1

π2
+

1

2
T − 1

π2
cosπT − 1

π
T sinπT

22. a(t) = 4t− 30, v(t) = 2t2 − 30t+ 3, s(t) =
2

3
t3 − 15t2 + 3t− 5.
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s (t) v(t) a (t)

22. a(t) = 4t − 30, v(t) = 2t2 − 30t + 3, s(t) =
2

3
t3 − 15t2 + 3t − 5;

500

–110

1100

–1100

0

70

–30

0

0 25

25
25

s (t) v(t) a (t)

23. true; if a(t) = a0 then v(t) = a0t + v0 24. true

25. false; consider v(t) = t on [−1, 1] 26. true

27. (a) positive on (0, 0.74) and (2.97, 5), negative on (0.75, 2.97) 5.5

–1.5

0 5

(b) For 0 < T < 5 the displacement is
disp = T/2 − sin(T ) + T cos(T )

28. (a) the displacement is positive on (0, 1) 1.5

0
0 1

(b) For 0 < T < 1 the displacement is

disp =
1

π2
+

1

2
T − 1

π2
cosπT − 1

π
T sinπT

23. True; if a(t) = a0 then v(t) = a0t+ v0.

24. True.

25. False; consider v(t) = t on [−1, 1].

26. True.

27. (a) The displacement is positive on (0, 5).
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22. a(t) = 4t − 30, v(t) = 2t2 − 30t + 3, s(t) =
2

3
t3 − 15t2 + 3t − 5;

500

–110

1100

–1100

0

70

–30

0

0 25

25
25

s (t) v(t) a (t)

23. true; if a(t) = a0 then v(t) = a0t + v0 24. true

25. false; consider v(t) = t on [−1, 1] 26. true

27. (a) positive on (0, 0.74) and (2.97, 5), negative on (0.75, 2.97) 5.5

–1.5

0 5

(b) For 0 < T < 5 the displacement is
disp = T/2 − sin(T ) + T cos(T )

28. (a) the displacement is positive on (0, 1) 1.5

0
0 1

(b) For 0 < T < 1 the displacement is

disp =
1

π2
+

1

2
T − 1

π2
cosπT − 1

π
T sinπT

(b) The displacement is
5

2
− sin 5 + 5 cos 5 ≈ 4.877.

28. (a) The displacement is positive on (0, 1).
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180

–40
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130
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0

180
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s (t) v(t) a (t)

22. a(t) = 4t − 30, v(t) = 2t2 − 30t + 3, s(t) =
2

3
t3 − 15t2 + 3t − 5;

500

–110

1100

–1100

0

70

–30

0

0 25

25
25

s (t) v(t) a (t)

23. true; if a(t) = a0 then v(t) = a0t + v0 24. true

25. false; consider v(t) = t on [−1, 1] 26. true

27. (a) positive on (0, 0.74) and (2.97, 5), negative on (0.75, 2.97) 5.5

–1.5

0 5

(b) For 0 < T < 5 the displacement is
disp = T/2 − sin(T ) + T cos(T )

28. (a) the displacement is positive on (0, 1) 1.5

0
0 1

(b) For 0 < T < 1 the displacement is

disp =
1

π2
+

1

2
T − 1

π2
cosπT − 1

π
T sinπT

(b) The displacement is
2

π2
+

1

2
.

29. (a) The displacement is positive on (0, 5).
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29. (a) the displacement is positive on (0, 5) 0.5

0
0 5

(b) For 0 < T < 5 the displacement is

disp =
1

2
T + (T + 1)e−T − 1

30. (a) the displacement is negative on (0, 1) 0.1

–0.3

0 1

(b) For 0 < T < 1 the displacement is

disp =

�
1

2
T 2 − 1

200

�
ln(10T + 1)

+

�
1

200
− 1

2
T 2

�
ln 10 − 1

4
T 2 +

1

20
T +

3

400

31. (a) a(t) =

�
0, t < 4

−10, t > 4

a t

–10

–5

2 4 12

(b) v(t) =

�
25, t < 4

65 − 10t, t > 4

v

t

–40

–20

20

2 4 6 8 10 12

(c) x(t) =

�
25t, t < 4
65t − 5t2 − 80, t > 4

, so x(8) = 120, x(12) = −20

(d) x(6.5) = 131.25

32. Take t = 0 when deceleration begins, then a = −11 so v = −11t + C1, but v = 88 when t = 0
which gives C1 = 88 thus v = −11t + 88, t ≥ 0

(a) v = 45 mi/h = 66 ft/s, 66 = −11t + 88, t = 2 s

(b) v = 0 (the car is stopped) when t = 8 s

s =

�
v dt =

�
(−11t + 88)dt = −11

2
t2 + 88t + C2, and taking s = 0 when t = 0, C2 = 0 so

s = −11

2
t2 + 88t. At t = 8, s = 352. The car travels 352 ft before coming to a stop.

33. a = a0 ft/s2, v = a0t + v0 = a0t + 132 ft/s, s = a0t
2/2 + 132t + s0 = a0t

2/2 + 132t ft; s = 200 ft

when v = 88 ft/s. Solve 88 = a0t + 132 and 200 = a0t
2/2 + 132t to get a0 = −121

5
when t =

20

11
,

(b) The displacement is
3

2
+ 6e−5.

30. (a) The displacement is negative on (0, 1).
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29. (a) the displacement is positive on (0, 5) 0.5

0
0 5

(b) For 0 < T < 5 the displacement is

disp =
1

2
T + (T + 1)e−T − 1

30. (a) the displacement is negative on (0, 1) 0.1

–0.3

0 1

(b) For 0 < T < 1 the displacement is

disp =

�
1

2
T 2 − 1

200

�
ln(10T + 1)

+

�
1

200
− 1

2
T 2

�
ln 10 − 1

4
T 2 +

1

20
T +

3

400

31. (a) a(t) =

�
0, t < 4

−10, t > 4

a t

–10

–5

2 4 12

(b) v(t) =

�
25, t < 4

65 − 10t, t > 4

v

t

–40

–20

20

2 4 6 8 10 12

(c) x(t) =

�
25t, t < 4
65t − 5t2 − 80, t > 4

, so x(8) = 120, x(12) = −20

(d) x(6.5) = 131.25

32. Take t = 0 when deceleration begins, then a = −11 so v = −11t + C1, but v = 88 when t = 0
which gives C1 = 88 thus v = −11t + 88, t ≥ 0

(a) v = 45 mi/h = 66 ft/s, 66 = −11t + 88, t = 2 s

(b) v = 0 (the car is stopped) when t = 8 s

s =

�
v dt =

�
(−11t + 88)dt = −11

2
t2 + 88t + C2, and taking s = 0 when t = 0, C2 = 0 so

s = −11

2
t2 + 88t. At t = 8, s = 352. The car travels 352 ft before coming to a stop.

33. a = a0 ft/s2, v = a0t + v0 = a0t + 132 ft/s, s = a0t
2/2 + 132t + s0 = a0t

2/2 + 132t ft; s = 200 ft

when v = 88 ft/s. Solve 88 = a0t + 132 and 200 = a0t
2/2 + 132t to get a0 = −121

5
when t =

20

11
,

(b) The displacement is
99

200
ln 11− 1

2
ln 2− 1

2
ln 5− 1

5
≈ −0.16433.

31. (a) a(t) =

{
0, t < 4

−10, t > 4
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29. (a) the displacement is positive on (0, 5) 0.5

0
0 5

(b) For 0 < T < 5 the displacement is

disp =
1

2
T + (T + 1)e−T − 1

30. (a) the displacement is negative on (0, 1) 0.1

–0.3

0 1

(b) For 0 < T < 1 the displacement is

disp =

�
1

2
T 2 − 1

200

�
ln(10T + 1)

+

�
1

200
− 1

2
T 2

�
ln 10 − 1

4
T 2 +

1

20
T +

3

400

31. (a) a(t) =

�
0, t < 4

−10, t > 4

a t

–10

–5

2 4 12

(b) v(t) =

�
25, t < 4

65 − 10t, t > 4

v

t

–40

–20

20

2 4 6 8 10 12

(c) x(t) =

�
25t, t < 4
65t − 5t2 − 80, t > 4

, so x(8) = 120, x(12) = −20

(d) x(6.5) = 131.25

32. Take t = 0 when deceleration begins, then a = −11 so v = −11t + C1, but v = 88 when t = 0
which gives C1 = 88 thus v = −11t + 88, t ≥ 0

(a) v = 45 mi/h = 66 ft/s, 66 = −11t + 88, t = 2 s

(b) v = 0 (the car is stopped) when t = 8 s

s =

�
v dt =

�
(−11t + 88)dt = −11

2
t2 + 88t + C2, and taking s = 0 when t = 0, C2 = 0 so

s = −11

2
t2 + 88t. At t = 8, s = 352. The car travels 352 ft before coming to a stop.

33. a = a0 ft/s2, v = a0t + v0 = a0t + 132 ft/s, s = a0t
2/2 + 132t + s0 = a0t

2/2 + 132t ft; s = 200 ft

when v = 88 ft/s. Solve 88 = a0t + 132 and 200 = a0t
2/2 + 132t to get a0 = −121

5
when t =

20

11
,



280 Chapter 5

(b) v(t) =

{
25, t < 4

65− 10t, t > 4
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29. (a) the displacement is positive on (0, 5) 0.5

0
0 5

(b) For 0 < T < 5 the displacement is

disp =
1

2
T + (T + 1)e−T − 1

30. (a) the displacement is negative on (0, 1) 0.1

–0.3

0 1

(b) For 0 < T < 1 the displacement is

disp =

�
1

2
T 2 − 1

200

�
ln(10T + 1)

+

�
1

200
− 1

2
T 2

�
ln 10 − 1

4
T 2 +

1

20
T +

3

400

31. (a) a(t) =

�
0, t < 4

−10, t > 4

a t

–10

–5

2 4 12

(b) v(t) =

�
25, t < 4

65 − 10t, t > 4

v

t

–40

–20

20

2 4 6 8 10 12

(c) x(t) =

�
25t, t < 4
65t − 5t2 − 80, t > 4

, so x(8) = 120, x(12) = −20

(d) x(6.5) = 131.25

32. Take t = 0 when deceleration begins, then a = −11 so v = −11t + C1, but v = 88 when t = 0
which gives C1 = 88 thus v = −11t + 88, t ≥ 0

(a) v = 45 mi/h = 66 ft/s, 66 = −11t + 88, t = 2 s

(b) v = 0 (the car is stopped) when t = 8 s

s =

�
v dt =

�
(−11t + 88)dt = −11

2
t2 + 88t + C2, and taking s = 0 when t = 0, C2 = 0 so

s = −11

2
t2 + 88t. At t = 8, s = 352. The car travels 352 ft before coming to a stop.

33. a = a0 ft/s2, v = a0t + v0 = a0t + 132 ft/s, s = a0t
2/2 + 132t + s0 = a0t

2/2 + 132t ft; s = 200 ft

when v = 88 ft/s. Solve 88 = a0t + 132 and 200 = a0t
2/2 + 132t to get a0 = −121

5
when t =

20

11
,

(c) x(t) =

{
25t, t < 4
65t− 5t2 − 80, t > 4

, so x(8) = 120, x(12) = −20. (d) x(6.5) = 131.25.

32. Take t = 0 when deceleration begins, then a = −11 so v = −11t+C1, but v = 88 when t = 0 which gives C1 = 88
thus v = −11t+ 88, t ≥ 0.

(a) v = 45 mi/h = 66 ft/s, 66 = −11t+ 88, t = 2 s.

(b) v = 0 (the car is stopped) when t = 8 s; s =

∫
v dt =

∫
(−11t+ 88)dt = −11

2
t2 + 88t+C2, and taking s = 0

when t = 0, C2 = 0 so s = −11

2
t2 + 88t. At t = 8, s = 352. The car travels 352 ft before coming to a stop.

33. a = a0 ft/s2, v = a0t + v0 = a0t + 132 ft/s, s = a0t
2/2 + 132t + s0 = a0t

2/2 + 132t ft; s = 200 ft when v = 88

ft/s. Solve 88 = a0t + 132 and 200 = a0t
2/2 + 132t to get a0 = −121

5
when t =

20

11
, so s = −12.1t2 + 132t,

v = −121

5
t+ 132.

(a) a0 = −121

5
ft/s2. (b) v = 55 mi/h =

242

3
ft/s when t =

70

33
s. (c) v = 0 when t =

60

11
s.

34. dv/dt = 5, v = 5t + C1, but v = v0 when t = 0 so C1 = v0, v = 5t + v0. From ds/dt = v = 5t + v0 we
get s = 5t2/2 + v0t + C2 and, with s = 0 when t = 0, C2 = 0 so s = 5t2/2 + v0t. s = 60 when t = 4 thus
60 = 5(4)2/2 + v0(4), v0 = 5 m/s.

35. Suppose s = s0 = 0, v = v0 = 0 at t = t0 = 0; s = s1 = 120, v = v1 at t = t1; and s = s2, v = v2 = 12 at t = t2.

From formulas (10) and (11), we get that in the case of constant acceleration, a =
v2 − v2

0

2(s− s0)
. This implies that

2.6 = a =
v2

1 − v2
0

2(s1 − s0)
, v2

1 = 2as1 = 5.2(120) = 624. Applying the formula again, −1.5 = a =
v2

2 − v2
1

2(s2 − s1)
, v2

2 =

v2
1 − 3(s2 − s1), so s2 = s1 − (v2

2 − v2
1)/3 = 120− (144− 624)/3 = 280 m.

36. (a) a(t) =

{
4, t < 2
0, t > 2

, so, with v0 = 0, v(t) =

{
4t, t < 2
8, t > 2

and, since s0 = 0, s(t) =

{
2t2, t < 2

8t− 8, t > 2
.

This means that s = 100 when 8t− 8 = 100, t = 108/8 = 13.5 s.

(b)
0 4 8 12

40

80

t

s
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37. The truck’s velocity is vT = 50 and its position is sT = 50t + 2500. The car’s acceleration is aC = 4 ft/s2, so
vC = 4t, sC = 2t2 (initial position and initial velocity of the car are both zero). sT = sC when 50t+ 2500 = 2t2,
2t2 − 50t− 2500 = 2(t+ 25)(t− 50) = 0, t = 50 s and sC = sT = 2t2 = 5000 ft.

38. Let t = 0 correspond to the time when the leader is 100 m from the finish line; let s = 0 correspond to the finish
line. Then vC = 12, sC = 12t − 115; aL = 0.5 for t > 0, vL = 0.5t + 8, sL = 0.25t2 + 8t − 100. sC = 0 at
t = 115/12 ≈ 9.58 s, and sL = 0 at t = −16 + 4

√
41 ≈ 9.61, so the challenger wins.

39. s = 0 and v = 112 when t = 0 so v(t) = −32t+ 112, s(t) = −16t2 + 112t.

(a) v(3) = 16 ft/s, v(5) = −48 ft/s.

(b) v = 0 when the projectile is at its maximum height so −32t + 112 = 0, t = 7/2 s, s(7/2) = −16(7/2)2 +
112(7/2) = 196 ft.

(c) s = 0 when it reaches the ground so −16t2 + 112t = 0, −16t(t− 7) = 0, t = 0, 7 of which t = 7 is when it is
at ground level on its way down. v(7) = −112, |v| = 112 ft/s.

40. s = 112 when t = 0 so s(t) = −16t2 + v0t+ 112. But s = 0 when t = 2 thus −16(2)2 + v0(2) + 112 = 0, v0 = −24
ft/s.

41. (a) s(t) = 0 when it hits the ground, s(t) = −16t2 + 16t = −16t(t− 1) = 0 when t = 1 s.

(b) The projectile moves upward until it gets to its highest point where v(t) = 0, v(t) = −32t + 16 = 0 when
t = 1/2 s.

42. (a) s(t) = s0 − 1
2gt

2 = 800− 16t2 ft, s(t) = 0 when t =

√
800

16
= 5
√

2.

(b) v(t) = −32t and v(5
√

2) = −160
√

2 ≈ 226.27 ft/s = 154.28 mi/h.

43. s(t) = s0 + v0t− 1
2gt

2 = 60t− 4.9t2 m and v(t) = v0 − gt = 60− 9.8t m/s.

(a) v(t) = 0 when t = 60/9.8 ≈ 6.12 s.

(b) s(60/9.8) ≈ 183.67 m.

(c) Another 6.12 s; solve for t in s(t) = 0 to get this result, or use the symmetry of the parabola s = 60t− 4.9t2

about the line t = 6.12 in the t-s plane.

(d) Also 60 m/s, as seen from the symmetry of the parabola (or compute v(6.12)).

44. (a) They are the same.

(b) s(t) = v0t− 1
2gt

2 and v(t) = v0−gt; s(t) = 0 when t = 0, 2v0/g; v(0) = v0 and v(2v0/g) = v0−g(2v0/g) = −v0

so the speed is the same at launch (t = 0) and at return (t = 2v0/g).

45. s(t) = −4.9t2 + 49t+ 150 and v(t) = −9.8t+ 49.

(a) The model rocket reaches its maximum height when v(t) = 0, −9.8t+ 49 = 0, t = 5 s.

(b) s(5) = −4.9(5)2 + 49(5) + 150 = 272.5 m.

(c) The model rocket reaches its starting point when s(t) = 150, −4.9t2 + 49t + 150 = 150, −4.9t(t − 10) = 0,
t = 10 s.

(d) v(10) = −9.8(10) + 49 = −49 m/s.
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(e) s(t) = 0 when the model rocket hits the ground, −4.9t2 + 49t + 150 = 0 when (use the quadratic formula)
t ≈ 12.46 s.

(f) v(12.46) = −9.8(12.46) + 49 ≈ −73.1, the speed at impact is about 73.1 m/s.

Exercise Set 5.8

1. (a) fave =
1

4− 0

∫ 4

0

2x dx = 4. (b) 2x∗ = 4, x∗ = 2.

(c)
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(a) the projectile reaches its maximum height when v(t) = 0, −9.8t + 49 = 0, t = 5 s

(b) s(5) = −4.9(5)2 + 49(5) + 150 = 272.5 m

(c) the projectile reaches its starting point when s(t) = 150, −4.9t2 + 49t + 150 = 150,
−4.9t(t − 10) = 0, t = 10 s

(d) v(10) = −9.8(10) + 49 = −49 m/s

(e) s(t) = 0 when the projectile hits the ground, −4.9t2 +49t+150 = 0 when (use the quadratic
formula) t ≈ 12.46 s

(f) v(12.46) = −9.8(12.46) + 49 ≈ −73.1, the speed at impact is about 73.1 m/s

44. take s = 0 at the water level and let h be the height of the bridge, then s = h and v = 0 when
t = 0 so s(t) = −16t2 + h

(a) s = 0 when t = 4 thus −16(4)2 + h = 0, h = 256 ft

(b) First, find how long it takes for the stone to hit the water (find t for s = 0) : −16t2 + h = 0,
t =

√
h/4. Next, find how long it takes the sound to travel to the bridge: this time is h/1080

because the speed is constant at 1080 ft/s. Finally, use the fact that the total of these two

times must be 4 s:
h

1080
+

√
h

4
= 4, h + 270

√
h = 4320, h + 270

√
h − 4320 = 0, and by

the quadratic formula
√

h =
−270 ±

�
(270)2 + 4(4320)

2
, reject the negative value to get

√
h ≈ 15.15, h ≈ 229.5 ft.

45. If g = 32 ft/s2, s0 = 7 and v0 is unknown, then s(t) = 7 + v0t− 16t2 and v(t) = v0 − 32t; s = smax

when v = 0, or t = v0/32; and smax = 208 yields
208 = s(v0/32) = 7 + v0(v0/32) − 16(v0/32)2 = 7 + v2

0/64, so v0 = 8
√

201 ≈ 113.42 ft/s.

46. s = 1000+v0t− 1
2 (32)t2 = 1000+v0t−16t2; s = 0 when t = 5, so v0 = −(1000+16 ·52)/5 = −280

ft/s, and v(5) = v0 − 32t = −440 ft/s

EXERCISE SET 5.8

1. (a) fave =
1

4 − 0

� 4

0

2x dx = 4 (b) 2x∗ = 4, x∗ = 2

(c)

2 4

4

8

x

y

2. (a) fave =
1

2 − 0

� 2

0

x2dx = 4/3 (b) (x∗)2 = 4/3, x∗ = ±2/
√

3,

but only 2/
√

3 is in [0, 2]

2. (a) fave =
1

2− 0

∫ 2

0

x2dx = 4/3. (b) (x∗)2 = 4/3, x∗ = ±2/
√

3, but only 2/
√

3 is in [0, 2].

(c)
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(c)

2

4

x

y

2
3

3. fave =
1

3 − 1

� 3

1

3x dx =
3

4
x2

�3

1

= 6

4. fave =
1

8 − (−1)

� 8

−1

x1/3 dx =
1

9

3

4
x4/3

�8

−1

=
5

4

5. fave =
1

π

� π

0

sinx dx = − 1

π
cos x

�π

0

=
2

π

6. fave =
3

π

� π/3

0

sec x tanx dx =
3

π
sec x

�π/3

0

=
3

π

7. fave =
1

e − 1

� e

1

1

x
dx =

1

e − 1
(ln e − ln 1) =

1

e − 1

8. fave =
1

1 + ln 5

� ln 5

−1

ex dx =
1

1 + ln 5
(5 − e−1)

9. fave =
1√

3 − 1

� √
3

1

dx

1 + x2
=

1√
3 − 1

tan−1 x

�√3

1

=
1√

3 − 1

�π
3
− π

4

�
=

1√
3 − 1

π

12

10. fave = 2

� 0

−1/2

dx√
1 − x2

= 2 sin−1 x

�0

−1/2

=
π

3

11. fave =
1

4

� 4

0

e−2x dx = −1

8
e−2x

�4

0

=
1

8
(1 − e−8)

12. fave =
1

π
4 −

�
−π

4

�
� π/4

−π/4

sec2 x dx =
2

π
tan

�π/4

−π/4

=
4

π

13. (a) 1
5 [f(0.4) + f(0.8) + f(1.2) + f(1.6) + f(2.0)] = 1

5 [0.48 + 1.92 + 4.32 + 7.68 + 12.00] = 5.28

(b)
1

20
3[(0.1)2 + (0.2)2 + . . . + (1.9)2 + (2.0)2] =

861

200
= 4.305

(c) fave =
1

2

� 2

0

3x2 dx =
1

2
x3

�2

0

= 4

(d) Parts (a) and (b) can be interpreted as being two Riemann sums (n = 5, n = 20) for the
average, using right endpoints. Since f is increasing, these sums overestimate the integral.

14. (a)
4147

2520
≈ 1.645634921

(b)
388477567

232792560
≈ 1.668771403

3. fave =
1

3− 1

∫ 3

1

3x dx =
3

4
x2

]3

1

= 6.

4. fave =
1

8− (−1)

∫ 8

−1

x1/3 dx =
1

9

3

4
x4/3

]8

−1

=
5

4
.

5. fave =
1

π

∫ π

0

sinx dx = − 1

π
cosx

]π

0

=
2

π
.

6. fave =
3

π

∫ π/3

0

secx tanx dx =
3

π
secx

]π/3

0

=
3

π
.

7. fave =
1

e− 1

∫ e

1

1

x
dx =

1

e− 1
(ln e− ln 1) =

1

e− 1

8. fave =
1

1 + ln 5

∫ ln 5

−1

ex dx =
1

1 + ln 5
(5− e−1).

9. fave =
1√

3− 1

∫ √3

1

dx

1 + x2
=

1√
3− 1

tan−1 x

]√3

1

=
1√

3− 1

(π
3
− π

4

)
=

1√
3− 1

π

12
.
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10. fave = 2

∫ 0

−1/2

dx√
1− x2

= 2 sin−1 x

]0

−1/2

=
π

3
.

11. fave =
1

4

∫ 4

0

e−2x dx = −1

8
e−2x

]4

0

=
1

8
(1− e−8).

12. fave =
1

π
4 −

(
−π4
)
∫ π/4

−π/4
sec2 x dx =

2

π
tanx

]π/4

−π/4
=

4

π
.

13. (a)
1

5
[f(0.4) + f(0.8) + f(1.2) + f(1.6) + f(2.0)] =

1

5
[0.48 + 1.92 + 4.32 + 7.68 + 12.00] = 5.28.

(b)
1

20
3[(0.1)2 + (0.2)2 + . . .+ (1.9)2 + (2.0)2] =

861

200
= 4.305.

(c) fave =
1

2

∫ 2

0

3x2 dx =
1

2
x3

]2

0

= 4.

(d) Parts (a) and (b) can be interpreted as being two Riemann sums (n = 5, n = 20) for the average, using right
endpoints. Since f is increasing, these sums overestimate the integral.

14. (a)
4147

2520
≈ 1.645634921.

(b)
388477567

232792560
≈ 1.668771403.

(c) fave =

∫ 2

1

(
1 +

1

x

)
dx = (x+ lnx)

]2

1

= 1 + ln 2 ≈ 1.693147181.

(d) Parts (a) and (b) can be interpreted as being two Riemann sums (n = 5, n = 10) for the average, using right
endpoints. Since f is decreasing, these sums underestimate the integral.

15. (a)

∫ 3

0

v(t) dt =

∫ 2

0

(1− t) dt+

∫ 3

2

(t− 3) dt = −1

2
, so vave = −1

6
.

(b)

∫ 3

0

v(t) dt =

∫ 1

0

t dt+

∫ 2

1

dt+

∫ 3

2

(−2t+ 5) dt =
1

2
+ 1 + 0 =

3

2
, so vave =

1

2
.

16. Find v = f(t) such that

∫ 5

0

f(t) dt = 10, f(t) ≥ 0, f ′(5) = f ′(0) = 0. Let f(t) = ct(5 − t); then

∫ 5

0

ct(5 − t) dt =

5

2
ct2 − 1

3
ct3
]5

0

= c

(
125

2
− 125

3

)
=

125c

6
= 10, c =

12

25
, so v = f(t) =

12

25
t(5− t) satisfies all the conditions.

17. Linear means f(αx1 + βx2) = αf(x1) + βf(x2), so f

(
a+ b

2

)
=

1

2
f(a) +

1

2
f(b) =

f(a) + f(b)

2
.

18. Suppose a(t) represents acceleration, and that a(t) = a0 for a ≤ t ≤ b. Then the velocity is given by v(t) =

a0t + v0, and the average velocity =
1

b− a

∫ b

a

(a0t + v0) dt =
a0

2
(b + a) + v0, and the velocity at the midpoint is

v

(
a+ b

2

)
= a0

a+ b

2
+ v0 which proves the result.

19. False; f(x) = x, g(x) = −1/2 on [−1, 1].
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20. True; Theorem 5.5.4(a).

21. True; Theorem 5.5.4(b).

22. False; f(x) = g(x) = x on [0, 1], fave = gave = 1/2, (fg)ave = 1/3.

23. (a) vave =
1

4− 1

∫ 4

1

(3t3 + 2)dt =
1

3

789

4
=

263

4
.

(b) vave =
s(4)− s(1)

4− 1
=

100− 7

3
= 31.

24. (a) aave =
1

5− 0

∫ 5

0

(t+ 1)dt = 7/2.

(b) aave =
v(π/4)− v(0)

π/4− 0
=

√
2/2− 1

π/4
= (2
√

2− 4)/π.

25. Time to fill tank = (volume of tank)/(rate of filling) = [π(3)25]/(1) = 45π, weight of water in tank at time

t = (62.4) (rate of filling)(time) = 62.4t, weightave =
1

45π

∫ 45π

0

62.4t dt = 1404π = 4410.8 lb.

26. (a) If x is the distance from the cooler end, then the temperature is T (x) = (15 + 1.5x)◦ C, and Tave =
1

10− 0

∫ 10

0

(15 + 1.5x)dx = 22.5◦ C.

(b) By the Mean Value Theorem for integrals there exists x∗ in [0, 10] such that

f(x∗) =
1

10− 0

∫ 10

0

(15 + 1.5x)dx = 22.5, 15 + 1.5x∗ = 22.5, x∗ = 5.

27.

∫ 30

0

100(1− 0.0001t2)dt = 2910 cars, so an average of
2910

30
= 97 cars/min.

28. Vave =
275000

10− 0

∫ 10

0

e−0.17tdt = −161764.7059e−0.17t

]10

0

= $132, 212.96.

29. From the chart we read
dV

dt
= f(t) =





40t, 0 ≤ t ≤ 1

40, 1 ≤ t ≤ 3

−20t+ 100, 3 ≤ t ≤ 5

.

It follows that (constants of integration are chosen to ensure that V (0) = 0 and that V (t) is continuous)

V (t) =





20t2, 0 ≤ t ≤ 1

40t− 20, 1 ≤ t ≤ 3

−10t2 + 100t− 110, 3 ≤ t ≤ 5

.

Now the average rate of change of the volume of juice in the glass during these 5 seconds refers to the quantity
1

5
(V (5)− V (0)) =

1

5
140 = 28, and the average value of the flow rate is

fave = 1
5

∫ 1

0

f(t) dt =
1

5

[∫ 1

0

40t dt+

∫ 3

1

40 dt+

∫ 5

3

(−20t+ 100) dt

]
=

1

5
[20 + 80− 160 + 200] = 28.

30. (a) J0(1) =
1

π

∫ π

0

cos(sin t) dt, so f(x) = cos(sinx), interval: [0, π]. (b) 0.7651976866
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(c)
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(b) By the Mean-Value Theorem for Integrals there exists x∗ in [0, 10] such that

f(x∗) =
1

10 − 0

� 10

0

(15 + 1.5x)dx = 22.5, 15 + 1.5x∗ = 22.5, x∗ = 5

27.

� 30

0

100(1 − 0.0001t2)dt = 2910 cars, so an average of
2910

30
= 97 cars/min.

28. Vave =
275000

10 − 0

� 10

0

e−0.17tdt = −161764.7059e−0.17t

�10

0

= $132, 212.96

29. From the chart we read

dV

dt
= f(t) =





40t, 0 ≤ t ≤ 1

40, 1 ≤ t ≤ 3

−20t + 100, 3 ≤ t ≤ 5

It follows that (constants of integration are chosen to ensure that V (0) = 0 and that V (t) is con-
tinuous)

V (t) =





20t2, 0 ≤ t ≤ 1

40t − 20, 1 ≤ t ≤ 3

−10t2 + 100t − 110, 3 ≤ t ≤ 5
Now the average rate of change of the volume of juice in the glass during these 5 seconds refers to
the quantity 1

5 (V (5) − V (0)) = 1
5140 = 28, and the average value of the flow rate is

fave = 1
5

� 1

0

f(t) dt =
1

5

�� 1

0

40t dt +

� 3

1

40 dt +

� 5

3

(−20t + 100) dt

�

=
1

5
[20 + 80 − 160 + 200] = 28.

30. (a) J0(1) =
1

π

� π

0

cos(sin t) dt (b) 0.7651976866

(c)

1 2 4 6 7 8
–0.5

0.5

1
y = J0(x)

x

y (d) J0(x) = 0 if x = 2.404826

31. Solve for k :

� k

0

√
3x dx = 6k, so

√
3
2

3
x3/2

�k

0

=
2

3

√
3k3/2 = 6k, k = (3

√
3)2 = 27

32. w�(t) = kt, w(t) = kt2/2 + w0; wave =
1

26

� 52

26

(kt2/2 + w0) dt =
1

26

k

6
t3
�52

26

+ w0 =
2366

3
k + w0

Solve 2366k/3 + w0 = kt2/2 + w0 for t, t =
�

2 · 2366/3, so t ≈ 39.716

EXERCISE SET 5.9

1. (a)
1

2

� 5

1

u3 du (b)
3

2

� 25

9

√
u du

(c)
1

π

� π/2

−π/2

cos u du (d)

� 2

1

(u + 1)u5 du

(d) J0(x) = 0 if x = 2.404826.

31. Solve for k :

∫ k

0

√
3x dx = 6k, so

√
3

2

3
x3/2

]k

0

=
2

3

√
3k3/2 = 6k, k = (3

√
3)2 = 27.

32. w′(t) = kt, w(t) = kt2/2+w0; wave =
1

26

∫ 52

26

(kt2/2+w0) dt =
1

26

k

6
t3
]52

26

+w0 =
2366

3
k+w0. Solve 2366k/3+w0 =

kt2/2 + w0 for t, t =
√

2 · 2366/3, so t ≈ 39.716.

Exercise Set 5.9

1. (a)
1

2

∫ 5

1

u3 du (b)
3

2

∫ 25

9

√
u du (c)

1

π

∫ π/2

−π/2
cosu du (d)

∫ 2

1

(u+ 1)u5 du

2. (a)
1

2

∫ 7

−3

u8 du (b)

∫ 5/2

3/2

1√
u
du (c)

∫ 1

0

u2du (d)
1

2

∫ 4

3

(u− 3)u1/2du

3. (a)
1

2

∫ 1

−1

eu du (b)

∫ 2

1

u du

4. (a)

∫ π/3

π/4

√
u du (b)

∫ 1/2

0

du√
1− u2

5. u = 2x+ 1,
1

2

∫ 3

1

u3 du =
1

8
u4

]3

1

= 10, or
1

8
(2x+ 1)4

]1

0

= 10.

6. u = 4x− 2,
1

4

∫ 6

2

u3du =
1

16
u4

]6

2

= 80, or
1

16
(4x− 2)4

]2

1

= 80.

7. u = 2x− 1,
1

2

∫ 1

−1

u3du = 0, because u3 is odd on [−1, 1].

8. u = 4− 3x, −1

3

∫ −2

1

u8du = − 1

27
u9

]−2

1

= 19, or − 1

27
(4− 3x)9

]2

1

= 19.

9. u = 1+x,

∫ 9

1

(u− 1)u1/2du =

∫ 9

1

(u3/2 − u1/2)du =
2

5
u5/2 − 2

3
u3/2

]9

1

= 1192/15, or
2

5
(1 + x)5/2 − 2

3
(1 + x)3/2

]8

0

=

1192/15.

10. u = 1− x,
∫ 4

1

(1− u)
√
u du =

[
2

3
u3/2 − 2

5
u5/2

]4

1

= −116/15, or

[
2

3
(1− x)3/2 − 2

5
(1− x)5/2

]0

−3

= −116/15.

11. u = x/2, 8

∫ π/4

0

sinu du = −8 cosu

]π/4

0

= 8− 4
√

2, or − 8 cos(x/2)

]π/2

0

= 8− 4
√

2.

12. u = 3x,
2

3

∫ π/2

0

cosu du =
2

3
sinu

]π/2

0

= 2/3, or
2

3
sin 3x

]π/6

0

= 2/3.
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13. u = x2 + 2,
1

2

∫ 3

6

u−3du = − 1

4u2

]3

6

= −1/48, or −1

4

1

(x2 + 2)2

]−1

−2

= −1/48.

14. u =
1

4
x− 1

4
, 4

∫ π/4

−π/4
sec2 u du = 4 tanu

]π/4

−π/4
= 8, or 4 tan

(
1

4
x− 1

4

)]1+π

1−π
= 8.

15. u = ex + 4, du = exdx, u = e− ln 3 + 4 =
1

3
+ 4 =

13

3
when x = − ln 3, u = eln 3 + 4 = 3 + 4 = 7 when x = ln 3;

∫ 7

13/3

1

u
du = lnu

]7

13/3

= ln(7)− ln(13/3) = ln(21/13), or ln(ex + 4)

]ln 3

− ln 3

= ln 7− ln(13/3) = ln(21/13).

16. u = 3 − 4ex, du = −4exdx, u = −1 when x = 0, u = −17 when x = ln 5; −1

4

∫ −17

−1

u du = −1

8
u2

]−17

−1

= −36, or

−1

8
(3− 4ex)2

]ln 5

0

= −36.

17. u =
√
x, 2

∫ √3

1

1

u2 + 1
du = 2 tan−1 u

]√3

1

= 2(tan−1
√

3− tan−1 1) = 2(π/3−π/4) = π/6, or 2 tan−1
√
x

]3

1

= π/6.

18. u = e−x, −
∫ √3/2

1/2

1√
1− u2

du = − sin−1 u

]√3/2

1/2

= − sin−1

√
3

2
+sin−1 1

2
= −π

3
+
π

6
= −π

6
, or− sin−1 e−x

]ln(2/
√

3)

ln 2

=

−π
3

+
π

6
= −π/6.

19.
1

3

∫ 5

−5

√
25− u2 du =

1

3

[
1

2
π(5)2

]
=

25

6
π.

20.
1

2

∫ 4

0

√
16− u2 du =

1

2

[
1

4
π(4)2

]
= 2π.

21. −1

2

∫ 0

1

√
1− u2 du =

1

2

∫ 1

0

√
1− u2 du =

1

2
· 1

4
[π(1)2] = π/8.

22.

∫ 3

−3

√
9− u2du = π(3)2/2 =

9

2
π.

23.

∫ 1

0

sinπxdx = − 1

π
cosπx

]1

0

= − 1

π
(−1− 1) = 2/π m.

24.

∫ π/8

0

3 cos 2x dx =
3

2
sin 2x

]π/8

0

= 3
√

2/4 m.

25. A =

∫ 1

−1

9

(x+ 2)2
dx = −9(x+ 2)−1

]1

−1

= −9

[
1

3
− 1

]
= 6.

26. A =

∫ 1

0

dx

(3x+ 1)2
= − 1

3(3x+ 1)

]1

0

=
1

4
.

27. A =

∫ 1/6

0

1√
1− 9x2

dx =
1

3

∫ 1/2

0

1√
1− u2

du =
1

3
sin−1 u

]1/2

0

= π/18.
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28. x = sin y, A =

∫ π/2

0

sin y dy = − cos y

]π/2

0

= 1.

29. fave =
1

2− 0

∫ 2

0

x

(5x2 + 1)2
dx = −1

2

1

10

1

5x2 + 1

]2

0

=
1

21
.

30. fave =
1

0− (− ln 3/6)

∫ 0

− ln 3/6

e3x

1 + e6x
dx =

6

ln 3

1

3
tan−1 e3x

]0

− ln 3/6

=
π

6 ln 3
.

31. u = 2x− 1,
1

2

∫ 9

1

1√
u
du =

√
u

]9

1

= 2.

32.
2

15
(5x− 1)3/2

]2

1

= 38/15.

33.
2

3
(x3 + 9)1/2

]1

−1

=
2

3
(
√

10− 2
√

2).

34. u = cosx+ 1, 6

∫ 1

0

u5 du = 1.

35. u = x2 + 4x+ 7,
1

2

∫ 28

12

u−1/2du = u1/2

]28

12

=
√

28−
√

12 = 2(
√

7−
√

3).

36.

∫ 2

1

1

(x− 3)2
dx = − 1

x− 3

]2

1

= 1/2.

37. 2 sin2 x
]π/4
0

= 1.

38.
2

3
(tanx)3/2

]π/4

0

= 2/3.

39.
5

2
sin(x2)

]√π

0

= 0.

40. u =
√
x, 2

∫ 2π

π

sinu du = −2 cosu

]2π

π

= −4.

41. u = 3θ,
1

3

∫ π/3

π/4

sec2 u du =
1

3
tanu

]π/3

π/4

= (
√

3− 1)/3.

42. u = cos 2θ, −1

2

∫ 1/2

1

1

u
du =

1

2
lnu

]1

1/2

= ln
√

2.

43. u = 4 − 3y, y =
1

3
(4 − u), dy = −1

3
du, − 1

27

∫ 1

4

16− 8u+ u2

u1/2
du =

1

27

∫ 4

1

(16u−1/2 − 8u1/2 + u3/2)du =

1

27

[
32u1/2 − 16

3
u3/2 +

2

5
u5/2

]4

1

= 106/405.
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44. u = 5 + x,

∫ 9

4

u− 5√
u
du =

∫ 9

4

(u1/2 − 5u−1/2)du =
2

3
u3/2 − 10u1/2

]9

4

= 8/3.

45.
1

2
ln(2x+ e)

]e
0

=
1

2
(ln(3e)− ln e) =

ln 3

2
.

46. −1

2
e−x

2

]√2

1

= (e−1 − e−2)/2.

47. u =
√

3x2,
1

2
√

3

∫ √3

0

1√
4− u2

du =
1

2
√

3
sin−1 u

2

]√3

0

=
1

2
√

3

(π
3

)
=

π

6
√

3
.

48. u =
√
x, 2

∫ √2

1

1√
4− u2

du = 2 sin−1 u

2

]√2

1

= 2(π/4− π/6) = π/6.

49. u = 3x,
1

3

∫ √3

0

1

1 + u2
du =

1

3
tan−1 u

]√3

0

=
1

3

π

3
=
π

9
.

50. u = x2,
1

2

∫ 2

1

1

3 + u2
du =

1

2
√

3
tan−1 u√

3

]2

1

=
1

2
√

3
(tan−1 2√

3
− π/6).

51. (b)

∫ π/6

0

sin4 x(1− sin2 x) cosx dx =

(
1

5
sin5 x− 1

7
sin7 x

)]π/6

0

=
1

160
− 1

896
=

23

4480
.

52. (b)

∫ π/4

−π/4
tan2 x(sec2 x− 1) dx =

1

3
tan3 x

]π/4

−π/4
−
∫ π/4

−π/4
(sec2 x− 1) dx =

2

3
+ (− tanx+ x)

]π/4

−π/4
=

2

3
− 2 +

π

2
=

−4

3
+
π

2
.

53. (a) u = 3x+ 1,
1

3

∫ 4

1

f(u)du = 5/3.

(b) u = 3x,
1

3

∫ 9

0

f(u)du = 5/3.

(c) u = x2, 1/2

∫ 0

4

f(u)du = −1/2

∫ 4

0

f(u)du = −1/2.

54. u = 1− x,

∫ 1

0

xm(1− x)ndx = −
∫ 0

1

(1− u)mundu =

∫ 1

0

un(1− u)mdu =

∫ 1

0

xn(1− x)mdx.

55. sinx = cos(π/2−x),

∫ π/2

0

sinn x dx =

∫ π/2

0

cosn(π/2−x)dx = −
∫ 0

π/2

cosn u du (with u = π/2−x) =

∫ π/2

0

cosn u du =

∫ π/2

0

cosn x dx, by replacing u by x.

56. u = 1− x, −
∫ 0

1

(1− u)undu =

∫ 1

0

(1− u)undu =

∫ 1

0

(un − un+1)du =
1

n+ 1
− 1

n+ 2
=

1

(n+ 1)(n+ 2)
.
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57. Method 1:

∫ 4

0

5(e−0.2t − e−t) dt = 5
1

−0.2
e−0.2t + 5e−t

]4

0

≈ 8.85835,

Method 2:

∫ 4

0

4(e−0.2t−e−3t) dt = 4
1

−0.2
e−0.2t+

4

3
e−3t

]4

0

≈ 9.6801, so Method 2 provides the greater availability.

58. Method 1:

∫ 24

0

5(e−0.2t − e−t) dt = 5
1

−0.2
e−0.2t + 5e−t

]24

0

≈ 19.7943,

Method 2:

∫ 24

0

4(e−0.2t − e−3t) dt = 4
1

−0.2
e−0.2t +

4

3
e−3t

]24

0

≈ 18.5021, so Method 1 provides the greater avail-

ability.

59. Method 1:

∫ 4

0

5.78(e−0.4t − e−1.3t) dt = 5.78
1

−0.4
e−0.4t + 5.78

1

1.3
e−1.3t

]4

0

≈ 7.11097,

Method 2:

∫ 4

0

4.15(e−0.4t − e−3t) dt = 4.15
1

−0.4
e−0.4t +

4.15

3
e−3t

]4

0

≈ 6.897, so Method 1 provides the greater

availability.

60. Method 1:

∫ 24

0

5.78(e−0.4t − e−1.3t) dt = 5.78
1

−0.4
e−0.4t + 5.78

1

1.3
e−1.3t

]24

0

≈ 10.0029,

Method 2:

∫ 24

0

4.15(e−0.4t−e−3t) dt = 4.15
1

−0.4
e−0.4t+

4.15

3
e−3t

]24

0

≈ 8.99096, so Method 1 provides the greater

availability.

61. y(t) = (802.137)

∫
e1.528tdt = 524.959e1.528t + C; y(0) = 750 = 524.959 + C, C = 225.041, y(t) = 524.959e1.528t +

225.041, y(12) ≈ 48,233,500,000.

62. s(t) =

∫
(25 + 10e−0.05t)dt = 25t− 200e−0.05t + C.

(a) s(10)− s(0) = 250− 200(e−0.5 − 1) = 450− 200/
√
e ≈ 328.69 ft.

(b) Yes; without it the distance would have been 250 ft.

63. (a)
1

7
[0.74 + 0.65 + 0.56 + 0.45 + 0.35 + 0.25 + 0.16] = 0.4514285714.

(b)
1

7

∫ 7

0

[0.5 + 0.5 sin(0.213x+ 2.481) dx = 0.4614.

64. (a) V 2
rms =

1

1/f − 0

∫ 1/f

0

V 2
p sin2(2πft)dt =

1

2
fV 2

p

∫ 1/f

0

[1 − cos(4πft)]dt =
1

2
fV 2

p

[
t− 1

4πf
sin(4πft)

]]1/f

0

=

1

2
V 2
p , so Vrms = Vp/

√
2.

(b) Vp/
√

2 = 120, Vp = 120
√

2 ≈ 169.7 V.

65.

∫ k

0

e2xdx = 3,
1

2
e2x

]k

0

= 3,
1

2
(e2k − 1) = 3, e2k = 7, k =

1

2
ln 7.

66. The area is given by

∫ 2

0

1/(1 + kx2)dx = (1/
√
k) tan−1(2

√
k) = 0.6; solve for k to get k = 5.081435.
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67. (a)

∫ 1

0

sinπxdx = 2/π.

68. (a) Using part (b) of Theorem 5.5.6 with g(x) =
1

2
it follows that I ≥

∫ 1

−1

1

2
dx = 1.

(b) x =
1

u
, dx = − 1

u2
du, I =

∫ 1

−1

1

1 + 1/u2
(−1/u2)du = −

∫ 1

−1

1

u2 + 1
du = −I so I = 0 which is impossible

because
1

1 + x2
is positive on [−1, 1]. The substitution u = 1/x is not valid because u is not continuous for all x

in [−1, 1].

69. (a) Let u = −x, then

∫ a

−a
f(x)dx = −

∫ −a

a

f(−u)du =

∫ a

−a
f(−u)du = −

∫ a

−a
f(u)du, so, replacing u by x in

the latter integral,

∫ a

−a
f(x)dx = −

∫ a

−a
f(x)dx, 2

∫ a

−a
f(x)dx = 0,

∫ a

−a
f(x)dx = 0. The graph of f is symmetric

about the origin, so

∫ 0

−a
f(x)dx is the negative of

∫ a

0

f(x)dx thus

∫ a

−a
f(x)dx =

∫ 0

−a
f(x) dx+

∫ a

0

f(x)dx = 0.

(b)

∫ a

−a
f(x)dx =

∫ 0

−a
f(x)dx +

∫ a

0

f(x)dx, let u = −x in

∫ 0

−a
f(x)dx to get

∫ 0

−a
f(x)dx = −

∫ 0

a

f(−u)du =
∫ a

0

f(−u)du =

∫ a

0

f(u)du =

∫ a

0

f(x)dx, so

∫ a

−a
f(x)dx =

∫ a

0

f(x)dx+

∫ a

0

f(x)dx = 2

∫ a

0

f(x)dx. The graph of

f(x) is symmetric about the y-axis so there is as much signed area to the left of the y-axis as there is to the right.

70. Let u = t − x, then du = −dx and

∫ t

0

f(t − x)g(x)dx = −
∫ 0

t

f(u)g(t − u)du =

∫ t

0

f(u)g(t − u)du; the result

follows by replacing u by x in the last integral.

71. (a) I = −
∫ 0

a

f(a− u)

f(a− u) + f(u)
du =

∫ a

0

f(a− u) + f(u)− f(u)

f(a− u) + f(u)
du =

∫ a

0

du −
∫ a

0

f(u)

f(a− u) + f(u)
du, I = a − I,

so 2I = a, I = a/2.

(b) 3/2 (c) π/4

72. (a) By Exercise 69(a),

∫ 1

−1

x
√

cos(x2) dx = 0.

(b) u = x−π/2, du = dx, sin(u+π/2) = cosu, cos(u+π/2) = − sinu,

∫ π

0

sin8 x cos5 x dx =

∫ π/2

−π/2
cos8 u(− sin5 u) du =

0 by Exercise 69(a).
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(b) 3/2 (c) π/4

66. (a) By Exercise 63(a),

� 1

−1

x
�

cos(x2) dx = 0

(b) u = x − π/2, du = dx, sin(u + π/2) = sinu, cos(u + π/2) = − sin u

� π

0

sin8 x cos5 x dx =

� π/2

−π/2

sin8 u(− sin5 u) du = −
� π/2

−π/2

sin13 u du = 0 by Exercise 63(a).

EXERCISE SET 5.10

1. (a) y

t

1

2

3

1 2 3

(b) y

t

1

2

3

0.5 1

(c) y

t

1

2

3

1 e2

2. y

t

1

2

3

12
3

3
2

3. (a) ln t
�ac

1
= ln(ac) = ln a + ln c = 7 (b) ln t

�1/c

1
= ln(1/c) = −5

(c) ln t
�a/c

1
= ln(a/c) = 2 − 5 = −3 (d) ln t

�a3

1
= ln a3 = 3 ln a = 6

4. (a) ln t
�√a

1
= ln a1/2 =

1

2
ln a = 9/2 (b) ln t

�2a

1
= ln 2 + 9

(c) ln t
�2/a

1
= ln 2 − 9 (d) ln t

�a
2

= 9 − ln 2

5. ln 5 ≈ 1.603210678; ln 5 = 1.609437912; magnitude of error is < 0.0063

6. ln 3 ≈ 1.098242635; ln 3 = 1.098612289; magnitude of error is < 0.0004

7. (a) x−1, x > 0 (b) x2, x �= 0

(c) −x2, −∞ < x < +∞ (d) −x, −∞ < x < +∞
(e) x3, x > 0 (f) lnx + x, x > 0

(g) x − 3
√

x, −∞ < x < +∞ (h)
ex

x
, x > 0

8. (a) f(ln 3) = e−2 ln 3 = eln(1/9) = 1/9

(b)
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66. (a) By Exercise 63(a),

� 1

−1

x
�

cos(x2) dx = 0

(b) u = x − π/2, du = dx, sin(u + π/2) = sinu, cos(u + π/2) = − sin u

� π

0

sin8 x cos5 x dx =

� π/2

−π/2

sin8 u(− sin5 u) du = −
� π/2

−π/2

sin13 u du = 0 by Exercise 63(a).
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3
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3
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t

1
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2

3. (a) ln t
�ac

1
= ln(ac) = ln a + ln c = 7 (b) ln t

�1/c

1
= ln(1/c) = −5

(c) ln t
�a/c

1
= ln(a/c) = 2 − 5 = −3 (d) ln t

�a3

1
= ln a3 = 3 ln a = 6

4. (a) ln t
�√a

1
= ln a1/2 =

1

2
ln a = 9/2 (b) ln t

�2a

1
= ln 2 + 9

(c) ln t
�2/a

1
= ln 2 − 9 (d) ln t

�a
2

= 9 − ln 2

5. ln 5 ≈ 1.603210678; ln 5 = 1.609437912; magnitude of error is < 0.0063

6. ln 3 ≈ 1.098242635; ln 3 = 1.098612289; magnitude of error is < 0.0004

7. (a) x−1, x > 0 (b) x2, x �= 0

(c) −x2, −∞ < x < +∞ (d) −x, −∞ < x < +∞
(e) x3, x > 0 (f) lnx + x, x > 0

(g) x − 3
√

x, −∞ < x < +∞ (h)
ex

x
, x > 0

8. (a) f(ln 3) = e−2 ln 3 = eln(1/9) = 1/9

(c)
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66. (a) By Exercise 63(a),

� 1

−1

x
�

cos(x2) dx = 0

(b) u = x − π/2, du = dx, sin(u + π/2) = sinu, cos(u + π/2) = − sin u

� π

0

sin8 x cos5 x dx =

� π/2

−π/2

sin8 u(− sin5 u) du = −
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−π/2

sin13 u du = 0 by Exercise 63(a).
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�ac
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= ln(ac) = ln a + ln c = 7 (b) ln t

�1/c

1
= ln(1/c) = −5

(c) ln t
�a/c

1
= ln(a/c) = 2 − 5 = −3 (d) ln t

�a3

1
= ln a3 = 3 ln a = 6

4. (a) ln t
�√a

1
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1

2
ln a = 9/2 (b) ln t

�2a

1
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(c) ln t
�2/a

1
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(c) −x2, −∞ < x < +∞ (d) −x, −∞ < x < +∞
(e) x3, x > 0 (f) lnx + x, x > 0

(g) x − 3
√

x, −∞ < x < +∞ (h)
ex

x
, x > 0

8. (a) f(ln 3) = e−2 ln 3 = eln(1/9) = 1/9
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(b) 3/2 (c) π/4

66. (a) By Exercise 63(a),

� 1

−1

x
�

cos(x2) dx = 0

(b) u = x − π/2, du = dx, sin(u + π/2) = sinu, cos(u + π/2) = − sin u

� π

0

sin8 x cos5 x dx =

� π/2

−π/2

sin8 u(− sin5 u) du = −
� π/2

−π/2

sin13 u du = 0 by Exercise 63(a).

EXERCISE SET 5.10

1. (a) y

t

1

2

3

1 2 3

(b) y

t

1

2

3

0.5 1

(c) y

t

1

2

3

1 e2

2. y

t

1

2

3

12
3

3
2

3. (a) ln t
�ac

1
= ln(ac) = ln a + ln c = 7 (b) ln t

�1/c

1
= ln(1/c) = −5

(c) ln t
�a/c

1
= ln(a/c) = 2 − 5 = −3 (d) ln t

�a3

1
= ln a3 = 3 ln a = 6

4. (a) ln t
�√a

1
= ln a1/2 =

1

2
ln a = 9/2 (b) ln t

�2a

1
= ln 2 + 9

(c) ln t
�2/a

1
= ln 2 − 9 (d) ln t

�a
2

= 9 − ln 2

5. ln 5 ≈ 1.603210678; ln 5 = 1.609437912; magnitude of error is < 0.0063

6. ln 3 ≈ 1.098242635; ln 3 = 1.098612289; magnitude of error is < 0.0004

7. (a) x−1, x > 0 (b) x2, x �= 0

(c) −x2, −∞ < x < +∞ (d) −x, −∞ < x < +∞
(e) x3, x > 0 (f) lnx + x, x > 0

(g) x − 3
√

x, −∞ < x < +∞ (h)
ex

x
, x > 0

8. (a) f(ln 3) = e−2 ln 3 = eln(1/9) = 1/9

3. (a) ln t
]ac

1
= ln(ac) = ln a+ ln c = 7. (b) ln t

]1/c
1

= ln(1/c) = −5.

(c) ln t
]a/c

1
= ln(a/c) = 2− 5 = −3. (d) ln t

]a3
1

= ln a3 = 3 ln a = 6.

4. (a) ln t
]√a

1
= ln a1/2 =

1

2
ln a = 9/2. (b) ln t

]2a
1

= ln 2 + 9.

(c) ln t
]2/a

1
= ln 2− 9. (d) ln t

]a
2

= 9− ln 2.

5. ln 5 midpoint rule approximation: 1.603210678; ln 5 ≈ 1.609437912; magnitude of error is < 0.0063.

6. ln 3 midpoint rule approximation: 1.098242635; ln 3 ≈ 1.098612289; magnitude of error is < 0.0004.

7. (a) x−1, x > 0. (b) x2, x 6= 0. (c) −x2, −∞ < x < +∞. (d) −x, −∞ < x < +∞.

(e) x3, x > 0. (f) lnx+ x, x > 0. (g) x− 3
√
x, −∞ < x < +∞. (h)

ex

x
, x > 0.

8. (a) f(ln 3) = e−2 ln 3 = eln(1/9) = 1/9. (b) f(ln 2) = eln 2 + 3e− ln 2 = 2 + 3eln(1/2) = 2 + 3/2 = 7/2.

9. (a) 3π = eπ ln 3. (b) 2
√

2 = e
√

2 ln 2.

10. (a) π−x = e−x lnπ. (b) x2x = e2x ln x.

11. (a) y = 2x, lim
x→+∞

(
1 +

1

2x

)x
= lim
x→+∞

[(
1 +

1

2x

)2x
]1/2

= lim
y→+∞

[(
1 +

1

y

)y]1/2

= e1/2.

(b) y = 2x, lim
y→0

(1 + y)
2/y

= lim
y→0

[
(1 + y)

1/y
]2

= e2.

12. (a) y = x/3, lim
y→+∞

[(
1 +

1

y

)y]3

=

[
lim

y→+∞

(
1 +

1

y

)y]3

= e3.

(b) lim
x→0

(1 + x)
1/3x

= lim
x→0

[
(1 + x)

1/x
]1/3

= e1/3.

13. g′(x) = x2 − x.

14. g′(x) = 1− cosx.

15. (a)
1

x3
(3x2) =

3

x
. (b) eln x 1

x
= 1.
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16. (a) 2x
√
x2 + 1. (b) −

(
1

x2

)
sin

(
1

x

)
.

17. F ′(x) =
sinx

x2 + 1
, F ′′(x) =

(x2 + 1) cos x− 2x sinx

(x2 + 1)2
.

(a) 0 (b) 0 (c) 1

18. F ′(x) =
√

3x2 + 1, F ′′(x) =
3x√

3x2 + 1
.

(a) 0 (b)
√

13 (c) 6/
√

13

19. True; both integrals are equal to − ln a.

20. True; both integrals are equal to ln a/2.

21. False; the integral does not exist.

22. True.

23. (a)
d

dx

∫ x2

1

t
√

1 + tdt = x2
√

1 + x2(2x) = 2x3
√

1 + x2.

(b)

∫ x2

1

t
√

1 + tdt = −2

3
(x2 + 1)3/2 +

2

5
(x2 + 1)5/2 − 4

√
2

15
.

24. (a)
d

dx

∫ a

x

f(t)dt = − d

dx

∫ x

a

f(t)dt = −f(x).

(b)
d

dx

∫ a

g(x)

f(t)dt = − d

dx

∫ g(x)

a

f(t)dt = −f(g(x))g′(x).

25. (a) − cosx3 (b) − tan2 x

1 + tan2 x
sec2 x = − tan2 x.

26. (a) − 1

(x2 + 1)2
(b) − cos3

(
1

x

)(
− 1

x2

)
=

cos3(1/x)

x2
.

27. −3
3x− 1

9x2 + 1
+ 2x

x2 − 1

x4 + 1
.

28. If f is continuous on an open interval I and g(x), h(x), and a are in I, then

∫ g(x)

h(x)

f(t)dt =

∫ a

h(x)

f(t)dt +

∫ g(x)

a

f(t)dt = −
∫ h(x)

a

f(t)dt+

∫ g(x)

a

f(t)dt, so
d

dx

∫ g(x)

h(x)

f(t)dt = −f(h(x))h′(x) + f(g(x))g′(x).

29. (a) sin2(x3)(3x2)− sin2(x2)(2x) = 3x2 sin2(x3)− 2x sin2(x2).

(b)
1

1 + x
(1)− 1

1− x (−1) =
2

1− x2
(for −1 < x < 1).

30. F ′(x) =
1

5x
(5)− 1

x
(1) = 0 so F (x) is constant on (0,+∞). F (1) = ln 5 so F (x) = ln 5 for all x > 0.



Exercise Set 5.10 293

31. From geometry,

∫ 3

0

f(t)dt = 0,

∫ 5

3

f(t)dt = 6,

∫ 7

5

f(t)dt = 0; and

∫ 10

7

f(t)dt =

∫ 10

7

(4t− 37)/3dt = −3.

(a) F (0) = 0, F (3) = 0, F (5) = 6, F (7) = 6, F (10) = 3.

(b) F is increasing where F ′ = f is positive, so on [3/2, 6] and [37/4, 10], decreasing on [0, 3/2] and [6, 37/4].

(c) Critical points when F ′(x) = f(x) = 0, so x = 3/2, 6, 37/4; maximum 15/2 at x = 6, minimum −9/4 at
x = 3/2. (Endpoints: F (0) = 0 and F (10) = 3.)

(d)
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25. (a) − cos x3 (b) − tan2 x

1 + tan2 x
sec2 x = − tan2 x

26. (a) − 1

(x2 + 1)2
(b) − cos3

�
1

x

��
− 1

x2

�
=

cos3(1/x)

x2

27. −3
3x − 1

9x2 + 1
+ 2x

x2 − 1

x4 + 1

28. If f is continuous on an open interval I and g(x), h(x), and a are in I then
� g(x)

h(x)

f(t)dt =

� a

h(x)

f(t)dt +

� g(x)

a

f(t)dt = −
� h(x)

a

f(t)dt +

� g(x)

a

f(t)dt

so
d

dx

� g(x)

h(x)

f(t)dt = −f(h(x))h�(x) + f(g(x))g�(x)

29. (a) sin2(x3)(3x2) − sin2(x2)(2x) = 3x2 sin2(x3) − 2x sin2(x2)

(b)
1

1 + x
(1) − 1

1 − x
(−1) =

2

1 − x2

30. F �(x) =
1

5x
(5)− 1

x
(1) = 0 so F (x) is constant on (0,+∞). F (1) = ln 5 so F (x) = ln 5 for all x > 0.

31. from geometry,

� 3

0

f(t)dt = 0,

� 5

3

f(t)dt = 6,

� 7

5

f(t)dt = 0; and

� 10

7

f(t)dt

=

� 10

7

(4t − 37)/3dt = −3

(a) F (0) = 0, F (3) = 0, F (5) = 6, F (7) = 6, F (10) = 3

(b) F is increasing where F � = f is positive, so on [3/2, 6] and [37/4, 10], decreasing on [0, 3/2]
and [6, 37/4]

(c) critical points when F �(x) = f(x) = 0, so x = 3/2, 6, 37/4; maximum 15/2 at x = 6, minimum
−9/4 at x = 3/2

(d) F(x)

x

–2

2

4

6

2 4 6 8 10

32. F � is increasing (resp. decreasing) where f is increasing (resp. decreasing), namely on (0, 3) and
(7, 10) (resp. (5, 7)). The only endpoint common to two of these intervals is x = 7, and that is the
only point of inflection of F .

33. x < 0 : F (x) =

� x

−1

(−t)dt = −1

2
t2
�x

−1

=
1

2
(1 − x2),

x ≥ 0 : F (x) =

� 0

−1

(−t)dt +

� x

0

t dt =
1

2
+

1

2
x2; F (x) =

�
(1 − x2)/2, x < 0

(1 + x2)/2, x ≥ 0

32. F ′ is increasing (resp. decreasing) where f is increasing (resp. decreasing), namely on (0, 3) and (7, 10) (resp.
(5, 7)). The only endpoint common to two of these intervals is x = 7, and that is the only point of inflection of F .

33. x < 0 : F (x) =

∫ x

−1

(−t)dt = −1

2
t2
]x

−1

=
1

2
(1− x2),

x ≥ 0 : F (x) =

∫ 0

−1

(−t)dt+

∫ x

0

t dt =
1

2
+

1

2
x2; F (x) =

{
(1− x2)/2, x < 0

(1 + x2)/2, x ≥ 0

34. 0 ≤ x ≤ 2 : F (x) =

∫ x

0

t dt =
1

2
x2,

x > 2 : F (x) =

∫ 2

0

t dt+

∫ x

2

2 dt = 2 + 2(x− 2) = 2x− 2; F (x) =

{
x2/2, 0 ≤ x ≤ 2

2x− 2, x > 2

35. y(x) = 2 +

∫ x

1

2t2 + 1

t
dt = 2 + (t2 + ln t)

]x

1

= x2 + lnx+ 1.

36. y(x) =

∫ x

1

(t1/2 + t−1/2)dt =
2

3
x3/2 − 2

3
+ 2x1/2 − 2 =

2

3
x3/2 + 2x1/2 − 8

3
.

37. y(x) = 1 +

∫ x

π/4

(sec2 t− sin t)dt = tanx+ cosx−
√

2/2.

38. y(x) = 1 +

∫ x

e

1

x lnx
dx = 1 + ln ln t

]x

e

= 1 + ln lnx.

39. P (x) = P0 +

∫ x

0

r(t)dt individuals.

40. s(T ) = s1 +

∫ T

1

v(t)dt.

41. II has a minimum at x = 12, and I has a zero there, so I could be the derivative of II; on the other hand I has a
minimum near x = 1/3, but II is not zero there, so II could not be the derivative of I, so I is the graph of f(x)
and II is the graph of

∫ x
0
f(t) dt.
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42. (b) lim
k→0

1

k
(bk − 1) =

d

dt
bt
]
t=0

= ln b.

43. (a) Where f(t) = 0; by the First Derivative Test, at t = 3.

(b) Where f(t) = 0; by the First Derivative Test, at t = 1, 5.

(c) At t = 0, 1 or 5; from the graph it is evident that it is at t = 5.

(d) At t = 0, 3 or 5; from the graph it is evident that it is at t = 3.

(e) F is concave up when F ′′ = f ′ is positive, i.e. where f is increasing, so on (0, 1/2) and (2, 4); it is concave
down on (1/2, 2) and (4, 5).

(f)
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34. 0 ≤ x ≤ 2 : F (x) =

� x

0

t dt =
1

2
x2,

x > 2 : F (x) =

� 2

0

t dt +

� x

2

2 dt = 2 + 2(x − 2) = 2x − 2; F (x) =

�
x2/2, 0 ≤ x ≤ 2

2x − 2, x > 2

35. y(x) = 2 +

� x

1

2t2 + 1

t
dt = 2 + (t2 + ln t)

�x

1

= x2 + lnx + 1

36. y(x) =

� x

1

(t1/2 + t−1/2)dt =
2

3
x3/2 − 2

3
+ 2x1/2 − 2 =

2

3
x3/2 + 2x1/2 − 8

3

37. y(x) = 1 +

� x

π/4

(sec2 t − sin t)dt = tanx + cos x −
√

2/2

38. y(x) = 1 +

� x

e

1

x lnx
dx = 1 + ln ln t

�x

e

= 1 + ln lnx

39. P (x) = P0 +

� x

0

r(t)dt individuals 40. s(T ) = s1 +

� T

1

v(t)dt

41. II has a minimum at x = 12, and I has a zero there, so I could be the derivative of II; on the other
hand I has a minimum near x = 1/3, but II is not zero there, so II could not be the derivative of
I, so I is the graph of f(x) and II is the graph of

� x

0
f(t) dt.

42. (b) lim
k→0

1

k
(xk − 1) =

d

dt
xt
�
t=0

= lnx

43. (a) where f(t) = 0; by the First Derivative Test, at t = 3

(b) where f(t) = 0; by the First Derivative Test, at t = 1, 5

(c) at t = 0, 1 or 5; from the graph it is evident that it is at t = 5

(d) at t = 0, 3 or 5; from the graph it is evident that it is at t = 3

(e) F is concave up when F �� = f � is positive, i.e. where f is increasing, so on (0, 1/2) and (2, 4);
it is concave down on (1/2, 2) and (4, 5)

(f) F(x)

x

–1

–0.5

0.5

1

1 2 3 5

44. (a)

x

–1

1

–4 –2 2 4

erf(x)

44. (a)
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34. 0 ≤ x ≤ 2 : F (x) =

� x

0

t dt =
1

2
x2,

x > 2 : F (x) =

� 2

0

t dt +

� x

2

2 dt = 2 + 2(x − 2) = 2x − 2; F (x) =

�
x2/2, 0 ≤ x ≤ 2

2x − 2, x > 2

35. y(x) = 2 +

� x

1

2t2 + 1

t
dt = 2 + (t2 + ln t)

�x

1

= x2 + lnx + 1

36. y(x) =

� x

1

(t1/2 + t−1/2)dt =
2

3
x3/2 − 2

3
+ 2x1/2 − 2 =

2

3
x3/2 + 2x1/2 − 8

3

37. y(x) = 1 +

� x

π/4

(sec2 t − sin t)dt = tanx + cos x −
√

2/2

38. y(x) = 1 +

� x

e

1

x lnx
dx = 1 + ln ln t

�x

e

= 1 + ln lnx

39. P (x) = P0 +

� x

0

r(t)dt individuals 40. s(T ) = s1 +

� T

1

v(t)dt

41. II has a minimum at x = 12, and I has a zero there, so I could be the derivative of II; on the other
hand I has a minimum near x = 1/3, but II is not zero there, so II could not be the derivative of
I, so I is the graph of f(x) and II is the graph of

� x

0
f(t) dt.

42. (b) lim
k→0

1

k
(xk − 1) =

d

dt
xt
�
t=0

= lnx

43. (a) where f(t) = 0; by the First Derivative Test, at t = 3

(b) where f(t) = 0; by the First Derivative Test, at t = 1, 5

(c) at t = 0, 1 or 5; from the graph it is evident that it is at t = 5

(d) at t = 0, 3 or 5; from the graph it is evident that it is at t = 3

(e) F is concave up when F �� = f � is positive, i.e. where f is increasing, so on (0, 1/2) and (2, 4);
it is concave down on (1/2, 2) and (4, 5)

(f) F(x)

x

–1

–0.5

0.5

1

1 2 3 5

44. (a)

x

–1

1

–4 –2 2 4

erf(x)

(c) erf ′(x) > 0 for all x, so there are no relative extrema.

(e) erf ′′(x) = −4xe−x
2

/
√
π changes sign only at x = 0 so that is the only point of inflection.

(f) Horizontal asymptotes: y = −1 and y = 1.

(g) lim
x→+∞

erf(x) = +1, lim
x→−∞

erf(x) = −1.

45. C ′(x) = cos(πx2/2), C ′′(x) = −πx sin(πx2/2).

(a) cos t goes from negative to positive at 2kπ − π/2, and from positive to negative at t = 2kπ + π/2, so C(x)
has relative minima when πx2/2 = 2kπ − π/2, x = ±

√
4k − 1, k = 1, 2, . . ., and C(x) has relative maxima when

πx2/2 = (4k + 1)π/2, x = ±
√

4k + 1, k = 0, 1, . . ..

(b) sin t changes sign at t = kπ, so C(x) has inflection points at πx2/2 = kπ, x = ±
√

2k, k = 1, 2, . . .; the case
k = 0 is distinct due to the factor of x in C ′′(x), but x changes sign at x = 0 and sin(πx2/2) does not, so there is
also a point of inflection at x = 0.

46. Let F (x) =

∫ x

1

ln tdt, F ′(x) = lim
h→0

F (x+ h)− F (x)

h
= lim
h→0

1

h

∫ x+h

x

ln tdt; but F ′(x) = lnx, so lim
h→0

1

h

∫ x+h

x

ln tdt =

lnx.
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47. Differentiate: f(x) = 2e2x, so 4 +

∫ x

a

f(t)dt = 4 +

∫ x

a

2e2tdt = 4 + e2t

]x

a

= 4 + e2x − e2a = e2x provided e2a = 4,

a = (ln 4)/2 = ln 2.

48. (a) The area under 1/t for x ≤ t ≤ x+ 1 is less than the area of the rectangle with altitude 1/x and base 1, but
greater than the area of the rectangle with altitude 1/(x+ 1) and base 1.

(b)

∫ x+1

x

1

t
dt = ln t

]x+1

x

= ln(x+ 1)− lnx = ln(1 + 1/x), so 1/(x+ 1) < ln(1 + 1/x) < 1/x for x > 0.

(c) From part (b), e1/(x+1) < eln(1+1/x) < e1/x, e1/(x+1) < 1 + 1/x < e1/x, ex/(x+1) < (1 + 1/x)x < e; by the
Squeezing Theorem, lim

x→+∞
(1 + 1/x)x = e.

(d) Use the inequality ex/(x+1) < (1 + 1/x)x to get e < (1 + 1/x)x+1 so (1 + 1/x)x < e < (1 + 1/x)x+1.

49. From Exercise 48(d)

∣∣∣∣∣e−
(

1 +
1

50

)50
∣∣∣∣∣ < y(50), and from the graph y(50) < 0.06.
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(c) erf �(x) > 0 for all x, so there are no relative extrema

(e) erf ��(x) = −4xe−x2

/
√
π changes sign only at x = 0 so that is the only point of inflection

(g) lim
x→+∞

erf(x) = +1, lim
x→−∞

erf(x) = −1

45. C �(x) = cos(πx2/2), C ��(x) = −πx sin(πx2/2)

(a) cos t goes from negative to positive at 2kπ − π/2, and from positive to negative at
t = 2kπ + π/2, so C(x) has relative minima when πx2/2 = 2kπ − π/2, x = ±

√
4k − 1,

k = 1, 2, . . ., and C(x) has relative maxima when πx2/2 = (4k + 1)π/2, x = ±
√

4k + 1,
k = 0, 1, . . ..

(b) sin t changes sign at t = kπ, so C(x) has inflection points at πx2/2 = kπ, x = ±
√

2k,
k = 1, 2, . . .; the case k = 0 is distinct due to the factor of x in C ��(x), but x changes sign at
x = 0 and sin(πx2/2) does not, so there is also a point of inflection at x = 0

46. Let F (x) =

� x

1

ln tdt, F �(x) = lim
h→0

F (x + h) − F (x)

h
= lim

h→0

1

h

� x+h

x

ln tdt; but F �(x) = lnx so

lim
h→0

1

h

� x+h

x

ln tdt = lnx

47. Differentiate: f(x) = 2e2x, so 4 +

� x

a

f(t)dt = 4 +

� x

a

2e2tdt = 4 + e2t

�x

a

= 4 + e2x − e2a = e2x

provided e2a = 4, a = (ln 4)/2.

48. (a) The area under 1/t for x ≤ t ≤ x + 1 is less than the area of the rectangle with altitude 1/x
and base 1, but greater than the area of the rectangle with altitude 1/(x + 1) and base 1.

(b)

� x+1

x

1

t
dt = ln t

�x+1

x

= ln(x + 1) − lnx = ln(1 + 1/x), so

1/(x + 1) < ln(1 + 1/x) < 1/x for x > 0.

(c) from Part (b), e1/(x+1) < eln(1+1/x) < e1/x, e1/(x+1) < 1 + 1/x < e1/x,

ex/(x+1) < (1 + 1/x)x < e; by the Squeezing Theorem, lim
x→+∞

(1 + 1/x)x = e.

(d) Use the inequality ex/(x+1) < (1 + 1/x)x to get e < (1 + 1/x)x+1 so
(1 + 1/x)x < e < (1 + 1/x)x+1.

49. From Exercise 48(d)

�����e −
�

1 +
1

50

�50
����� < y(50), and from the graph y(50) < 0.06

0.2

0
0 100

50. F �(x) = f(x), thus F �(x) has a value at each x in I because f is continuous on I so F is continuous
on I because a function that is differentiable at a point is also continuous at that point

50. F ′(x) = f(x), thus F ′(x) has a value at each x in I because f is continuous on I so F is continuous on I because
a function that is differentiable at a point is also continuous at that point.

Chapter 5 Review Exercises

1. − 1

4x2
+

8

3
x3/2 + C.

2. u4/4− u2 + 7u+ C.

3. −4 cosx+ 2 sinx+ C.

4.

∫
(secx tanx+ 1)dx = secx+ x+ C.

5. 3x1/3 − 5ex + C.

6.
3

4
ln |x| − tanx+ C.

7. tan−1 x+ 2 sin−1 x+ C.

8. 12 sec−1 |x|+ x− 1

3
x3 + C.

9. (a) y(x) = 2
√
x− 2

3
x3/2 + C; y(1) = 0, so C = −4

3
, y(x) = 2

√
x− 2

3
x3/2 − 4

3
.

(b) y(x) = sinx− 5ex + C, y(0) = 0 = −5 + C, C = 5, y(x) = sinx− 5ex + 5.
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(c) y(x) = 2 +

∫ x

1

t1/3dt = 2 +
3

4
t4/3

]x

1

=
5

4
+

3

4
x4/3.

(d) y(x) =

∫ x

0

tet
2

dt =
1

2
ex

2 − 1

2
.

10. The direction field is clearly an odd function, which means that the solution is even and its derivative is odd.
Since sinx is periodic and the direction field is not, that eliminates all but x, the solution of which is the family
y = x2/2 + C.

11. (a) If u = secx, du = secx tanxdx,

∫
sec2 x tanxdx =

∫
udu = u2/2 + C1 = (sec2 x)/2 + C1; if u = tanx,

du = sec2 xdx,

∫
sec2 x tanxdx =

∫
udu = u2/2 + C2 = (tan2 x)/2 + C2.

(b) They are equal only if sec2 x and tan2 x differ by a constant, which is true.

12.
1

2
sec2 x

]π/4

0

=
1

2
(2− 1) = 1/2 and

1

2
tan2 x

]π/4

0

=
1

2
(1− 0) = 1/2.

13. u = x2 − 1, du = 2x dx,
1

2

∫
du

u
√
u2 − 1

=
1

2
sec−1 |u|+ C =

1

2
sec−1 |x2 − 1|+ C.

14.

∫ √
1 + x−2/3 dx =

∫
x−1/3

√
x2/3 + 1 dx; u = x2/3 +1, du =

2

3
x−1/3 dx,

3

2

∫
u1/2du = u3/2 +C = (x2/3 +1)3/2 +

C.

15. u = 5 + 2 sin 3x, du = 6 cos 3xdx;

∫
1

6
√
u
du =

1

3
u1/2 + C =

1

3

√
5 + 2 sin 3x+ C.

16. u = 3 +
√
x, du =

1

2
√
x
dx;

∫
2
√
udu =

4

3
u3/2 + C =

4

3
(3 +

√
x)3/2 + C.

17. u = ax3 + b, du = 3ax2dx;

∫
1

3au2
du = − 1

3au
+ C = − 1

3a2x3 + 3ab
+ C.

18. u = ax2, du = 2axdx;
1

2a

∫
sec2 udu =

1

2a
tanu+ C =

1

2a
tan(ax2) + C.

19. (a)
14∑

k=0

(k + 4)(k + 1) (b)
19∑

k=5

(k − 1)(k − 4)

20. (a) 2k − 1 (b)
n∑

k=1

(2k − 1) = 2
n∑

k=1

k −
n∑

k=1

1 = 2 · 1

2
n(n+ 1)− n = n2.

21. lim
n→+∞

n∑

k=1

[
4

4k

n
−
(

4k

n

)2
]

4

n
= lim
n→+∞

64

n3

n∑

k=1

(kn− k2) = lim
n→+∞

64

n3

[
n2(n+ 1)

2
− n(n+ 1)(2n+ 1)

6

]
=

lim
n→+∞

64

6n3
[n3 − n] =

32

3
.

22. lim
n→+∞

n∑

k=1

[
25(k − 1)

n
− 25(k − 1)2

n2

]
5

n
=

125

6
.

23. 0.351220577, 0.420535296, 0.386502483.
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24. 1.63379940, 1.805627583, 1.717566087.

26.
1

2
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19. (a)

14�

k=0

(k + 4)(k + 1) (b)

19�

k=5

(k − 1)(k − 4)

20. (a) 2k − 1

(b)
n�

k=1

(2k − 1) = 2

n�

k=1

k −
n�

k=1

1 = 2 · 1

2
n(n + 1) − n = n2

21. lim
n→+∞

n�

k=1

�
4
4k

n
−
�

4k

n

�2
�

4

n
= lim

n→+∞
64

n3

n�

k=1

(kn − k2)

= lim
n→+∞

64

n3

�
n2(n + 1)

2
− n(n + 1)(2n + 1)

6

�
= lim

n→+∞
64

6n3
[n3 − n] =

32

3

22. lim
n→+∞

n�

k=1

�
25(k − 1)

n
− 25(k − 1)2

n2

�
5

n
=

125

6

23. 0.351220577, 0.420535296, 0.386502483 24. 1.63379940, 1.805627583, 1.717566087

26.
1

2
y

x
0.2

0.4

0.6

0.8

1

0.2 0.6 1

27. (a)
1

2
+

1

4
=

3

4
(b) −1 − 1

2
= −3

2

(c) 5

�
−1 − 3

4

�
= −35

4
(d) −2

(e) not enough information (f) not enough information

28. (a)
1

2
+ 2 =

5

2
(b) not enough information

(c) not enough information (d) 4(2) − 3
1

2
=

13

2

29. (a)

� 1

−1

dx +

� 1

−1

�
1 − x2 dx = 2(1) + π(1)2/2 = 2 + π/2

(b)
1

3
(x2 + 1)3/2

�3

0

− π(3)2/4 =
1

3
(103/2 − 1) − 9π/4

(c) u = x2, du = 2xdx;
1

2

� 1

0

�
1 − u2du =

1

2
π(1)2/4 = π/8

30. (a)
1

n

n�

k=1

�
k

n
=

n�

k=1

f(x∗
k)∆x where f(x) =

√
x, x∗

k = k/n, and ∆x = 1/n for 0 ≤ x ≤ 1. Thus

lim
n→+∞

1

n

n�

k=1

�
k

n
=

� 1

0

x1/2dx =
2

3

27. (a)
1

2
+

1

4
=

3

4
. (b) −1− 1

2
= −3

2
. (c) 5

(
−1− 3

4

)
= −35

4
. (d) −2

(e) Not enough information. (f) Not enough information.

28. (a)
1

2
+2 =

5

2
. (b) Not enough information. (c) Not enough information. (d) 4(2)−3

(
1

2

)
=

13

2
.

29. (a)

∫ 1

−1

dx+

∫ 1

−1

√
1− x2 dx = 2(1) + π(1)2/2 = 2 + π/2.

(b)
1

3
(x2 + 1)3/2

]3

0

− π(3)2/4 =
1

3
(103/2 − 1)− 9π/4.

(c) u = x2, du = 2xdx;
1

2

∫ 1

0

√
1− u2du =

1

2
π(1)2/4 = π/8.

30. (a)
1

n

n∑

k=1

√
k

n
=

n∑

k=1

f(x∗k)∆x where f(x) =
√
x, x∗k = k/n, and ∆x = 1/n for 0 ≤ x ≤ 1. Thus lim

n→+∞
1

n

n∑

k=1

√
k

n
=

∫ 1

0

x1/2dx =
2

3
.

(b)
1

n

n∑

k=1

(
k

n

)4

=
n∑

k=1

f(x∗k)∆x where f(x) = x4, x∗k = k/n, and ∆x = 1/n for 0 ≤ x ≤ 1. Thus lim
n→+∞

1

n

n∑

k=1

(
k

n

)4

=

∫ 1

0

x4dx =
1

5
.

(c)
n∑

k=1

ek/n

n
=

n∑

k=1

f(x∗k)∆x where f(x) = ex, x∗k = k/n, and ∆x = 1/n for 0 ≤ x ≤ 1. Thus lim
n→+∞

n∑

k=1

ek/n

n
=

lim
n→+∞

n∑

k=1

f(x∗k)∆x =

∫ 1

0

exdx = e− 1.

31.

(
1

3
x3 − 2x2 + 7x

)]0

−3

= 48.

32.

(
1

2
x2 +

1

5
x5

)]2

−1

= 81/10.

33.

∫ 3

1

x−2dx = − 1

x

]3

1

= 2/3.
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34.

(
3x5/3 +

4

x

)]8

1

= 179/2.

35.

(
1

2
x2 − secx

)]1

0

= 3/2− sec(1).

36.

(
6
√
t− 10

3
t3/2 +

2√
t

)]4

1

= −55/3.

37.

∫ 3/2

0

(3− 2x)dx+

∫ 2

3/2

(2x− 3)dx = (3x− x2)
]3/2
0

+ (x2 − 3x)
]2
3/2

= 9/4 + 1/4 = 5/2.

38.

∫ π/6

0

(1/2− sinx) dx+

∫ π/2

π/6

(sinx− 1/2) dx = (x/2 + cosx)

]π/6

0

− (cosx+ x/2)

]π/2

π/6

= (π/12 +
√

3/2)− 1− π/4 +

(
√

3/2 + π/12) =
√

3− π/12− 1.

39.

∫ 9

1

√
xdx =

2

3
x3/2

]9

1

=
2

3
(27− 1) = 52/3.

40.

∫ 4

1

x−3/5dx =
5

2
x2/5

]4

1

=
5

2
(42/5 − 1).

41.

∫ 3

1

exdx = ex
]3

1

= e3 − e.

42.

∫ e3

1

1

x
dx = lnx

]e3

1

= 3− ln 1 = 3.

43. A =

∫ 2

1

(−x2 + 3x− 2)dx =

(
−1

3
x3 +

3

2
x2 − 2x

)]2

1

= 1/6.

44. The only positive zero of f is b =
1 +
√

5

2
, and the area is given by A =

∫ b

0

f(x) dx =
13 + 5

√
5

24
.

45. A = A1 +A2 =

∫ 1

0

(1− x2)dx+

∫ 3

1

(x2 − 1)dx = 2/3 + 20/3 = 22/3.

46. A = A1 + A2 =

∫ 0

−1

[
1−
√
x+ 1

]
dx +

∫ 1

0

[
√
x+ 1 − 1] dx =

(
x− 2

3
(x+ 1)3/2

)]0

−1

+

(
2

3
(x+ 1)3/2 − x

)]1

0

=

−2

3
+ 1 +

4
√

2

3
− 1− 2

3
= 4

√
2− 1

3
.

47. (a) x3 + 1 (b) F (x) =

(
1

4
t4 + t

)]x

1

=
1

4
x4 + x− 5

4
; F ′(x) = x3 + 1.

48. (a) F ′(x) =
1√
x

. (b) F (x) = 2
√
t

]x

4

= 2
√
x− 2;F ′(x) =

1√
x

.

49. ex
2
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50.
x

cosx2

51. |x− 1|

52. cos
√
x

53.
cosx

1 + sin3 x

54.
(ln
√
x)2

2
√
x

56. (a) F ′(x) =
x2 − 3

x4 + 7
; increasing on (−∞,−

√
3], [
√

3,+∞), decreasing on [−
√

3,
√

3].

(b) F ′′(x) =
−2x5 + 12x3 + 14x

(x4 + 7)2
; concave up on (−∞,−

√
7), (0,

√
7) concave down on (−

√
7, 0), (

√
7,∞).

(c) Absolute maximum at x = −
√

3, absolute minimum at x =
√

3.

(d)

-4 -2 2 4

-0.4

-0.2

0.2

0.4

57. (a) F ′(x) =
1

1 + x2
+

1

1 + (1/x)2
(−1/x2) = 0 so F is constant on (0,+∞).

(b) F (1) =

∫ 1

0

1

1 + t2
dt+

∫ 1

0

1

1 + t2
dt = 2 tan−1 1 = π/2, so F (x) = tan−1 x+ tan−1(1/x) = π/2.

58. (−3, 3) because f is continuous there and 1 is in (−3, 3).

59. (a) The domain is (−∞,+∞); F (x) is 0 if x = 1, positive if x > 1, and negative if x < 1, because the integrand
is positive, so the sign of the integral depends on the orientation (forwards or backwards).

(b) The domain is [−2, 2]; F (x) is 0 if x = −1, positive if −1 < x ≤ 2, and negative if −2 ≤ x < −1; same reasons
as in part (a).

60. F (x) =

∫ x

−1

t√
2 + t3

dt, F ′(x) =
x√

2 + x3
, so F is increasing on [1, 3]; Fmax = F (3) ≈ 1.152082854 and Fmin =

F (1) ≈ −0.07649493141.

61. (a) fave =
1

3

∫ 3

0

x1/2dx = 2
√

3/3;
√
x∗ = 2

√
3/3, x∗ =

4

3
.

(b) fave =
1

e− 1

∫ e

1

1

x
dx =

1

e− 1
lnx

]e

1

=
1

e− 1
;

1

x∗
=

1

e− 1
, x∗ = e− 1.

62. Mar 1 to Jun 7 is 14 weeks, so w(t) = 10 +

∫ t

0

s

7
ds = 10 +

t2

14
, so the weight on June 7 will be 24 gm.
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63. For 0 < x < 3 the area between the curve and the x-axis consists of two triangles of equal area but of opposite
signs, hence 0. For 3 < x < 5 the area is a rectangle of width 2 and height 3. For 5 < x < 7 the area consists of
two triangles of equal area but opposite sign, hence 0; and for 7 < x < 10 the curve is given by y = (4t − 37)/3

and

∫ 10

7

(4t− 37)/3 dt = −3. Thus the desired average is
1

10
(0 + 6 + 0− 3) = 0.3.

64. fave =
1

ln 2− ln(1/2)

∫ ln 2

ln(1/2)

(ex + e−x) dx =
1

2 ln 2

∫ ln 2

− ln 2

(ex + e−x) dx =
3

2 ln 2
.

65. If the acceleration a = const, then v(t) = at+ v0, s(t) =
1

2
at2 + v0t+ s0.

66. (a) No, since the velocity curve is not a straight line.

(b) [25, 40].

(c) s =

∫ 40

0

v(t) dt ≈ 5(0.9 + 2.1 + 2 + 3.4 + 4 + 5.2 + 6 + 7.2) = 5 · 30.8 = 153 ft.

(d) (0.9 + 2.1 + . . .+ 7.2)/8 = 30.8/8 = 3.85 ft/s.

(e) No, since the velocity is positive and the acceleration is never negative.

(f) Need the position at any one given time (e.g. s0).

67. s(t) =

∫
(t3 − 2t2 + 1)dt =

1

4
t4 − 2

3
t3 + t+C, s(0) =

1

4
(0)4 − 2

3
(0)3 + 0 +C = 1, C = 1, s(t) =

1

4
t4 − 2

3
t3 + t+ 1.

68. v(t) =

∫
4 cos 2t dt = 2 sin 2t+C1, v(0) = 2 sin 0+C1 = −1, C1 = −1, v(t) = 2 sin 2t−1, s(t) =

∫
(2 sin 2t−1)dt =

− cos 2t− t+ C2, s(0) = − cos 0− 0 + C2 = −3, C2 = −2, s(t) = − cos 2t− t− 2.

69. s(t) =

∫
(2t− 3)dt = t2 − 3t+ C, s(1) = (1)2 − 3(1) + C = 5, C = 7, s(t) = t2 − 3t+ 7.

70. v(t) =

∫
(cos t− 2t) dt = sin t− t2 + v0; but v0 = 0 so v(t) = sin t− t2s(t) =

∫
v(t)dt = − cos t− t3/3 +C : s(0) =

0 = −1 + C,C = 1, s(t) = − cos t− t3/3 + 1.

71. displacement = s(6)− s(0) =

∫ 6

0

(2t− 4)dt = (t2 − 4t)

]6

0

= 12 m.

distance =

∫ 6

0

|2t− 4|dt =

∫ 2

0

(4− 2t)dt+

∫ 6

2

(2t− 4)dt = (4t− t2)

]2

0

+ (t2 − 4t)

]6

2

= 20 m.

72. displacement =

∫ 5

0

|t− 3|dt =

∫ 3

0

−(t− 3)dt+

∫ 5

3

(t− 3)dt = 13/2 m.

distance =

∫ 5

0

|t− 3|dt = 13/2 m.

73. displacement =

∫ 3

1

(
1

2
− 1

t2

)
dt = 1/3 m.

distance =

∫ 3

1

|v(t)|dt = −
∫ √2

1

v(t)dt +

∫ 3

√
2

v(t)dt = 10/3− 2
√

2 m.
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74. displacement =

∫ 9

4

3t−1/2dt = 6 m.

distance =

∫ 9

4

|v(t)|dt =

∫ 9

4

v(t)dt = 6 m.

75. v(t) = −2t+ 3;

displacement =

∫ 4

1

(−2t+ 3)dt = −6 m.

distance =

∫ 4

1

| − 2t+ 3|dt =

∫ 3/2

1

(−2t+ 3)dt+

∫ 4

3/2

(2t− 3)dt = 13/2 m.

76. v(t) =
2

5

√
5t+ 1 +

8

5
;

displacement =

∫ 3

0

(
2

5

√
5t+ 1 +

8

5

)
dt =

4

75
(5t+ 1)3/2 +

8

5
t

]3

0

= 204/25 m.

distance =

∫ 3

0

|v(t)|dt =

∫ 3

0

v(t)dt = 204/25 m.

77. Take t = 0 when deceleration begins, then a = −10 so v = −10t+C1, but v = 88 when t = 0 which gives C1 = 88
thus v = −10t+ 88, t ≥ 0.

(a) v = 45 mi/h = 66 ft/s, 66 = −10t+ 88, t = 2.2 s.

(b) v = 0 (the car is stopped) when t = 8.8 s, s =

∫
v dt =

∫
(−10t+ 88)dt = −5t2 + 88t+C2, and taking s = 0

when t = 0, C2 = 0 so s = −5t2 + 88t. At t = 8.8, s = 387.2. The car travels 387.2 ft before coming to a stop.

78. s(t) =
20

3
t3 − 50t2 + 50t+ s0, s(0) = 0 gives s0 = 0, so s(t) =

20

3
t3 − 50t2 + 50t, a(t) = 40t− 100.
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73. displacement =

� 3

1

�
1

2
− 1

t2

�
dt = 1/3 m

distance =

� 3

1

|v(t)|dt = −
� √

2

1

v(t)dt +

� 3

√
2

v(t)dt = 10/3 − 2
√

2 m

74. displacement =

� 9

4

3t−1/2dt = 6 m

distance =

� 9

4

|v(t)|dt =

� 9

4

v(t)dt = 6 m

75. v(t) = −2t + 3

displacement =

� 4

1

(−2t + 3)dt = −6 m

distance =

� 4

1

| − 2t + 3|dt =

� 3/2

1

(−2t + 3)dt +

� 4

3/2

(2t − 3)dt = 13/2 m

76. v(t) =
2

5

√
5t + 1 +

8

5

displacement =

� 3

0

�
2

5

√
5t + 1 +

8

5

�
dt =

4

75
(5t + 1)3/2 +

8

5
t

�3

0

= 204/25 m

distance =

� 3

0

|v(t)|dt =

� 3

0

v(t)dt = 204/25 m

77. Take t = 0 when deceleration begins, then a = −10 so v = −10t + C1, but v = 88 when t = 0
which gives C1 = 88 thus v = −10t + 88, t ≥ 0

(a) v = 45 mi/h = 66 ft/s, 66 = −10t + 88, t = 2.2 s

(b) v = 0 (the car is stopped) when t = 8.8 s

s =

�
v dt =

�
(−10t + 88)dt = −5t2 + 88t + C2, and taking s = 0 when t = 0, C2 = 0 so

s = −5t2 + 88t. At t = 8.8, s = 387.2. The car travels 387.2 ft before coming to a stop.

78. s(t) =
20

3
t3 − 50t2 + 50t + s0, s(0) = 0 gives s0 = 0, so s(t) =

20

3
t3 − 50t2 + 50t, a(t) = 40t − 100

150

–100

0

150

–100

0

15

–180

0 6

6 6

s (t) v(t) a (t)

79. From the free-fall model s = − 1
2gt2 + v0t + s0 the ball is caught when s0 = −1

2gt21 + v0t1 + s0 with
the positive root t1 = 2v0/g so the average speed of the ball while it is up in the air is average

speed =
1

t1

� t1

0

|v0 − gt| dt =
g

2v0

�� v0/g

0

(v0 − gt) gt +

� 2v0/g

v0/g

(gt − v0) dt

�
= v0/2.

79. From the free-fall model s = −1

2
gt2 + v0t + s0 the ball is caught when s0 = −1

2
gt21 + v0t1 + s0 with the positive

root t1 = 2v0/g so the average speed of the ball while it is up in the air is average speed =
1

t1

∫ t1

0

|v0 − gt| dt =

g

2v0

[∫ v0/g

0

(v0 − gt) gt+

∫ 2v0/g

v0/g

(gt− v0) dt

]
= v0/2.

80. v0 = 0 and g = 9.8, so v = −9.8t, s = −4.9t2 + s0, find s0. The rock strikes the ground when s = 0, t2 = s0/4.9.

At that moment the speed is 24, so |v| = 24 = 9.8

√
s0

4.9
, so s0 = 4.9

(
24

9.8

)2

=
576

19.6
≈ 29.39 m.

81. u = 2x+ 1,
1

2

∫ 3

1

u4du =
1

10
u5

]3

1

= 121/5, or
1

10
(2x+ 1)5

]1

0

= 121/5.
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82. u = 4− x,

∫ 4

9

(u− 4)u1/2du =

∫ 4

9

(u3/2 − 4u1/2)du =
2

5
u5/2 − 8

3
u3/2

]4

9

= −506/15, or

2

5
(4− x)5/2 − 8

3
(4− x)3/2

]0

−5

= −506/15.

83.
2

3
(3x+ 1)1/2

]1

0

= 2/3.

84. u = x2,

∫ π

0

1

2
sinu du = −1

2
cosu

]π

0

= 1.

85.
1

3π
sin3 πx

]1

0

= 0.

86. u = lnx, du = (1/x)dx;

∫ 2

1

1

u
du = lnu

]2

1

= ln 2.

87.

∫ 1

0

e−x/2dx = 2(1− 1/
√
e).

88. u = 3x/2, du = 3/2dx,
1

6

∫ √3

0

1

1 + u2
du =

1

6
tan−1 u

]√3

0

=
1

18
π.

89. (a) lim
x→+∞

[(
1 +

1

x

)x]2

=

[
lim

x→+∞

(
1 +

1

x

)x]2

= e2.

(b) y = 3x, lim
y→0

(
1 +

1

y

)y/3
= lim
y→0

[(
1 +

1

y

)y]1/3

= e1/3.

90. Differentiate: f(x) = 3e3x, so 2 +

∫ x

a

f(t)dt = 2 +

∫ x

a

3e3tdt = 2 + e3t

]x

a

= 2 + e3x − e3a = e3x provided e3a = 2,

a = (ln 2)/3.

Chapter 5 Making Connections

1. (a)

n∑

k=1

2x∗k∆xk =

n∑

k=1

(xk + xk−1)(xk − xk−1) =

n∑

k=1

(x2
k − x2

k−1) =

n∑

k=1

x2
k −

n−1∑

k=0

x2
k = b2 − a2.

(b) By Theorem 5.5.2, f is integrable on [a, b]. Using part (a) of Definition 5.5.1, in which we choose any partition
and use the midpoints x∗k = (xk + xk−1)/2, we see from part (a) of this exercise that the Riemann sum is equal to
x2
n − x2

0 = b2 − a2. Since the right side of this equation does not depend on partitions, the limit of the Riemann
sums as max(∆xk)→ 0 is equal to b2 − a2.

2. For 0 ≤ k ≤ n set xk = 4k2/n2 and let x∗k = xk. We have

n∑

k=1

f(x∗k)∆xk =

n∑

k=1

√
4
k2

n2
4

(
k2

n2
− (k − 1)2

n2

)
=

n∑

k=1

8

n3
(2k2 − k) =

16

n3

n(n+ 1)(2n+ 1)

6
− 8

n3

n(n+ 1)

2
=

4

3

4n2 + 3n− 1

n2
→ 16

3
as n→∞.

3. Use the partition 0 < 8(1)3/n3 < 8(2)3/n3 < . . . < 8(n − 1)3/n3 < 8 with x∗k as the right endpoint of the
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k-th interval, x∗k = 8k3/n3. Then
n∑

k=1

f(x∗k)∆xk =
n∑

k=1

3
√

8k3/n3

(
8k3

n3
− 8(k − 1)3

n3

)
=

n∑

k=1

16

n4
(k4 − k(k − 1)3) =

16

n4

3n4 + 2n3 − n2

4
→ 16

3

4
= 12 as n→∞.

4. (a)
n∑

k=1

g(x∗k)∆xk =
1

m

n∑

k=1

f(u∗k)∆uk which is
1

m
times a Riemann sum for f .

(b)

∫ 1

0

g(x) dx = lim
max ∆xk→0

n∑

k=1

g(x∗k)∆xk =
1

m
lim

max ∆xk→0

n∑

k=1

f(uk)∆uk =
1

m

∫ m

0

f(u) du.

(c) To avoid confusion let us denote the function g in Theorem 5.9.1 by the symbol γ, as g is already in
use. Then the transformation from [0, 1] to [0,m] is given by u = γ(x) = mx, and Theorem 5.9.1 says that∫ γ(b)

γ(a)

f(u) du =

∫ 8

0

f(u) du =

∫ 1

0

f(γ(x))γ′(x) dx =

∫ 8

0

f(mx)mdx.

5. (a)

n∑

k=1

g(x∗k)∆xk =
n∑

k=1

2x∗kf((x∗k)2)∆xk =
n∑

k=1

(xk + xk−1)f((x∗k)2)(xk − xk−1) =
n∑

k=1

f((x∗k)2)(x2
k − x2

k−1) =

n∑

k=1

f(u∗k)∆uk. The two Riemann sums are equal.

(b) In part (a) note that ∆uk = ∆x2
k = x2

k − x2
k−1 = (xk + xk−1)∆xk, and since 2 ≤ xk ≤ 3, 4∆xk ≤ ∆uk and

∆uk ≤ 6∆xk, so that max{uk} tends to zero iff max{xk} tends to zero.

∫ 3

2

g(x) dx = lim
max(∆xk)→0

n∑

k=1

g(x∗k)∆xk =

lim
max(∆uk)→0

n∑

k=1

f(u∗k)∆uk =

∫ 9

4

f(u) du.

(c) Since the symbol g is already in use, we shall use γ to denote the mapping u = γ(x) = x2 of Theorem 5.9.1.

Applying the Theorem,

∫ 9

4

f(u) du =

∫ 3

2

f(γ(x))γ′(x) dx =

∫ 3

2

f(x2)2x dx =

∫ 3

2

g(x) dx.
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Applications of the Definite Integral in
Geometry, Science, and Engineering

Exercise Set 6.1

1. A =

∫ 2

−1

(x2 + 1− x) dx = (x3/3 + x− x2/2)

]2

−1

= 9/2.

2. A =

∫ 4

0

(
√
x+ x/4) dx = (2x3/2/3 + x2/8)

]4

0

= 22/3.

3. A =

∫ 2

1

(y − 1/y2) dy = (y2/2 + 1/y)

]2

1

= 1.

4. A =

∫ 2

0

(2− y2 + y) dy = (2y − y3/3 + y2/2)

]2

0

= 10/3.

5. (a) A =

∫ 2

0

(2x− x2) dx = 4/3. (b) A =

∫ 4

0

(
√
y − y/2) dy = 4/3.

x

y

2

4

y=x 2

y=2x

(2,4)

6. Eliminate x to get y2 = 4(y + 4)/2, y2 − 2y − 8 = 0, (y − 4)(y + 2) = 0; y = −2, 4 with corresponding values of
x = 1, 4.

(a) A =

∫ 1

0

[2
√
x− (−2

√
x)] dx+

∫ 4

1

[2
√
x− (2x− 4)] dx =

∫ 1

0

4
√
x dx+

∫ 4

1

(2
√
x− 2x+ 4) dx = 8/3 + 19/3 = 9.

(b) A =

∫ 4

−2

[(y/2 + 2)− y2/4] dy = 9.

305
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(4, 4)

(1, –2)

x

y

y2 = 4x

y = 2x – 4

7. A =

∫ 1

1/4

(
√
x− x2) dx = 49/192.

1
4

(1, 1)

x

y

y = x2

y = √x

8. A =

∫ 2

0

[0− (x3 − 4x)] dx =

∫ 2

0

(4x− x3) dx = 4.

2
x

y

y = x3 – 4x

9. A =

∫ π/2

π/4

(0− cos 2x) dx = −
∫ π/2

π/4

cos 2x dx = 1/2.

3 6

–1

1

x

y

y = cos 2x

10. Equate sec2 x and 2 to get sec2 x = 2, secx = ±
√

2, x = ±π/4. A =

∫ π/4

−π/4
(2− sec2 x) dx = π − 2.

1

2

x

y

y = sec2 x

(#, 2) (3, 2)

11. A =

∫ 3π/4

π/4

sin y dy =
√

2.
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3

9

x

y

x = sin y

12. A =

∫ 2

−1

[(x+ 2)− x2] dx = 9/2.

(2, 4)

(–1, 1)
x

y

y = x2

x = y – 2

13. A =

∫ ln 2

0

(
e2x − ex

)
dx =

(
1

2
e2x − ex

)]ln 2

0

= 1/2.

2

4

x

y

ln 2

y = e2x

y = ex

14. A =

∫ e

1

dy

y
= ln y

]e
1

= 1.

1/e 1

1

e

x

y

15. A =

∫ 1

−1

(
2

1 + x2
− |x|

)
dx = 2

∫ 1

0

(
2

1 + x2
− x
)
dx =

[
4 tan−1 x− x2

]1

0

= π − 1.

–1 1

1

2

x

y
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16.
1√

1− x2
= 2, x = ±

√
3

2
, so A =

∫ √3/2

−
√

3/2

(
2− 1√

1− x2

)
dx =

[
2x− sin−1 x

]√3/2

−
√

3/2

= 2
√

3− 2π

3
.

0.5

1

1.5

2

x

y

2
3– 2

3

1 – x2
1y = 

y = 2

17. y = 2 + |x − 1| =

{
3− x, x ≤ 1

1 + x, x ≥ 1
, A =

∫ 1

−5

[(
−1

5
x+ 7

)
− (3− x)

]
dx +

∫ 5

1

[(
−1

5
x+ 7

)
− (1 + x)

]
dx =

∫ 1

−5

(
4

5
x+ 4

)
dx+

∫ 5

1

(
6− 6

5
x

)
dx = 72/5 + 48/5 = 24.

(–5, 8)

(5, 6)
y = 3 – x

y = 1 + x

y = –   x + 71
5

x

y

18. A =

∫ 2/5

0

(4x− x) dx+

∫ 1

2/5

(−x+ 2− x) dx =

∫ 2/5

0

3x dx+

∫ 1

2/5

(2− 2x) dx = 3/5.

(1, 1)

2
5

8
5( , )

x

y

y = 4x

y = x

y = –x + 2

19. A =

∫ 1

0

(x3 − 4x2 + 3x) dx+

∫ 3

1

[−(x3 − 4x2 + 3x)] dx = 5/12 + 32/12 = 37/12.

4

–8

–1 4

20. Equate y = x3 − 2x2 and y = 2x2 − 3x to get x3 − 4x2 + 3x = 0, x(x − 1)(x − 3) = 0; x = 0, 1, 3 with

corresponding values of y = 0,−1, 9. A =

∫ 1

0

[(x3 − 2x2) − (2x2 − 3x)] dx +

∫ 3

1

[(2x3 − 3x) − (x3 − 2x2)] dx =
∫ 1

0

(x3 − 4x2 + 3x) dx+

∫ 3

1

(−x3 + 4x2 − 3x) dx =
5

12
+

8

3
=

37

12
.
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9

–2

–1 3

21. From the symmetry of the region A = 2

∫ 5π/4

π/4

(sinx− cosx) dx = 4
√

2.

1

–1

0 o

22. The region is symmetric about the origin, so A = 2

∫ 2

0

|x3 − 4x| dx = 8.

3.1

–3.1

–3 3

23. A =

∫ 0

−1

(y3 − y) dy +

∫ 1

0

−(y3 − y) dy = 1/2.

1

–1

–1 1

24. A =

∫ 1

0

[
y3 − 4y2 + 3y − (y2 − y)

]
dy +

∫ 4

1

[
y2 − y − (y3 − 4y2 + 3y)

]
dy = 7/12 + 45/4 = 71/6.

4.1

0
–2.2 12.1

25. The curves meet when x = 0,
√

ln 2, so A =

∫ √ln 2

0

(2x− xex2

) dx =

(
x2 − 1

2
ex

2

)]√ln 2

0

= ln 2− 1

2
.
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0.5 1

0.5

1

1.5

2

2.5

x

y

26. The curves meet for x = e−2
√

2/3, e2
√

2/3, thus

A =

∫ e2
√

2/3

e−2
√

2/3

(
3

x
− 1

x
√

1− (lnx)2

)
dx =

(
3 lnx− sin−1(lnx)

) ]e2
√

2/3

e−2
√

2/3

= 4
√

2− 2 sin−1

(
2
√

2

3

)
.

1 2 3

5

10

15

20

x

y

27. True. If f(x) − g(x) = c > 0 then f(x) > g(x) so Formula (1) implies that A =

∫ b

a

[f(x) − g(x)] dx =

∫ b

a

c dx =

c(b− a). If g(x)− f(x) = c > 0 then g(x) > f(x) so A =

∫ b

a

[g(x)− f(x)] dx =

∫ b

a

c dx = c(b− a).

28. False. Let f(x) = 2x, g(x) = 0, a = −2, and b = 1. Then

∫ b

a

[f(x)− g(x)] dx =

∫ 1

−2

2x dx = x2

]1

−2

= −3, but the

area of A is

∫ 0

−2

(−2x) dx+

∫ 1

0

2x dx = −x2

]0

−2

+ x2

]1

0

= 4 + 1 = 5.

x

y

1

-4

2

-2

29. True. Since f and g are distinct, there is some point c in [a, b] for which f(c) 6= g(c). Suppose f(c) > g(c). (The
case f(c) < g(c) is similar.) Let p = f(c)−g(c) > 0. Since f−g is continuous, there is an interval [d, e] containing c

such that f(x)−g(x) > p/2 for all x in [d, e]. So

∫ e

d

[f(x)−g(x)] dx ≥ p

2
(e−d) > 0. Hence 0 =

∫ b

a

[f(x)−g(x)] dx =
∫ d

a

[f(x)− g(x)] dx+

∫ e

d

[f(x)− g(x)] dx+

∫ b

e

[f(x)− g(x)] dx, >

∫ d

a

[f(x)− g(x)] dx+

∫ e

b

[f(x)− g(x)] dx, so at

least one of

∫ d

a

[f(x)− g(x)] dx and

∫ e

b

[f(x)− g(x)] dx is negative. Therefore f(t)− g(t) < 0 for some point t in

one of the intervals [a, d] and [b, e]. So the graph of f is above the graph of g at x = c and below it at x = t; by
the Intermediate Value Theorem, the curves cross somewhere between c and t.
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(Note: It is not necessarily true that the curves cross at a point. For example, let f(x) =





x if x < 0;
0 if 0 ≤ x ≤ 1;

x− 1 if x > 1,

and g(x) = 0. Then

∫ 2

−1

[f(x)− g(x)] dx = 0, and the curves cross between -1 and 2, but there’s no single point at

which they cross; they coincide for x in [0, 1].)

30. True. Let h(x) =

{
f(x)− g(x) if f(x) ≥ g(x);

0 if f(x) < g(x),
and k(x) =

{
0 if f(x) ≥ g(x);

g(x)− f(x) if f(x) < g(x).

Let B =

∫ b

a

h(x) dx and C =

∫ b

a

k(x) dx. If the curves cross, then f(x) > g(x) on some interval and f(x) < g(x)

on some other interval, so B > 0 and C > 0. Note that h(x) + k(x) = |f(x) − g(x)| and h(x) − k(x) =

f(x) − g(x), so A =

∫ b

a

|f(x) − g(x)| dx =

∫ b

a

h(x) dx +

∫ b

a

k(x) dx = B + C. But A =

∣∣∣∣∣

∫ b

a

[f(x)− g(x)] dx

∣∣∣∣∣ =

∣∣∣∣∣

∫ b

a

[h(x)− k(x)] dx

∣∣∣∣∣ =

∣∣∣∣∣

∫ b

a

h(x) dx−
∫ b

a

k(x) dx

∣∣∣∣∣ = |B − C| < max(B,C) < B + C. Our assumption that the

graphs cross leads to a contradiction, so the graphs don’t cross.

31. The area is given by

∫ k

0

(1/
√

1− x2 − x) dx = sin−1 k − k2/2 = 1; solve for k to get k ≈ 0.997301.

32. The curves intersect at x = a = 0 and x = b = 0.838422 so the area is

∫ b

a

(sin 2x− sin−1 x) dx ≈ 0.174192.

33. Solve 3 − 2x = x6 + 2x5 − 3x4 + x2 to find the real roots x = −3, 1; from a plot it is seen that the line is above

the polynomial when −3 < x < 1, so A =

∫ 1

−3

(3− 2x− (x6 + 2x5 − 3x4 + x2)) dx = 9152/105.

34. Solve x5 − 2x3 − 3x = x3 to find the roots x = 0,±1

2

√
6 + 2

√
21. Thus, by symmetry,

A = 2

∫ √(6+2
√

21)/2

0

(x3 − (x5 − 2x3 − 3x)) dx =
27

4
+

7

4

√
21.

35.

∫ k

0

2
√
y dy =

∫ 9

k

2
√
y dy;

∫ k

0

y1/2 dy =

∫ 9

k

y1/2 dy,
2

3
k3/2 =

2

3
(27− k3/2), k3/2 = 27/2, k = (27/2)2/3 = 9/

3
√

4.

y = 9

y = k

x

y

36.

∫ k

0

x2 dx =

∫ 2

k

x2 dx,
1

3
k3 =

1

3
(8− k3), k3 = 4, k =

3
√

4.
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2
x

y

x = √y

x = k

37. (a) A =

∫ 2

0

(2x− x2) dx = 4/3.

(b) y = mx intersects y = 2x − x2 where mx = 2x − x2, x2 + (m − 2)x = 0, x(x + m − 2) = 0 so x = 0 or

x = 2−m. The area below the curve and above the line is

∫ 2−m

0

(2x− x2 −mx) dx =

∫ 2−m

0

[(2−m)x− x2] dx =

[
1

2
(2−m)x2 − 1

3
x3

]2−m

0

=
1

6
(2−m)3 so (2−m)3/6 = (1/2)(4/3) = 2/3, (2−m)3 = 4,m = 2− 3

√
4.

38. The line through (0, 0) and (5π/6, 1/2) is y =
3

5π
x; A =

∫ 5π/6

0

(
sinx− 3

5π
x

)
dx =

√
3

2
− 5

24
π + 1.

c

1 1
2

c5
6(     ),

x

y
y = sin x

39. The curves intersect at x = 0 and, by Newton’s Method, at x ≈ 2.595739080 = b, so A ≈
∫ b

0

(sinx − 0.2x) dx =

−
[
cosx+ 0.1x2

]b

0

≈ 1.180898334.

40. By Newton’s Method, the points of intersection are at x ≈ ±0.824132312, so with b = 0.824132312 we have

A ≈ 2

∫ b

0

(cosx− x2) dx = 2(sinx− x3/3)
]b
0
≈ 1.094753609.

41. By Newton’s Method the points of intersection are x = x1 ≈ 0.4814008713 and x = x2 ≈ 2.363938870, and

A ≈
∫ x2

x1

(
lnx

x
− (x− 2)

)
dx ≈ 1.189708441.

42. By Newton’s Method the points of intersection are x = ±x1 where x1 ≈ 0.6492556537, thus

A ≈ 2

∫ x1

0

(
2

1 + x2
− 3 + 2 cosx

)
dx ≈ 0.826247888.

43. The x-coordinates of the points of intersection are a ≈ −0.423028 and b ≈ 1.725171; the area is

A =

∫ b

a

(2 sinx− x2 + 1) dx ≈ 2.542696.

44. Let (a, k), where π/2 < a < π, be the coordinates of the point of intersection of y = k with y = sinx. Thus

k = sin a and if the shaded areas are equal,

∫ a

0

(k− sinx) dx =

∫ a

0

(sin a− sinx) dx = a sin a+ cos a− 1 = 0. Solve

for a to get a ≈ 2.331122, so k = sin a ≈ 0.724611.

45.

∫ 60

0

[v2(t) − v1(t)] dt = s2(60) − s2(0) − [s1(60) − s1(0)], but they are even at time t = 60, so s2(60) = s1(60).

Consequently the integral gives the difference s1(0)− s2(0) of their starting points in meters.
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46. Since v1(0) = v2(0) = 0, A =

∫ T

0

[a2(t) − a1(t)] dt = v2(T ) − v1(T ) is the difference in the velocities of the two

cars at time T .

47. The area in question is the increase in population from 1960 to 2010.

48. The area in question is A =

∫ 8

0

[a′(t)− e′(t)] dt = a(8)− e(8)− (a(0)− e(0)), which is the difference between the

amount of medication present in the bloodstream at time t = 8 and t = 0.

49. Solve x1/2 + y1/2 = a1/2 for y to get y = (a1/2−x1/2)2 = a− 2a1/2x1/2 +x, A =

∫ a

0

(a− 2a1/2x1/2 +x) dx = a2/6.

a

a
x

y

50. Solve for y to get y = (b/a)
√
a2 − x2 for the upper half of the ellipse; make use of symmetry to get A =

4

∫ a

0

b

a

√
a2 − x2 dx =

4b

a

∫ a

0

√
a2 − x2 dx =

4b

a
· 1

4
πa2 = πab.

51. First find all solutions of the equation f(x) = g(x) in the interval [a, b]; call them c1, · · · , cn. Let c0 = a and
cn+1 = b. For i = 0, 1, · · · , n, f(x) − g(x) has constant sign on [ci, ci+1], so the area bounded by x = ci and

x = ci+1 is either

∫ ci+1

ci

[f(x) − g(x)] dx or

∫ ci+1

ci

[g(x) − f(x)] dx. Compute each of these n + 1 areas and add

them to get the area bounded by x = a and x = b.

52. Let f(x) be the length of the intersection of R with the vertical line with x-coordinate x. Divide the interval [a, b]
into n subintervals, and use those to divide R into n strips. If the width of the k’th strip is ∆xk, approximate
the area of the strip by f(x∗k)∆xk, where x∗k is a point in the k’th subinterval. Add the approximate areas to

approximate the entire area of R by the Riemann sum

n∑

k=1

f(x∗k)∆xk. Take the limit as n→ +∞ and the widths

of the subintervals all approach zero, to obtain the area of R,

∫ b

a

f(x) dx. Since f(x) is also the length of the

intersection of S with the vertical line with x-coordinate x, we similarly find that the area of S equals the same
integral, so R and S have the same area.

Exercise Set 6.2

1. V = π

∫ 3

−1

(3− x) dx = 8π.

2. V = π

∫ 1

0

[(2− x2)2 − x2] dx = π

∫ 1

0

(4− 5x2 + x4) dx = 38π/15.

3. V = π

∫ 2

0

1

4
(3− y)2 dy = 13π/6.

4. V = π

∫ 2

1/2

(4− 1/y2) dy = 9π/2.
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5. V = π

∫ π/2

π/4

cosx dx = (1−
√

2/2)π.

3 6

–1

1

x

y
y = √cos x

6. V = π

∫ 1

0

[(x2)2 − (x3)2] dx = π

∫ 1

0

(x4 − x6) dx = 2π/35.

1

1 (1, 1)

y = x2

y = x3

x

y

7. V = π

∫ 3

−1

(1 + y) dy = 8π.

3

2
x

y

x = √1 + y

8. V = π

∫ 3

0

[22 − (y + 1)] dy = π

∫ 3

0

(3− y) dy = 9π/2.

3 (2, 3)

x

y y = x2 – 1
x = √y + 1

9. V =

∫ 2

0

x4 dx = 32/5.

2
x

y

y = x2
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10. V =

∫ π/3

π/4

sec2 x dx =
√

3− 1.

3 4

-2

-1

1

2

x

y

y = sec x

11. V = π

∫ 4

−4

[(25− x2)− 9] dx = 2π

∫ 4

0

(16− x2) dx = 256π/3.

5

x

y
y = √25 – x2 

y = 3

12. V = π

∫ 3

−3

(9− x2)2 dx = π

∫ 3

−3

(81− 18x2 + x4) dx = 1296π/5.

–3 3

9

x

y

y = 9 – x2

13. V = π

∫ 4

0

[(4x)2 − (x2)2] dx = π

∫ 4

0

(16x2 − x4) dx = 2048π/15.

4

16 (4, 16)

x

y

y = x2
y = 4x

14. V = π

∫ π/4

0

(cos2 x− sin2 x) dx = π

∫ π/4

0

cos 2x dx = π/2.
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3

–1

1

x

y
y = cos x

y = sin x

15. V = π

∫ ln 3

0

e2x dx =
π

2
e2x
]ln 3

0
= 4π.

16. V = π

∫ 1

0

e−4x dx =
π

4
(1− e−4).

1

–1

1

x

y

17. V =

∫ 2

−2

π
1

4 + x2
dx =

π

2
tan−1(x/2)

]2

−2

= π2/4.

18. V =

∫ 1

0

π
e6x

1 + e6x
dx =

π

6
ln(1 + e6x)

]1

0

=
π

6
(ln(1 + e6)− ln 2).

19. V =

∫ 1

0

(
y1/3

)2

dy =
3

5
.

1
1 x
y

20. V =

∫ 1

−1

(1− y2)2 dy = 2

∫ 1

0

(1− y2)2 dy = 2

(
1− 2

3
+

1

5

)
=

16

15
.

1
1

-1

x
y
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21. V = π

∫ 3π/4

π/4

csc2 y dy = 2π.

–2 –1 1 2

3

6

9

x

y

x = csc y

22. V = π

∫ 1

0

(y − y4) dy = 3π/10.

–1 1

–1

1 (1, 1)

x

y

x = √y

x = y2

23. V = π

∫ 2

−1

[(y + 2)2 − y4] dy = 72π/5.

(4, 2)

x

y

x = y2

x = y + 2

(1, –1)

24. V = π

∫ 1

−1

[
(2 + y2)2 − (1− y2)2

]
dy = π

∫ 1

−1

(3 + 6y2) dy = 10π.

1 2

–1

1

x

y x = 2 + y2

x = 1 – y2

25. V =

∫ 1

0

πe2y dy =
π

2

(
e2 − 1

)
.

26. V =

∫ 2

0

π

1 + y2
dy = π tan−1 2.

27. False. For example, consider the pyramid in Example 1, with the roles of the x- and y-axes interchanged.

28. False. If the centers of the disks or washers don’t all lie on a line parallel to the x-axis, then S isn’t a solid of
revolution.
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29. False. For example, let S be the solid generated by rotating the region under y = ex over the interval [0, 1]. Then
A(x) = π(ex)2.

30. True. By Definition 5.8.1, the average value of A(x) is
1

b− a

∫ b

a

A(x) dx =
V

b− a .

31. V = π

∫ a

−a

b2

a2
(a2 − x2) dx = 4πab2/3.

–a a

b

x

y

b
ay =    √a2 – x2

32. V = π

∫ 2

b

1

x2
dx = π(1/b− 1/2); π(1/b− 1/2) = 3, b = 2π/(π + 6).

33. V = π

∫ 0

−1

(x+ 1) dx+ π

∫ 1

0

[(x+ 1)− 2x] dx = π/2 + π/2 = π.

–1 1

1

x

y

y = √2x 

(1, √2) 

y = √x + 1

34. V = π

∫ 4

0

x dx+ π

∫ 6

4

(6− x)2 dx = 8π + 8π/3 = 32π/3.

4 6

x

y

y = √x y = 6 – x

35. Partition the interval [a, b] with a = x0 < x1 < x2 < . . . < xn−1 < xn = b. Let x∗k be an arbitrary point of
[xk−1, xk]. The disk in question is obtained by revolving about the line y = k the rectangle for which xk−1 < x < xk,
and y lies between y = k and y = f(x); the volume of this disk is ∆Vk = π(f(x∗k)− k)2∆xk, and the total volume

is given by V = π

∫ b

a

(f(x)− k)2 dx.

36. Assume for c < y < d that k ≤ v(y) ≤ w(y) (A similar proof holds for k ≥ v(y) ≥ w(y)). Partition the interval
[c, d] with c = y0 < y1 < y2 < . . . < yn−1 < yn = d. Let y∗k be an arbitrary point of [yk−1, yk]. The washer in
question is the region obtained by revolving the strip v(y∗k) < x < w(y∗k), yk−1 < y < yk about the line x = k.
The volume of this washer is ∆V = π[(v(y∗k) − k)2 − (w(y∗k) − k)2]∆yk, and the volume of the solid obtained by

rotating R is V = π

∫ d

c

[(v(y)− k)2 − (w(y)− k)2] dy.

37. (a) Intuitively, it seems that a line segment which is revolved about a line which is perpendicular to the line
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segment will generate a larger area, the farther it is from the line. This is because the average point on the line
segment will be revolved through a circle with a greater radius, and thus sweeps out a larger circle. Consider the
line segment which connects a point (x, y) on the curve y =

√
3− x to the point (x, 0) beneath it. If this line

segment is revolved around the x-axis we generate an area πy2.

If on the other hand the segment is revolved around the line y = 2 then the area of the resulting (infinitely thin)
washer is π[22 − (2− y)2]. So the question can be reduced to asking whether y2 ≥ [22 − (2− y)2], y2 ≥ 4y− y2, or
y ≥ 2. In the present case the curve y =

√
3− x always satisfies y ≤ 2, so V2 has the larger volume.

(b) The volume of the solid generated by revolving the area around the x-axis is V1 = π

∫ 3

−1

(3− x) dx = 8π, and

the volume generated by revolving the area around the line y = 2 is V2 = π

∫ 3

−1

[22 − (2−
√

3− x)2] dx =
40

3
π.

38. (a) In general, points in the region R are farther from the y-axis than they are from the line x = 2.5, so by the
reasoning in Exercise 33(a) the former should generate a larger volume than the latter, i.e. the volume mentioned
in Exercise 4 will be greater than that gotten by revolving about the line x = 2.5.

(b) The original volume V1 of Exercise 4 is given by V1 = π

∫ 2

1/2

(4 − 1/y2) dy = 9π/2, and the other volume

V2 = π

∫ 2

1/2

[(
1

y
− 2.5

)2

− (2− 2.5)2

]
dy =

(
21

2
− 10 ln 2

)
π ≈ 3.568528194π, and thus V1 is the larger volume.

39. V = π

∫ 3

0

(9− y2)2 dy = π

∫ 3

0

(81− 18y2 + y4) dy = 648π/5.

9

3

x

y
x = y2

40. V = π

∫ 9

0

[32 − (3−√x)2] dx = π

∫ 9

0

(6
√
x− x) dx = 135π/2.

9
x

y

y = √x
y = 3

41. V = π

∫ 1

0

[(
√
x+ 1)2 − (x+ 1)2] dx = π

∫ 1

0

(2
√
x− x− x2) dx = π/2.

1

1
x

y

x = y2

x = y

y = –1

42. V = π

∫ 1

0

[(y + 1)2 − (y2 + 1)2] dy = π

∫ 1

0

(2y − y2 − y4) dy = 7π/15.
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1

1

x

y

x = y2

x = y

x = –1

43. The region is given by the inequalities 0 ≤ y ≤ 1,
√
y ≤ x ≤ 3

√
y. For each y in the interval [0, 1] the cross-section

of the solid perpendicular to the axis x = 1 is a washer with outer radius 1 − √y and inner radius 1 − 3
√
y.

The area of this washer is A(y) = π[(1 − √y)2 − (1 − 3
√
y)2] = π(−2y1/2 + y + 2y1/3 − y2/3), so the volume is

V =

∫ 1

0

A(y) dy = π

∫ 1

0

(−2y1/2 + y + 2y1/3 − y2/3) dy = π

[
−4

3
y3/2 +

1

2
y2 +

3

2
y4/3 − 3

5
y5/3

]1

0

=
π

15
.

1

x

y

y

y=x 2

y=x 3

rotation axis
x =1

44. The region is given by the inequalities 0 ≤ x ≤ 1, x3 ≤ y ≤ x2. For each x in the interval [0, 1] the cross-
section of the solid perpendicular to the axis y = −1 is a washer with outer radius 1 + x2 and inner radius
1 + x3. The area of this washer is A(x) = π

[
(1 + x2)2 − (1 + x3)2

]
= π(2x2 + x4 − 2x3 − x6), so the volume is

V =

∫ 1

0

A(x) dx = π

∫ 1

0

(2x2 + x4 − 2x3 − x6) dx = π

[
2

3
x3 +

1

5
x5 − 1

2
x4 − 1

7
x7

]1

0

=
47π

210
.

1

1

x

y

x

y=x 2

y=x 3

rotation axis  y=!1

45. A(x) = π(x2/4)2 = πx4/16, V =

∫ 20

0

(πx4/16) dx = 40, 000π ft3.
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46. V = π

∫ 1

0

(x− x4) dx = 3π/10.

47. V =

∫ 1

0

(x− x2)2 dx =

∫ 1

0

(x2 − 2x3 + x4) dx = 1/30.

Square

(1, 1)

1

y = x

y = x2

x

y

48. A(x) =
1

2
π

(
1

2

√
x

)2
=

1

8
πx, V =

∫ 4

0

1

8
πx dx = π.

4
x

y

y = √x

49. On the upper half of the circle, y =
√

1− x2, so:

(a) A(x) is the area of a semicircle of radius y, so A(x) = πy2/2 = π(1 − x2)/2; V =
π

2

∫ 1

−1

(1 − x2) dx =

π

∫ 1

0

(1− x2) dx = 2π/3.

1

–1

y = √1 – x2 x

y

y

(b) A(x) is the area of a square of side 2y, so A(x) = 4y2 = 4(1− x2); V = 4

∫ 1

−1

(1− x2) dx = 8

∫ 1

0

(1− x2) dx =

16/3.

1

–1

y = √1 – x2 x

y

2y

(c) A(x) is the area of an equilateral triangle with sides 2y, so A(x) =

√
3

4
(2y)2 =

√
3y2 =

√
3(1 − x2);

V =

∫ 1

−1

√
3(1− x2) dx = 2

√
3

∫ 1

0

(1− x2) dx = 4
√

3/3.

x

y

1

–1

y = √1 – x2 2y

2y2y
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50. The base of the tent is a hexagon of side r. An equation of the circle of radius r that lies in a vertical x-y plane and
passes through two opposite vertices of the base hexagon is x2 + y2 = r2. A horizontal, hexagonal cross section at

height y above the base has area A(y) =
3
√

3

2
x2 =

3
√

3

2
(r2− y2), hence the volume is V =

∫ r

0

3
√

3

2
(r2− y2) dy =

√
3r3.

51. The two curves cross at x = b ≈ 1.403288534, so V = π

∫ b

0

((2x/π)2− sin16 x) dx+π

∫ π/2

b

(sin16 x− (2x/π)2) dx ≈
0.710172176.

52. Note that π2 sinx cos3 x = 4x2 for x = π/4. From the graph it is apparent that this is the first positive solution,

thus the curves don’t cross on (0, π/4) and V = π

∫ π/4

0

[(π2 sinx cos3 x)2 − (4x2)2] dx =
1

48
π5 +

17

2560
π6.

53. V = π

∫ e

1

(1− (ln y)2) dy = π.

54. V =

∫ tan 1

0

π[x2 − x2 tan−1 x] dx =
π

6
[tan2 1− ln(1 + tan2 1)].

55. (a) V = π

∫ r

r−h
(r2 − y2) dy = π(rh2 − h3/3) =

1

3
πh2(3r − h).

(b) By the Pythagorean Theorem, r2 = (r − h)2 + ρ2, 2hr = h2 + ρ2; from part (a), V =
πh

3
(3hr − h2) =

πh

3

(
3

2
(h2 + ρ2)− h2)

)
=

1

6
πh(3ρ2 + h2).

r

h

r x

y

x2 + y2 = r2

56. First, we find the volume generated by revolving the shaded region about the y-axis: V = π

∫ −10+h

−10

(100−y2) dy =

π

3
h2(30−h). Then we find dh/dt when h = 5 given that dV/dt = 1/2: V =

π

3
(30h2−h3),

dV

dt
=
π

3
(60h−3h2)

dh

dt
,

1

2
=
π

3
(300− 75)

dh

dt
,
dh

dt
= 1/(150π) ft/min.

10h – 10

–10

h

x

y

x = √100 – y2

57. (a) The bulb is approximately a sphere of radius 1.25 cm attached to a cylinder of radius 0.625 cm and length

2.5 cm, so its volume is roughly
4

3
π(1.25)3 + π(0.625)2 · 2.5 ≈ 11.25 cm. (Other answers are possible, depending

on how we approximate the light bulb using familiar shapes.)

(b) ∆x =
5

10
= 0.5; {y0, y1, · · · , y10} = {0, 2.00, 2.45, 2.45, 2.00, 1.46, 1.26, 1.25, 1.25, 1.25, 1.25};
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left = π
9∑

i=0

(yi
2

)2

∆x ≈ 11.157; right = π
10∑

i=1

(yi
2

)2

∆x ≈ 11.771; V ≈ average = 11.464 cm3.

58. If x = r/2, then from y2 = r2− x2 we get y = ±
√

3r/2. So the hole consists of a cylinder of radius r/2 and length
√

3r and two spherical caps of radius r/2 and height (1−
√

3/2)r. The cylinder has volume π
(r

2

)2√
3r =

π
√

3

4
r3.

From Exercise 55(a), each cap has volume
1

3
π

[(
1−
√

3

2

)
r

]2(
3r −

(
1−
√

3

2

)
r

)
=

π

24
(16 − 9

√
3)r3. So the

volume of the hole is
π
√

3

4
r3+2

π

24
(16−9

√
3)r3 =

π

6
(8−3

√
3)r3 and the volume remaining is

4

3
πr3−π

6
(8−3

√
3)r3 =

π
√

3

2
r3. To obtain this by integrating, note that, for −

√
3 ≤ y ≤

√
3, the cross-section with y-coordinate y has

area A(y) = π[(r2−y2)− r2/4] = π(3r2/4−y2), thus V = π

∫ √3r/2

−
√

3r/2

(3r2/4−y2) dy = 2π

∫ √3r/2

0

(3r2/4−y2) dy =

π
√

3

2
r3.

r
2

x

y

x = !r2 – y2 

!3r
2

!3r
2–

59. (a)

h

–4

x

y

0 ≤ h < 2

h – 4

(b)

–4

–2
h

2 ≤  h ≤  4

h – 4
x

y

If the cherry is partially submerged then 0 ≤ h < 2 as shown in Figure (a); if it is totally submerged then
2 ≤ h ≤ 4 as shown in Figure (b). The radius of the glass is 4 cm and that of the cherry is 1 cm so points on
the sections shown in the figures satisfy the equations x2 + y2 = 16 and x2 + (y + 3)2 = 1. We will find the
volumes of the solids that are generated when the shaded regions are revolved about the y-axis. For 0 ≤ h < 2,

V = π

∫ h−4

−4

[(16 − y2) − (1 − (y + 3)2)] dy = 6π

∫ h−4

−4

(y + 4) dy = 3πh2; for 2 ≤ h ≤ 4, V = π

∫ −2

−4

[(16 − y2) −

(1− (y + 3)2)] dy + π

∫ h−4

−2

(16− y2) dy = 6π

∫ −2

−4

(y + 4) dy + π

∫ h−4

−2

(16− y2) dy = 12π +
1

3
π(12h2 − h3 − 40) =

1

3
π(12h2 − h3 − 4), so V =





3πh2 if 0 ≤ h < 2

1

3
π(12h2 − h3 − 4) if 2 ≤ h ≤ 4

.

60. x = h ±
√
r2 − y2, V = π

∫ r

−r

[
(h+

√
r2 − y2)2 − (h−

√
r2 − y2)2

]
dy = 4πh

∫ r

−r

√
r2 − y2 dy = 4πh

(
1

2
πr2

)
=

2π2r2h.
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x

y

(x – h2) + y2 = r2

61. tan θ = h/x so h = x tan θ, A(y) =
1

2
hx =

1

2
x2 tan θ =

1

2
(r2 − y2) tan θ, because x2 = r2 − y2, and this implies

that V =
1

2
tan θ

∫ r

−r
(r2 − y2) dy = tan θ

∫ r

0

(r2 − y2) dy =
2

3
r3 tan θ.

x

h

u

62. A(x) = (x tan θ)(2
√
r2 − x2) = 2(tan θ)x

√
r2 − x2, V = 2 tan θ

∫ r

0

x
√
r2 − x2 dx =

2

3
r3 tan θ.

y
x

√r2 – x2 

x tan u

63. Each cross section perpendicular to the y-axis is a square so A(y) = x2 = r2 − y2,
1

8
V =

∫ r

0

(r2 − y2) dy, so

V = 8(2r3/3) = 16r3/3.

r

x = √r2 – y2 

x

y

64. The regular cylinder of radius r and height h has the same circular cross sections as do those of the oblique
cylinder, so by Cavalieri’s Principle, they have the same volume: πr2h.

65. Position an x-axis perpendicular to the bases of the solids. Let a be the smallest x-coordinate of any point in either
solid, and let b be the largest. Let A(x) be the common area of the cross-sections of the solids at x-coordinate x.

By equation (3), each solid has volume V =

∫ b

a

A(x) dx, so they are equal.

66. Equation (4) is obtained from equation (3) simply by interchanging the x- and y-axes. Equations (5) and (6) are
special cases of equation (3) using particular formulas for A(x). Similarly, equations (7) and (8) are special case
of equation (4), so they also follow from (3) by interchanging the axes.

Exercise Set 6.3

1. V =

∫ 2

1

2πx(x2) dx = 2π

∫ 2

1

x3 dx = 15π/2.

2. V =

∫ √2

0

2πx(
√

4− x2 − x) dx = 2π

∫ √2

0

(x
√

4− x2 − x2) dx =
8π

3
(2−

√
2).
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3. V =

∫ 1

0

2πy(2y − 2y2) dy = 4π

∫ 1

0

(y2 − y3) dy = π/3.

4. V =

∫ 2

0

2πy[y − (y2 − 2)] dy = 2π

∫ 2

0

(y2 − y3 + 2y) dy = 16π/3.

5. V =

∫ 1

0

2π(x)(x3) dx = 2π

∫ 1

0

x4 dx = 2π/5.

–1 1

–1

1

x

y

y = x3

6. V =

∫ 9

4

2πx(
√
x) dx = 2π

∫ 9

4

x3/2 dx = 844π/5.

–9 –4 4 9

1

2

3

x

y

y = √x

7. V =

∫ 3

1

2πx(1/x) dx = 2π

∫ 3

1

dx = 4π.

–3 –1 1 3

y = x
1

x

y

8. V =

∫ √π/2

0

2πx cos(x2) dx = π/
√

2.

√p
2

x

y

y = cos (x2)

9. V =

∫ 2

1

2πx[(2x− 1)− (−2x+ 3)] dx = 8π

∫ 2

1

(x2 − x) dx = 20π/3.

(2, 3)

(2, –1)

(1, 1)

x

y
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10. V =

∫ 2

0

2πx(2x− x2) dx = 2π

∫ 2

0

(2x2 − x3) dx =
8

3
π.

2

x

y
y = 2x – x2

11. V = 2π

∫ 1

0

x

x2 + 1
dx = π ln(x2 + 1)

]1
0

= π ln 2.

–1 1

1

x

y

y = 1
x2 + 1

12. V =

∫ √3

1

2πxex
2

dx = πex
2
]√3

1
= π(e3 − e).

-√3 -1 1 √3

10

20

x

y

y = ex 2

13. V =

∫ 1

0

2πy3 dy = π/2.

1

x

y

x = y2

14. V =

∫ 3

2

2πy(2y) dy = 4π

∫ 3

2

y2 dy = 76π/3.

2
3

x

y

x = 2y

15. V =

∫ 1

0

2πy(1−√y) dy = 2π

∫ 1

0

(y − y3/2) dy = π/5.
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1
x

y

x = !y

16. V =

∫ 4

1

2πy(5− y − 4/y) dy = 2π

∫ 4

1

(5y − y2 − 4) dy = 9π.

(1, 4)

(4, 1)
x

y

x = 5 – y

x = 4/y

17. True. The surface area of the cylinder is 2π · [average radius] · [height], so by equation (1) the volume equals the
thickness times the surface area.

18. False. In the method of cylindrical shells we do not use cross-sections of the solid.

19. True. In 6.3.2 we integrate over an interval on the x-axis, which is perpendicular to the y-axis, which is the axis
of revolution.

20. True. If f(x) = c for all x, then the Riemann sum equals
n∑

k=1

2πx∗kf(x∗k)∆xk =
n∑

k=1

2π
xk + xk−1

2
c (xk − xk−1) =

πc
n∑

k=1

(x2
k − x2

k−1) = πc (x2
n − x2

0). The volume equals

∫ b

a

2πxf(x) dx =

∫ b

a

2πxc dx = πcx2

]b

a

= πc (b2 − a2).

Hence each Riemann sum equals the volume.

21. V = 2π

∫ 2

1

xex dx = 2π(x− 1)ex
]2

1

= 2πe2.

22. V = 2π

∫ π/2

0

x cosx dx = π2 − 2π.

23. The volume is given by 2π

∫ k

0

x sinx dx = 2π(sin k − k cos k) = 8; solve for k to get k ≈ 1.736796.

24. (a)

∫ b

a

2πx[f(x)− g(x)] dx (b)

∫ d

c

2πy[f(y)− g(y)] dy

25. (a) V =

∫ 1

0

2πx(x3 − 3x2 + 2x) dx = 7π/30.

(b) Much easier; the method of slicing would require that x be expressed in terms of y.

–1 1

x

y

y = x3 – 3x2 + 2x
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26. Let a = x0 < x1 < x2 < . . . < xn−1 < xn = b be a partition of [a, b]. Let x∗k be the midpoint of [xk−1, xk]. Revolve
the strip xk−1 < x < xk, 0 < y < f(x∗k) about the line x = k. The result is a cylindrical shell, a large coin with
a very large hole through the center. The volume of the shell is ∆Vk = 2π(x − k)f(x∗k)∆xk, just as the volume
of a ring of average radius r, height y and thickness h is 2πryh. Summing these volumes of cylindrical shells and

taking the limit as max∆xk goes to zero, we obtain V = 2π

∫ b

a

(x− k)f(x) dx.

27. (a) For x in [0,1], the cross-section with x-coordinate x has length x, and its distance from the axis of revolution

is 1− x, so the volume is

∫ 1

0

2π(1− x)x dx.

(b) For y in [0,1], the cross-section with y-coordinate y has length 1−y, and its distance from the axis of revolution

is 1 + y, so the volume is

∫ 1

0

2π(1 + y)(1− y) dy.

28. (a) For x in [0,1], the cross-section with x-coordinate x has length
√

1− x2, and its distance from the axis of

revolution is 1− x, so the volume is

∫ 1

0

2π(1− x)
√

1− x2 dx.

(b) For y in [0,1], the cross-section with y-coordinate y has length
√

1− y2, and its distance from the axis of

revolution is 1 + y, so the volume is

∫ 1

0

2π(1 + y)
√

1− y2 dy.

29. V =

∫ 2

1

2π(x+ 1)(1/x3) dx = 2π

∫ 2

1

(x−2 + x−3) dx = 7π/4.

–1 x 21
x

y

y = 1/x3

x + 1

30. V =

∫ 1

0

2π(1− y)y1/3 dy = 2π

∫ 1

0

(y1/3 − y4/3) dy = 9π/14.

1

x

y

1 – y x = y1/3

31. x =
h

r
(r − y) is an equation of the line through (0, r) and (h, 0), so V =

∫ r

0

2πy

[
h

r
(r − y)

]
dy =

2πh

r

∫ r

0

(ry −
y2) dy = πr2h/3.

x

y
(0, r)

(h, 0)
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32. V =

∫ k/4

0

2π(k/2− x)2
√
kx dx = 2π

√
k

∫ k/4

0

(kx1/2 − 2x3/2) dx = 7πk3/60.

x

y

x = k/2

k/2 – x

x = k/4

y = √kx

y = –√kx

33. Let the sphere have radius R, the hole radius r. By the Pythagorean Theorem, r2 + (L/2)2 = R2. Use cylindrical
shells to calculate the volume of the solid obtained by rotating about the y-axis the region r < x < R, −

√
R2 − x2 <

y <
√
R2 − x2: V =

∫ R

r

(2πx)2
√
R2 − x2 dx = −4

3
π(R2 − x2)3/2

]R

r

=
4

3
π(L/2)3, so the volume is independent of

R.

34. V =

∫ a

−a
2π(b− x)(2

√
a2 − x2) dx = 4πb

∫ a

−a

√
a2 − x2 dx− 4π

∫ a

−a
x
√
a2 − x2 dx =

= 4πb · (area of a semicircle of radius a)− 4π(0) = 2π2a2b.

a–a
x

y

√a2 – x2 

–√a2 – x2 

b – x

x = b

35. Vx = π

∫ b

1/2

1

x2
dx = π(2− 1/b), Vy = 2π

∫ b

1/2

dx = π(2b− 1); Vx = Vy if 2− 1/b = 2b− 1, 2b2 − 3b+ 1 = 0, solve

to get b = 1/2 (reject) or b = 1.

36. (a) V = 2π

∫ b

1

x

1 + x4
dx = π tan−1(x2)

]b

1

= π
[
tan−1(b2)− π

4

]
.

(b) lim
b→+∞

V = π
(π

2
− π

4

)
=

1

4
π2.

37. If the formula for the length of a cross-section perpendicular to the axis of revolution is simpler than the formula
for the length of a cross-section parallel to the axis of revolution, then the method of disks/washers is probably
easier. Otherwise the method of cylindrical shells probably is.

38. In the method of disks/washers, we integrate the area of a flat surface, perpendicular to the axis of revolution.
The variable of integration measures distance along the axis of revolution.

In the method of cylindrical shells, we integrate the area of a curved surface surrounding the axis of revolution.
The variable of integration measures distance perpendicular to the axis of revolution.

Exercise Set 6.4

1. By the Theorem of Pythagoras, the length is
√

(2− 1)2 + (4− 2)2 =
√

1 + 4 =
√

5.

(a)
dy

dx
= 2, L =

∫ 2

1

√
1 + 4 dx =

√
5.
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(b)
dx

dy
=

1

2
, L =

∫ 4

2

√
1 + 1/4 dy = 2

√
5/4 =

√
5.

2. By the Theorem of Pythagoras, the length is
√

(1− 0)2 + (5− 0)2 =
√

1 + 25 =
√

26.

(a)
dy

dx
= 5, L =

∫ 1

0

√
1 + 25 dx =

√
26.

(b)
dx

dy
=

1

5
, L =

∫ 5

0

√
1 + 1/25 dy = 5

√
26/25 =

√
26.

3. f ′(x) =
9

2
x1/2, 1 + [f ′(x)]2 = 1 +

81

4
x, L =

∫ 1

0

√
1 + 81x/4 dx =

8

243

(
1 +

81

4
x

)3/2]1

0

= (85
√

85− 8)/243.

4. g′(y) = y(y2+2)1/2, 1+[g′(y)]2 = 1+y2(y2+2) = y4+2y2+1 = (y2+1)2, L =

∫ 1

0

√
(y2 + 1)2 dy =

∫ 1

0

(y2+1) dy =

4/3.

5.
dy

dx
=

2

3
x−1/3, 1 +

(
dy

dx

)2
= 1 +

4

9
x−2/3 =

9x2/3 + 4

9x2/3
, L =

∫ 8

1

√
9x2/3 + 4

3x1/3
dx =

1

18

∫ 40

13

u1/2du =
1

27
u3/2

]40

13

=

1

27
(40
√

40−13
√

13) =
1

27
(80
√

10−13
√

13) (we used u = 9x2/3 +4); or (alternate solution) x = y3/2,
dx

dy
=

3

2
y1/2,

1 +

(
dx

dy

)2
= 1 +

9

4
y =

4 + 9y

4
, L =

1

2

∫ 4

1

√
4 + 9y dy =

1

18

∫ 40

13

u1/2du =
1

27
(80
√

10− 13
√

13).

6. f ′(x) =
1

4
x3 − x−3, 1 + [f ′(x)]2 = 1 +

(
1

16
x6 − 1

2
+ x−6

)
=

1

16
x6 +

1

2
+ x−6 =

(
1

4
x3 + x−3

)2
,

L =

∫ 3

2

√(
1

4
x3 + x−3

)2
dx =

∫ 3

2

(
1

4
x3 + x−3

)
dx = 595/144.

7. x = g(y) =
1

24
y3 + 2y−1, g′(y) =

1

8
y2 − 2y−2, 1 + [g′(y)]2 = 1 +

(
1

64
y4 − 1

2
+ 4y−4

)
=

1

64
y4 +

1

2
+ 4y−4 =

(
1

8
y2 + 2y−2

)2
, L =

∫ 4

2

(
1

8
y2 + 2y−2

)
dy = 17/6.

8. g′(y) =
1

2
y3 − 1

2
y−3, 1 + [g′(y)]2 = 1 +

(
1

4
y6 − 1

2
+

1

4
y−6

)
=

(
1

2
y3 +

1

2
y−3

)2
, L =

∫ 4

1

(
1

2
y3 +

1

2
y−3

)
dy =

2055/64.

9. False. The derivative
dy

dx
= − x√

1− x2
is not defined at x = ±1, so it is not continuous on [−1, 1].

10. True. In a Riemann sum the k’th term has the form g(x∗k)∆xk for some function g.

11. True. If f(x) = mx + c then the approximation equals
n∑

k=1

√
1 +m2 ∆xk =

n∑

k=1

√
1 +m2 (xk − xk−1) =

√
1 +m2 (xn − x0) = (b − a)

√
1 +m2 and the arc length is the distance from (a,ma + c) to (b,mb + c), which

equals
√

(b− a)2 + [(mb+ c)− (ma+ c)]2 =
√

(b− a)2 + [m(b− a)]2 = (b − a)
√

1 +m2. So each approximation
equals the arc length.

12. False. We only need f to be continuous on [a, b] and differentiable on (a, b).
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13. dy/dx =
secx tanx

secx
= tanx,

√
1 + (y′)2 =

√
1 + tan2 x = secx when 0 < x < π/4, so L =

∫ π/4

0

secx dx =

ln(1 +
√

2).

14. dy/dx =
cosx

sinx
= cotx,

√
1 + (y′)2 =

√
1 + cot2 x = cscx when π/4 < x < π/2, so L =

∫ π/2

π/4

cscx dx =

− ln(
√

2− 1) = − ln

(√
2− 1√
2 + 1

(
√

2 + 1)

)
= ln(1 +

√
2).

15. (a)

(–1, 1)

(8, 4)

x

y

(b) dy/dx does not exist at x = 0.

(c) x = g(y) = y3/2, g′(y) =
3

2
y1/2, L =

∫ 1

0

√
1 + 9y/4 dy +

∫ 4

0

√
1 + 9y/4 dy =

8

27

(
13

8

√
13− 1

)
+

8

27
(10
√

10− 1) = (13
√

13 + 80
√

10− 16)/27.

16. First we apply equation (3) with a = 1, b = 2, f(x) = x2, and f ′(x) = 2x. The arc length is L =

∫ 2

1

√
1 + (2x)2 dx =

∫ 2

1

√
1 + 4x2 dx. Next we apply equation (5) with c = 1, d = 4, g(y) =

√
y, and g′(y) = 1

2y
−1/2. The arc length is

L =

∫ 4

1

√
1 +

(
1

2
y−1/2

)2

dy =

∫ 4

1

√
1 +

1

4y
dy. To see that these are equal, let y = x2, dy = 2x dx in the second

integral:

∫ 4

1

√
1 +

1

4y
dy =

∫ 2

1

√
1 +

1

4x2
2x dx =

∫ 2

1

√
1 + 4x2 dx.

17. (a) The function y = f(x) = x2 is inverse to the function x = g(y) =
√
y : f(g(y)) = y for 1/4 ≤ y ≤ 4, and

g(f(x)) = x for 1/2 ≤ x ≤ 2. Geometrically this means that the graphs of y = f(x) and x = g(y) are symmetric
to each other with respect to the line y = x and hence have the same arc length.

1 2 3 4

1

2

3

4

x

y

(b) L1 =

∫ 2

1/2

√
1 + (2x)2 dx and L2 =

∫ 4

1/4

√
1 +

(
1

2
√
x

)2

dx. Make the change of variables x =
√
y in the first

integral to obtain L1 =

∫ 4

1/4

√
1 + (2

√
y)2

1

2
√
y
dy =

∫ 4

1/4

√(
1

2
√
y

)2

+ 1 dy = L2.

(c) L1 =

∫ 4

1/4

√
1 +

(
1

2
√
y

)2

dy, L2 =

∫ 2

1/2

√
1 + (2y)2 dy.
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(d) For L1, ∆x =
3

20
, xk =

1

2
+ k

3

20
=

3k + 10

20
, and thus

L1 ≈
10∑

k=1

√
(∆x)2 + [f(xk)− f(xk−1)]2 =

10∑

k=1

√(
3

20

)2

+

(
(3k + 10)2 − (3k + 7)2

400

)2

≈ 4.072396336.

For L2, ∆x =
15

40
=

3

8
, xk =

1

4
+

3k

8
=

3k + 2

8
, and thus

L2 ≈
10∑

k=1

√√√√
(

3

8

)2

+

[√
3k + 2

8
−
√

3k − 1

8

]2

≈ 4.071626502.

(e) Each polygonal path is shorter than the curve segment, so both approximations in (d) are smaller than the
actual length. Hence the larger one, the approximation for L1, is better.

(f) For L1, ∆x =
3

20
, the midpoint is x∗k =

1

2
+

(
k − 1

2

)
3

20
=

6k + 17

40
, and thus

L1 ≈
10∑

k=1

3

20

√
1 +

(
2

6k + 17

40

)2

≈ 4.072396336.

For L2,∆x =
15

40
, and the midpoint is x∗k =

1

4
+

(
k − 1

2

)
15

40
=

6k + 1

16
, and thus

L2 ≈
10∑

k=1

15

40

√
1 +

(
4

6k + 1

16

)−1

≈ 4.066160149.

(g) L1 =

∫ 2

1/2

√
1 + (2x)2 dx ≈ 4.0729, L2 =

∫ 4

1/4

√
1 +

(
1

2
√
x

)2

dx ≈ 4.0729.

18. (a) The function y = f(x) = x8/3 is inverse to the function x = g(y) = y3/8 : f(g(y)) = y for 10−8 ≤ y ≤ 1 and
g(f(x)) = x for 10−3 ≤ x ≤ 1. Geometrically this means that the graphs of y = f(x) and x = g(y) are symmetric
to each other with respect to the line y = x.

0.2 0.6 1

0.2

0.6

1

x

y

(b) L1 =

∫ 1

10−3

√
1 +

(
8

3
x5/3

)2

dx, L2 =

∫ 1

10−8

√
1 +

(
3

8
x−5/8

)2

dx. In the expression for L1 make the change

of variable y = x8/3. Then L1 =

∫ 1

10−8

√
1 +

(
8

3
y5/8

)2
3

8
y−5/8 dy =

∫ 1

10−8

√(
3

8
y−5/8

)2

+ 1 dy = L2.

(c) L1 =

∫ 1

10−8

√
1 +

(
3

8
y−5/8

)2

dy, L2 =

∫ 1

10−3

√
1 +

(
8

3
y5/3

)2

dy.

(d) For L1, ∆x =
999

10000
, xk =

1

1000
+ k

999

10000
, and thus
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L1 ≈
10∑

k=1

√
(∆x)2 + [f(xk)− f(xk−1)]2 ≈ 1.524983407.

For L2, ∆y =
99999999

1000000000
, yk = 10−8 + k

99999999

1000000000
, and thus

L2 ≈
10∑

k=1

√
(∆y)2 + [g(yk)− g(yk−1)]

2 ≈ 1.518667833.

(e) Each polygonal path is shorter than the curve segment, so both approximations in (d) are smaller than the
actual length. Hence the larger one, the approximation for L1, is better.

(f) For L1, ∆x =
999

10000
, the midpoint is x∗k = 10−3 +

(
k − 1

2

)
999

10000
, and thus

L1 ≈
10∑

k=1

999

10000

√
1 +

(
8

3
(x∗k)5/3

)2

≈ 1.524166463.

For L2,∆y =
99999999

1000000000
, the midpoint is y∗k = 10−8 +

(
k − 1

2

)
99999999

1000000000
and thus

L2 ≈
10∑

k=1

√
1 + g′(y∗k)2 ∆y ≈ 1.347221106.

(g) L1 =

∫ 1

10−3

√
1 +

(
8

3
x5/3

)2

≈ 1.525898203, L2 =

∫ 1

10−8

√
1 +

(
3

8
y−5/8

)2

dy ≈ 1.525898203.

19. (a) The function y = f(x) = tanx is inverse to the function x = g(y) = tan−1 x : f(g(y)) = y for 0 ≤ y ≤
√

3, and
g(f(x)) = x for 0 ≤ x ≤ π/3. Geometrically this means that the graphs of y = f(x) and x = g(y) are symmetric
to each other with respect to the line y = x.

0.5 1 1.5 2

0.5

1

1.5

2

x

y

(b) L1 =

∫ π/3

0

√
1 + sec4 x dx, L2 =

∫ √3

0

√
1 +

1

(1 + x2)2
dx. In the expression for L1 make the change of

variable y = tanx to obtain L1 =

∫ √3

0

√
1 + (

√
1 + y2)4

1

1 + y2
dy =

∫ √3

0

√
1

(1 + y2)2
+ 1 dy = L2.

(c) L1 =

∫ √3

0

√
1 +

1

(1 + y2)2
dy, L2 =

∫ π/3

0

√
1 + sec4 y dy.

(d) For L1, ∆xk =
π

30
, xk = k

π

30
, and thus

L1 ≈
10∑

k=1

√
(∆xk)2 + [f(xk)− f(xk−1)]2 =

10∑

k=1

√( π
30

)2

+ [tan(kπ/30)− tan((k − 1)π/30)]2 ≈ 2.056603923.

For L2, ∆xk =

√
3

10
, xk = k

√
3

10
, and thus
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L2 ≈
10∑

k=1

√√√√
(√

3

10

)2

+

[
tan−1

(
k

√
3

10

)
− tan−1

(
(k − 1)

√
3

10

)]2

≈ 2.056724591.

(e) Each polygonal path is shorter than the curve segment, so both approximations in (d) are smaller than the
actual length. Hence the larger one, the approximation for L2, is better.

(f) For L1, ∆xk =
π

30
, the midpoint is x∗k =

(
k − 1

2

)
π

30
, and thus

L1 ≈
10∑

k=1

π

30

√
1 + sec4

[(
k − 1

2

)
π

30

]
≈ 2.050944217.

For L2,∆xk =

√
3

10
, and the midpoint is x∗k =

(
k − 1

2

) √
3

10
, and thus

L2 ≈
10∑

k=1

√
3

10

√
1 +

1

((x∗k)2 + 1)2
≈ 2.057065139.

(g) L1 =

∫ π/3

0

√
1 + sec4 x dx ≈ 2.0570, L2 =

∫ √3

0

√
1 +

1

(12 + y2)2
dx ≈ 2.0570.

20. 0 ≤ m ≤ f ′(x) ≤M , so m2 ≤ [f ′(x)]2 ≤M2, and 1+m2 ≤ 1+[f ′(x)]2 ≤ 1+M2; thus
√

1 +m2 ≤
√

1 + [f ′(x)]2 ≤
√

1 +M2,

∫ b

a

√
1 +m2 dx ≤

∫ b

a

√
1 + [f ′(x)]2 dx ≤

∫ b

a

√
1 +M2 dx, and (b−a)

√
1 +m2 ≤ L ≤ (b−a)

√
1 +M2.

21. f ′(x) = secx tanx, 0 ≤ secx tanx ≤ 2
√

3 for 0 ≤ x ≤ π/3 so
π

3
≤ L ≤ π

3

√
13.

22. The distance is

∫ 4.6

0

√
1 + (2.09− 0.82x)2 dx ≈ 6.65 m.

23. If we model the cable with a parabola y = ax2, then 500 = a · 21002 and then a = 500/21002. Then the length of

the cable is given by L =

∫ 2100

−2100

√
1 + (2ax)2 dx ≈ 4354 ft.

24. (a)

100 200

–1.6

–1.2

–0.8

–0.4

x
y

(b) The maximum deflection occurs at x = 96 inches (the midpoint of the beam) and is about 1.42 in.

(c) The length of the centerline is

∫ 192

0

√
1 + (dy/dx)2 dx ≈ 192.03 in.

25. y = 0 at x = b = 12.54/0.41 ≈ 30.585; distance =

∫ b

0

√
1 + (12.54− 0.82x)2 dx ≈ 196.31 yd.
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26. Let Pk be the point on the curve with coordinates (x(tk), y(tk)). The length of the curve is approximately the

length of the polygonal path P0P1 · · ·Pn, which equals
n∑

k=1

√
(x(tk)− x(tk−1))2 + (y(tk)− y(tk−1))2.

27. (dx/dt)2 + (dy/dt)2 = (t2)2 + (t)2 = t2(t2 + 1), L =

∫ 1

0

t(t2 + 1)1/2dt = (2
√

2− 1)/3.

28. (dx/dt)2 + (dy/dt)2 = [2(1 + t)]2 + [3(1 + t)2]2 = (1 + t)2[4 + 9(1 + t)2], L =

∫ 1

0

(1 + t)[4 + 9(1 + t)2]1/2dt =

(80
√

10− 13
√

13)/27.

29. (dx/dt)2 + (dy/dt)2 = (−2 sin 2t)2 + (2 cos 2t)2 = 4, L =

∫ π/2

0

2 dt = π.

30. (dx/dt)2 + (dy/dt)2 = (− sin t+ sin t+ t cos t)2 + (cos t− cos t+ t sin t)2 = t2, L =

∫ π

0

t dt = π2/2.

31. (dx/dt)2 + (dy/dt)2 = [et(cos t− sin t)]2 + [et(cos t+ sin t)]2 = 2e2t, L =

∫ π/2

0

√
2etdt =

√
2(eπ/2 − 1).

32. (dx/dt)2 + (dy/dt)2 = (2et cos t)2 + (−2et sin t)2 = 4e2t, L =

∫ 4

1

2et dt = 2(e4 − e).

33. (a) (dx/dt)2 + (dy/dt)2 = 4 sin2 t + cos2 t = 4 sin2 t + (1 − sin2 t) = 1 + 3 sin2 t, L =

∫ 2π

0

√
1 + 3 sin2 t dt =

4

∫ π/2

0

√
1 + 3 sin2 t dt.

(b) 9.69 (c) Distance traveled =

∫ 4.8

1.5

√
1 + 3 sin2 t dt ≈ 5.16 cm.

34. (dx/dt)2 +(dy/dt)2 = (−a sin t)2 +(b cos t)2 = a2 sin2 t+b2 cos2 t = a2(1−cos2 t)+b2 cos2 t = a2−(a2−b2) cos2 t =

a2

[
1− a2 − b2

a2
cos2 t

]
= a2[1− k2 cos2 t], L =

∫ 2π

0

a
√

1− k2 cos2 t dt = 4a

∫ π/2

0

√
1− k2 cos2 t dt.

35. The length of the curve is approximated by the length of a polygon whose vertices lie on the graph of y = f(x).
Each term in the sum is the length of one edge of the approximating polygon. By the distance formula, the length
of the k’th edge is

√
(∆xk)2 + (∆yk)2, where ∆xk is the change in x along the edge and ∆yk is the change in

y along the edge. We use the Mean Value Theorem to express ∆yk as f ′(x∗k)∆xk. Factoring the ∆xk out of the
square root yields the k’th term in the sum.

36. To apply Formula (4), we need to have a formula for dy/dx as a function of x. This may not be possible if either

(A) the curve is defined by giving x as a function of y, or

(B) the curve is defined by giving x and y as functions of a parameter t, or

(C) the curve is defined implicitly by giving an equation satisfied by x and y.

In case (A), we may use Formula (5) instead of (4); for (B) we may use the result of Exercise 26. In case (C), we
may have to settle for an approximation, by finding approximate coordinates of many points P0, P1, · · · , Pn on
the curve, and computing the length of the polygonal path P0P1 · · ·Pn.

Even in cases where Formula (4) can be applied, we may be unable to evaluate the integral in closed form, so we’ll
have to use methods for approximate integration, as discussed in Section 7.7.



336 Chapter 6

Exercise Set 6.5

1. S =

∫ 1

0

2π(7x)
√

1 + 49 dx = 70π
√

2

∫ 1

0

x dx = 35π
√

2.

2. f ′(x) =
1

2
√
x

, 1 + [f ′(x)]2 = 1 +
1

4x
, S =

∫ 4

1

2π
√
x

√
1 +

1

4x
dx = 2π

∫ 4

1

√
x+ 1/4 dx = π(17

√
17− 5

√
5)/6.

3. f ′(x) = −x/
√

4− x2, 1 + [f ′(x)]2 = 1 +
x2

4− x2
=

4

4− x2
, S =

∫ 1

−1

2π
√

4− x2(2/
√

4− x2) dx = 4π

∫ 1

−1

dx = 8π.

4. y = f(x) = x3 for 1 ≤ x ≤ 2, f ′(x) = 3x2, S =

∫ 2

1

2πx3
√

1 + 9x4 dx =
π

27
(1 + 9x4)3/2

]2

1

= 5π(29
√

145 −

2
√

10)/27.

5. S =

∫ 2

0

2π(9y + 1)
√

82 dy = 2π
√

82

∫ 2

0

(9y + 1) dy = 40π
√

82.

6. g′(y) = 3y2, S =

∫ 1

0

2πy3
√

1 + 9y4 dy = π(10
√

10− 1)/27.

7. g′(y) = −y/
√

9− y2, 1 + [g′(y)]2 =
9

9− y2
, S =

∫ 2

−2

2π
√

9− y2 · 3√
9− y2

dy = 6π

∫ 2

−2

dy = 24π.

8. g′(y) = −(1−y)−1/2, 1+[g′(y)]2 =
2− y
1− y , S =

∫ 0

−1

2π(2
√

1− y)

√
2− y√
1− y dy = 4π

∫ 0

−1

√
2− y dy = 8π(3

√
3−2
√

2)/3.

9. f ′(x) =
1

2
x−1/2 − 1

2
x1/2, 1 + [f ′(x)]2 = 1 +

1

4
x−1 − 1

2
+

1

4
x =

(
1

2
x−1/2 +

1

2
x1/2

)2
,

S =

∫ 3

1

2π

(
x1/2 − 1

3
x3/2

)(
1

2
x−1/2 +

1

2
x1/2

)
dx =

π

3

∫ 3

1

(3 + 2x− x2) dx = 16π/9.

10. f ′(x) = x2 − 1

4
x−2, 1 + [f ′(x)]2 = 1 +

(
x4 − 1

2
+

1

16
x−4

)
=

(
x2 +

1

4
x−2

)2
,

S =

∫ 2

1

2π

(
1

3
x3 +

1

4
x−1

)(
x2 +

1

4
x−2

)
dx = 2π

∫ 2

1

(
1

3
x5 +

1

3
x+

1

16
x−3

)
dx = 515π/64.

11. x = g(y) =
1

4
y4 +

1

8
y−2, g′(y) = y3 − 1

4
y−3, 1 + [g′(y)]2 = 1 +

(
y6 − 1

2
+

1

16
y−6

)
=

(
y3 +

1

4
y−3

)2
,

S =

∫ 2

1

2π

(
1

4
y4 +

1

8
y−2

)(
y3 +

1

4
y−3

)
dy =

π

16

∫ 2

1

(8y7 + 6y + y−5) dy = 16,911π/1024.

12. x = g(y) =
√

16− y; g′(y) = − 1

2
√

16− y , 1 + [g′(y)]2 =
65− 4y

4(16− y)
,

S =

∫ 15

0

2π
√

16− y
√

65− 4y

4(16− y)
dy = π

∫ 15

0

√
65− 4y dy = (65

√
65− 5

√
5)
π

6
.

13. f ′(x) = cosx, 1 + [f ′(x)]2 = 1 + cos2 x, S =

∫ π

0

2π sinx
√

1 + cos2 x dx = 2π(
√

2 + ln(
√

2 + 1)) ≈ 14.42.

14. x = g(y) = tan y, g′(y) = sec2 y, 1 + [g′(y)]2 = 1 + sec4 y; S =

∫ π/4

0

2π tan y
√

1 + sec4 y dy ≈ 3.84.
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15. f ′(x) = ex, 1 + [f ′(x)]2 = 1 + e2x, S =

∫ 1

0

2πex
√

1 + e2x dx ≈ 22.94.

16. x = g(y) = ln y, g′(y) = 1/y, 1 + [g′(y)]2 = 1 + 1/y2; S =

∫ e

1

2π
√

1 + 1/y2 ln y dy ≈ 7.05.

17. True, by equation (1) with r1 = 0, r2 = r, and l =
√
r2 + h2.

18. True. The lateral surface area of the cylinder is 2π
r1 + r2

2
l = π(r1 + r2)l; by equation (1) this equals the area of

the frustum.

19. True. If f(x) = c for all x then f ′(x) = 0 so the approximation is
n∑

k=1

2πc ∆xk = 2πc(b− a). Since the surface is

the lateral surface of a cylinder of length b− a and radius c, its area is also 2πc(b− a).

20. True. A true Riemann sum only involves one point x∗k in each interval, not two.

21. n = 20, a = 0, b = π,∆x = (b− a)/20 = π/20, xk = kπ/20,

S ≈ π
20∑

k=1

[sin(k − 1)π/20 + sin kπ/20]
√

(π/20)2 + [sin(k − 1)π/20− sin kπ/20]2 ≈ 14.39.

22. We use equation (2) with x changed to y and with f(y) = ln y. n = 20, a = 1, b = e, ∆y = (b−a)/20 = (e−1)/20,

yk = 1 + k(e− 1)/20, S =
20∑

k=1

π[ln yk−1 + ln yk]
√

(∆y)2 + [ln yk − ln yk−1]2 ≈ 7.05.

23. S =

∫ b

a

2π[f(x) + k]
√

1 + [f ′(x)]2 dx.

24. Yes, since the area of a frustum was used to figure out how to define surface area in general.

25. f(x) =
√
r2 − x2, f ′(x) = −x/

√
r2 − x2, 1 + [f ′(x)]2 = r2/(r2 − x2), S =

∫ r

−r
2π
√
r2 − x2(r/

√
r2 − x2) dx =

2πr

∫ r

−r
dx = 4πr2.

26. g(y) =
√
r2 − y2, g′(y) = −y/

√
r2 − y2, 1 + [g′(y)]2 = r2/(r2 − y2), S =

∫ r

r−h
2π
√
r2 − y2

√
r2/(r2 − y2) dy =

2πr

∫ r

r−h
dy = 2πrh.

27. Suppose the two planes are y = y1 and y = y2, where −r ≤ y1 ≤ y2 ≤ r. Then the area of the zone equals the
area of a spherical cap of height r − y1 minus the area of a spherical cap of height r − y2. By Exercise 26, this is
2πr(r − y1) − 2πr(r − y2) = 2πr(y2 − y1), which only depends on the radius r and the distance y2 − y1 between
the planes.

28. 2πk
√

1 + [f ′(x)]2 ≤ 2πf(x)
√

1 + [f ′(x)]2 ≤ 2πK
√

1 + [f ′(x)]2, so
∫ b

a

2πk
√

1 + [f ′(x)]2 dx ≤
∫ b

a

2πf(x)
√

1 + [f ′(x)]2 dx ≤
∫ b

a

2πK
√

1 + [f ′(x)]2 dx, then 2πkL ≤ S ≤ 2πKL.

29. Note that 1 ≤ secx ≤ 2 for 0 ≤ x ≤ π/3. Let L be the arc length of the curve y = tanx for 0 < x < π/3.

Then L =

∫ π/3

0

√
1 + sec2 x dx, and by Exercise 24, and the inequalities above, 2πL ≤ S ≤ 4πL. But from
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the inequalities for secx above, we can show that
√

2π/3 ≤ L ≤
√

5π/3. Hence, combining the two sets of
inequalities, 2π(

√
2π/3) ≤ 2πL ≤ S ≤ 4πL ≤ 4π

√
5π/3. To obtain the inequalities in the text, observe that

2π2

3
< 2π

√
2π

3
≤ 2πL ≤ S ≤ 4πL ≤ 4π

√
5π

3
<

4π2

3

√
13.

30. (a) 1 ≤
√

1 + [f ′(x)]2, so 2πf(x) ≤ 2πf(x)
√

1 + [f ′(x)]2, which implies that
∫ b

a

2πf(x) dx ≤
∫ b

a

2πf(x)
√

1 + [f ′(x)]2 dx, and then 2π

∫ b

a

f(x) dx ≤ S, 2πA ≤ S.

(b) 2πA = S if f ′(x) = 0 for all x in [a, b] so f(x) is constant on [a, b].

31. Let a = t0 < t1 < . . . < tn−1 < tn = b be a partition of [a, b]. Then the lateral area of the frustum of
slant height ` =

√
∆x2

k + ∆y2
k and radii y(t1) and y(t2) is π(y(tk) + y(tk−1))`. Thus the area of the frustum Sk

is given by Sk = π(y(tk−1) + y(tk))
√

[x(tk)− x(tk−1)]2 + [y(tk)− y(tk−1)]2 with the limit as max ∆tk → 0 of

S =

∫ b

a

2πy(t)
√
x′(t)2 + y′(t)2 dt.

32. Let a = t0 < t1 < . . . < tn−1 < tn = b be a partition of [a, b]. Then the lateral area of the frustum of
slant height ` =

√
∆x2

k + ∆y2
k and radii x(t1) and x(t2) is π(x(tk) + x(tk−1))`. Thus the area of the frustum Sk

is given by Sk = π(x(tk−1) + x(tk))
√

[x(tk)− x(tk−1)]2 + [y(tk)− y(tk−1)]2 with the limit as max ∆tk → 0 of

S =

∫ b

a

2πx(t)
√
x′(t)2 + y′(t)2 dt.

33. x′ = 2t, y′ = 2, (x′)2 + (y′)2 = 4t2 + 4, S = 2π

∫ 4

0

(2t)
√

4t2 + 4dt = 8π

∫ 4

0

t
√
t2 + 1dt =

8π

3
(17
√

17− 1).

34. x′ = −2 cos t sin t, y′ = 5 cos t, (x′)2 + (y′)2 = 4 cos2 t sin2 t+ 25 cos2 t,

S = 2π

∫ π/2

0

5 sin t
√

4 cos2 t sin2 t+ 25 cos2 t dt =
π

6
(145
√

29− 625).

35. x′ = 1, y′ = 4t, (x′)2 + (y′)2 = 1 + 16t2, S = 2π

∫ 1

0

t
√

1 + 16t2 dt =
π

24
(17
√

17− 1).

36. x′ = −2 sin t cos t, y′ = 2 sin t cos t, (x′)2 + (y′)2 = 8 sin2 t cos2 t,

S = 2π

∫ π/2

0

cos2 t
√

8 sin2 t cos2 t dt = 4
√

2π

∫ π/2

0

cos3 t sin t dt =
√

2π.

37. x′ = −r sin t, y′ = r cos t, (x′)2 + (y′)2 = r2, S = 2π

∫ π

0

r sin t
√
r2 dt = 2πr2

∫ π

0

sin t dt = 4πr2.

38. In each case we approximate a curve by a polygonal path and use a known formula (for length or surface area) to
derive a more general formula. Both derivations involve the length of a line segment, which is approximated using
the Mean Value Theorem, introducing

√
1 + [f ′(x)]2 into the resulting formulas.

39. Suppose we approximate the k’th frustum by the lateral surface of a cylinder of width ∆xk and radius f(x∗k),
where x∗k is between xk−1 and xk. The area of this surface is 2πf(x∗k) ∆xk. Proceeding as before, we would

conclude that S =
∫ b
a

2πf(x) dx, which is too small. Basically, when |f ′(x)| > 0, the area of the frustum is larger
than the area of the cylinder, and ignoring this results in an incorrect formula.

Exercise Set 6.6

1. W =

∫ 3

0

F (x) dx =

∫ 3

0

(x+ 1) dx =

[
1

2
x2 + x

]3

0

= 7.5 ft·lb.
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2. W =

∫ 5

0

F (x) dx =

∫ 2

0

40 dx−
∫ 5

2

40

3
(x− 5) dx = 80 + 60 = 140 J.

3. Since W =

∫ b

a

F (x) dx = the area under the curve, it follows that d < 2.5 since the area increases faster under

the left part of the curve. In fact, if d ≤ 2, Wd =

∫ d

0

F (x) dx = 40d, and W =

∫ 5

0

F (x) dx = 140, so d = 7/4.

4. The total work is

∫ b

a

F (x) dx. The average value of F over [a, b] is
1

b− a

∫ b

a

F (x) dx, which equals the work

divided by the length of the interval.

5. Distance traveled =

∫ 5

0

v(t) dt =

∫ 5

0

4t

5
dt =

2

5
t2
]5

0
= 10 ft. The force is a constant 10 lb, so the work done is

10 · 10 = 100 ft·lb.

6. Hooke’s law says that F (x) = kx where x is the distance the spring is stretched beyond its natural length. Since
F (x) = 6 when x = 4 1

2 − 4 = 1
2 , we have k = 12. Stretching the spring to a length of 6 meters corresponds to

x = 6− 4 = 2, so W =

∫ 2

0

F (x) dx =

∫ 2

0

12x dx = 6x2
]2
0

= 24 N·m = 24 J.

7. F (x) = kx, F (0.2) = 0.2k = 100, k = 500 N/m, W =

∫ 0.8

0

500x dx = 160 J.

8. (a) F (x) = kx, F (0.05) = 0.05k = 45, k = 900 N/m.

(b) W =

∫ 0.03

0

900x dx = 0.405 J. (c) W =

∫ 0.10

0.05

900x dx = 3.375 J.

9. W =

∫ 1

0

kx dx = k/2 = 10, k = 20 lb/ft.

10. False. The distance that the car moves is 0, so no work is done.

11. False. The work depends on the force and the distance, not on the elapsed time.

12. True. If W1 =

∫ D

0

kx dx =
kx2

2

]D

0

=
kD2

2
, then W2 =

∫ 2D

0

kx dx =
kx2

2

]2D

0

= 2kD2 = 4W1.

13. True. By equation (6), work and energy have the same units in any system of units.

14. W =

∫ 6

0

(9− x)62.4(25π) dx = 1560π

∫ 6

0

(9− x) dx = 56,160π ft·lb.

9 - x

x

0

6

95

15. W =

∫ 9/2

0

(9− x)62.4(25π) dx = 1560π

∫ 9/2

0

(9− x) dx = 47,385π ft·lb.
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9 - x

x

0

4.5

95

16. r/10 = x/15, r = 2x/3, W =

∫ 10

0

(15− x)62.4(4πx2/9) dx =
83.2

3
π

∫ 10

0

(15x2 − x3) dx = 208, 000π/3 ft·lb.

15 – x

x

0

10

1510

r

17. w/4 = x/3, w = 4x/3, W =

∫ 2

0

(3− x)(9810)(4x/3)(6) dx = 78480

∫ 2

0

(3x− x2) dx = 261, 600 J.

3 – x

x

0

2

34

w(x)

18. w = 2
√

4− x2, W =

∫ 2

−2

(3− x)(50)(2
√

4− x2)(10) dx = 3000

∫ 2

−2

√
4− x2 dx− 1000

∫ 2

−2

x
√

4− x2 dx =

= 3000[π(2)2/2]− 0 = 6000π ft·lb.

3

2

0

–2

3 – x

x

w(x)

2

19. (a) W =

∫ 9

0

(10− x)62.4(300) dx = 18,720

∫ 9

0

(10− x) dx = 926,640 ft·lb.

(b) To empty the pool in one hour would require 926,640/3600 = 257.4 ft·lb of work per second so hp of motor
= 257.4/550 = 0.468.

0

10
9 10 – x
x

20 15
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20. W =

∫ 9

0

x(62.4)(300) dx = 18,720

∫ 9

0

x dx = (81/2)18,720 = 758,160 ft·lb.

21. W =

∫ 100

0

15(100− x) dx = 75, 000 ft·lb.

100

0

100 – x

x

Pulley

Chain

22. The total time of winding the rope is (20 ft)/(2 ft/s) = 10 s. During the time interval from time t to time t+ ∆t
the work done is ∆W = F (t) ·∆x. The distance ∆x = 2∆t, and the force F (t) is given by the weight w(t) of the
bucket, rope and water at time t. The bucket and its remaining water together weigh (3 + 20) − t/2 lb, and the
rope is 20− 2t ft long and weighs 4(20− 2t) oz or 5− t/2 lb. Thus at time t the bucket, water and rope together
weigh w(t) = 23 − t/2 + 5 − t/2 = 28 − t lb. The amount of work done in the time interval from time t to time

t + ∆t is thus ∆W = (28 − t)2∆t, and the total work done is W = lim
n→+∞

∑
(28 − t)2∆t =

∫ 10

0

(28 − t)2 dt =

2(28t− t2/2)
∣∣∣
10

0
= 460 ft·lb.

23. When the rocket is x ft above the ground total weight = weight of rocket+ weight of fuel = 3+[40−2(x/1000)] =

43− x/500 tons, W =

∫ 3000

0

(43− x/500) dx = 120, 000 ft·tons.

3000

0

x
Rocket

24. Let F (x) be the force needed to hold charge A at position x. Then F (x) =
c

(a− x)2
, F (−a) =

c

4a2
= k, so

c = 4a2k. W =

∫ 0

−a
4a2k(a− x)−2 dx = 2ak J.

0–a ax

BA

25. (a) 150 = k/(4000)2, k = 2.4× 109, w(x) = k/x2 = 2,400,000,000/x2 lb.

(b) 6000 = k/(4000)2, k = 9.6× 1010, w(x) =
(
9.6× 1010

)
/(x+ 4000)2 lb.

(c) W =

∫ 5000

4000

9.6(1010)x−2 dx = 4,800,000 mi·lb = 2.5344× 1010 ft·lb.

26. (a) 20 = k/(1080)2, k = 2.3328× 107, weight = w(x+ 1080) = 2.3328 · 107/(x+ 1080)2 lb.

(b) W =

∫ 10.8

0

[2.3328 · 107/(x+ 1080)2] dx = 213.86 mi·lb = 1,129,188 ft·lb.
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27. W =
1

2
mv2

f −
1

2
mv2

i =
1

2
4.00 × 105(v2

f − 202). But W = F · d = (6.40 × 105) · (3.00 × 103), so 19.2 × 108 =

2.00× 105v2
f − 8.00× 107, 19200 = 2v2

f − 800, vf = 100 m/s.

28. W = F · d = (2.00 × 105)(1.50 × 105) = 3 × 1010 J; from the work-energy relationship (6), v2
f = 2W/m + v2

i =

2(3× 1010)/(2× 103) + (1× 104)2 = 1.3× 108, so vf ≈ 11, 402 m/s.

29. (a) The kinetic energy would have decreased by
1

2
mv2 =

1

2
4 · 106(15000)2 = 4.5× 1014 J.

(b) (4.5× 1014)/(4.2× 1015) ≈ 0.107. (c)
1000

13
(0.107) ≈ 8.24 bombs.

30. “Pushing/pulling” problems usually involve a single rigid object being moved; see Examples 1-4 and 6. “Pumping”
problems usually involve a liquid or flexible solid, different parts of which move different distances; see Example
5 and Exercises 14-21. Exercise 22 is an example of a combination of the two categories: The bucket is rigid, the
water is liquid, and the rope is a flexible solid.

31. The work-energy relationship involves 4 quantities, the work W , the mass m, and the initial and final velocities
vi and vf . In any problem in which 3 of these are given, the work-energy relationship can be used to compute the
fourth. In cases where the force is constant, we may combine equation (1) with the work-energy relationship to

get Fd =
1

2
mv2

f −
1

2
mv2

i . In this form there are 5 quantities, the force F , the distance d, the mass m, and the

initial and final velocities vi and vf . So if any 4 of these are given, the work-energy relationship can be used to
compute the fifth.

Exercise Set 6.7

1. (a) m1 and m3 are equidistant from x = 5, but m3 has a greater mass, so the sum is positive.

(b) Let a be the unknown coordinate of the fulcrum; then the total moment about the fulcrum is 5(0 − a) +
10(5− a) + 20(10− a) = 0 for equilibrium, so 250− 35a = 0, a = 50/7. The fulcrum should be placed 50/7 units
to the right of m1.

2. (a) The sum must be negative, since m1,m2 and m3 are all to the left of the fulcrum, and the magnitude of the
moment of m1 about x = 4 is by itself greater than the moment of m about x = 4 (i.e. 40 > 28), so even if we
replace the masses of m2 and m3 with 0, the sum is negative.

(b) At equilibrium, 10(0− 4) + 3(2− 4) + 4(3− 4) +m(6− 4) = 0,m = 25.

3. By symmetry, the centroid is (1/2, 1/2). We confirm this using Formulas (8) and (9) with a = 0, b = 1, f(x) = 1.

The area is 1, so x =

∫ 1

0

x dx =
1

2
and y =

∫ 1

0

1

2
dx =

1

2
, as expected.

4. By symmetry, the centroid is (0, 0). We confirm this using Formulas (10) and (11) with a = −1, b = 1, f(x) =

1 − |x|, g(x) = |x| − 1. The area is 2, so x =
1

2

∫ 1

−1

x(2 − 2|x|) dx =
1

2

(∫ 0

−1

x(2 + 2x) dx+

∫ 1

0

x(2− 2x) dx

)
=

1

2

([
x2 +

2

3
x3

]0

−1

+

[
x2 − 2

3
x3

]1

0

)
=

1

2

(
−1

3
+

1

3

)
= 0 and y =

1

2

∫ 1

−1

1

2

[
(1− |x|)2 − (|x| − 1)2

]
dx =

=
1

2

∫ 1

−1

0 dx = 0, as expected.

5. By symmetry, the centroid is (1, 1/2). We confirm this using Formulas (8) and (9) with a = 0, b = 2, f(x) = 1.

The area is 2, so x =
1

2

∫ 2

0

x dx = 1 and y =
1

2

∫ 2

0

1

2
dx =

1

2
, as expected.
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6. By symmetry, the centroid is (0, 0). We confirm this using Formulas (10) and (11) with a = −1, b = 1, f(x) =
√

1− x2, g(x) = −
√

1− x2. The area is π, so x =
1

π

∫ 1

−1

x · 2
√

1− x2 dx = − 2

3π
(1− x2)3/2

]1

−1

= 0 and

y =
1

π

∫ 1

−1

1

2
· 0 dx = 0, as expected.

7. By symmetry, the centroid lies on the line y = 1− x. To find x we use Formula (8) with a = 0, b = 1, f(x) = x.

The area is
1

2
, so x = 2

∫ 1

0

x2 dx =
2

3
. Hence y = 1− 2

3
=

1

3
and the centroid is

(
2

3
,

1

3

)
.

8. We use Formulas (8) and (9) with a = 0, b = 1, f(x) = x2. The area is

∫ 1

0

x2 dx =
1

3
, so x = 3

∫ 1

0

x3 dx =
3

4
and

y = 3

∫ 1

0

1

2
x4 dx =

3

10
. The centroid is

(
3

4
,

3

10

)
.

9. We use Formulas (10) and (11) with a = 0, b = 1, f(x) = 2 − x2, g(x) = x. The area is

∫ 1

0

(2 − x2 − x) dx =

[
2x− 1

3
x3 − 1

2
x2

]1

0

=
7

6
, so x =

6

7

∫ 1

0

x(2− x2− x) dx =
6

7

[
x2 − 1

4
x4 − 1

3
x3

]1

0

=
5

14
and y =

6

7

∫ 1

0

1

2
[(2− x2)2−

x2] dx =
3

7

∫ 1

0

(4− 5x2 + x4) dx =
3

7

[
4x− 5

3
x3 +

1

5
x5

]1

0

=
38

35
. The centroid is

(
5

14
,

38

35

)
.

10. By symmetry the centroid lies on the line y = x. To find x, we use Formula (8) with a = 0, b = 1, f(x) =
√

1− x2.

The area is
π

4
, so x =

4

π

∫ 1

0

x
√

1− x2 dx =
4

π

[
−1

3
(1− x2)3/2

]1

0

=
4

3π
. The centroid is

(
4

3π
,

4

3π

)
.

11. We use Formulas (8) and (9) with a = 0, b = 2, f(x) = 1 − x

2
. The area is 1, so x =

∫ 2

0

x
(

1− x

2

)
dx =

[
1

2
x2 − 1

6
x3

]2

0

=
2

3
and y =

∫ 2

0

1

2

(
1− x

2

)2

dx =
1

8

∫ 2

0

(4 − 4x + x2) dx =
1

8

[
4x− 2x2 +

1

3
x3

]2

0

=
1

3
. The

centroid is

(
2

3
,

1

3

)
.

12. By symmetry, x = 1. To find y we use the analogue of Formula (10) with the roles of x and y reversed. The

triangle is described by 0 ≤ y ≤ 1, y ≤ x ≤ 2− y. The area is 1, so y =

∫ 1

0

y [(2− y)− y] dy =

∫ 1

0

(2y− 2y2) dy =

[
y2 − 2

3
y3

]1

0

=
1

3
. The centroid is

(
1,

1

3

)
.

13. The graphs of y = x2 and y = 6− x meet when x2 = 6− x, so x = −3 or x = 2. We use Formulas (10) and (11)

with a = −3, b = 2, f(x) = 6 − x, g(x) = x2. The area is

∫ 2

−3

(6 − x − x2) dx =

[
6x− 1

2
x2 − 1

3
x3

]2

−3

=
125

6
,

so x =
6

125

∫ 2

−3

x(6 − x − x2) dx =
6

125

[
3x2 − 1

3
x3 − 1

4
x4

]2

−3

= −1

2
and y =

6

125

∫ 2

−3

1

2
[(6 − x)2 − (x2)2] dx =

3

125

∫ 2

−3

(36− 12x+ x2 − x4) dx =
3

125

[
36x− 6x2 +

1

3
x3 − 1

5
x5

]2

−3

= 4. The centroid is

(
−1

2
, 4

)
.

14. We use Formulas (10) and (11) with a = 0, b = 2, f(x) = x + 6, g(x) = x2. The area is

∫ 2

0

(x + 6 − x2) dx =

[
1

2
x2 + 6x− 1

3
x3

]2

0

=
34

3
, so x =

3

34

∫ 2

0

x(x+ 6− x2) dx =
3

34

[
1

3
x3 + 3x2 − 1

4
x4

]2

0

=
16

17
and y =

3

34

∫ 2

0

1

2
[(x+
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6)2−(x2)2] dx =
3

68

∫ 2

0

(x2+12x+36−x4) dx =
3

68

[
1

3
x3 + 6x2 + 36x− 1

5
x5

]2

0

=
346

85
. The centroid is

(
16

17
,

346

85

)
.

15. The curves meet at (−1, 1) and (2, 4). We use Formulas (10) and (11) with a = −1, b = 2, f(x) = x + 2,

g(x) = x2. The area is

∫ 2

−1

(x + 2 − x2) dx =

[
1

2
x2 + 2x− 1

3
x3

]2

−1

=
9

2
, so x =

2

9

∫ 2

−1

x(x + 2 − x2) dx =

2

9

[
1

3
x3 + x2 − 1

4
x4

]2

−1

=
1

2
and y =

2

9

∫ 2

−1

1

2

[
(x+ 2)2 − (x2)2

]
dx =

1

9

∫ 2

−1

(x2 + 4x+ 4− x4) dx =

=
1

9

[
1

3
x3 + 2x2 + 4x− 1

5
x5

]2

−1

=
8

5
. The centroid is

(
1

2
,

8

5

)
.

16. By symmetry, x = 0. To find y we use Formula (11) with a = −1, b = 1, f(x) = 1, g(x) = x2. The area is∫ 1

−1

(1 − x2) dx =

[
x− 1

3
x3

]1

−1

=
4

3
, so y =

3

4

∫ 1

−1

1

2

[
12 − (x2)2

]
dx =

3

8

∫ 1

−1

(1 − x4) dx =
3

8

[
x− 1

5
x5

]1

−1

=
3

5
.

The centroid is

(
0,

3

5

)
.

17. By symmetry, y = x. To find x we use Formula (10) with a = 0, b = 1, f(x) =
√
x, g(x) = x2. The area is∫ 1

0

(
√
x − x2) dx =

[
2

3
x3/2 − 1

3
x3

]1

0

=
1

3
, so x = 3

∫ 1

0

x(
√
x − x2) dx = 3

[
2

5
x5/2 − 1

4
x4

]1

0

=
9

20
. The centroid is

(
9

20
,

9

20

)
.

18. We use Formulas (12) and (13) with c = 1, d = 2, w(y) =
1

y
. The area is

∫ 2

1

1

y
dy = ln 2, so x =

1

ln 2

∫ 2

1

1

2

(
1

y

)2

dy =

1

2 ln 2

[
−1

y

]2

1

=
1

4 ln 2
and y =

1

ln 2

∫ 2

1

y · 1

y
dy =

1

ln 2
. The centroid is

(
1

4 ln 2
,

1

ln 2

)
.

19. We use the analogue of Formulas (10) and (11) with the roles of x and y reversed. The region is described by

1 ≤ y ≤ 2, y−2 ≤ x ≤ y. The area is

∫ 2

1

(y − y−2) dy =

[
1

2
y2 + y−1

]2

1

= 1, so x =

∫ 2

1

1

2
[y2 − (y−2)2] dy =

1

2

∫ 2

1

(y2 − y−4) dy =
1

2

[
1

3
y3 +

1

3
y−3

]2

1

=
49

48
and y =

∫ 2

1

y(y− y−2) dy =

[
1

3
y3 − ln y

]2

1

=
7

3
− ln 2. The centroid

is

(
49

48
,

7

3
− ln 2

)
.

20. By symmetry, y = x. To find x we use Formula (10) with a = 1, b = 4, f(x) = 5 − x, g(x) = 4x−1. The

area is

∫ 4

1

(5 − x − 4x−1) dx =

[
5x− 1

2
x2 − 4 lnx

]4

1

=
15− 16 ln 2

2
, so x =

2

15− 16 ln 2

∫ 4

1

x(5 − x − 4x−1) dx =

2

15− 16 ln 2

[
5

2
x2 − 1

3
x3 − 4x

]4

1

=
9

15− 16 ln 2
. The centroid is

(
9

15− 16 ln 2
,

9

15− 16 ln 2

)
.

21. An isosceles triangle is symmetric across the median to its base. So, if the density is constant, it will balance on
a knife-edge under the median. Hence the centroid lies on the median.

22. An ellipse is symmetric across both its major axis and its minor axis. So, if the density is constant, it will balance
on a knife-edge under either axis. Hence the centroid lies on both axes, so it is at the intersection of the axes.

23. The region is described by 0 ≤ x ≤ 1, 0 ≤ y ≤ √x. The area is A =

∫ 1

0

√
x dx =

2

3
, so the mass is M = δA = 2· 2

3
=

4

3
. By Formulas (8) and (9), x =

3

2

∫ 1

0

x
√
x dx =

3

2

[
2

5
x5/2

]1

0

=
3

5
and y =

3

2

∫ 1

0

1

2
(
√
x)2 dx =

3

4

∫ 1

0

x dx =
3

8
.
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The center of gravity is

(
3

5
,

3

8

)
.

24. The region is described by −1 ≤ y ≤ 1, y4 ≤ x ≤ 1. The area is A =

∫ 1

−1

(1 − y4) dy =

[
y − 1

5
y5

]1

−1

=
8

5
, so the

mass is M = δA = 15 · 8

5
= 24. By symmetry, y = 0. By the analogue of Formula (11) with the roles of x and y

reversed, x =
5

8

∫ 1

−1

1

2
[12− (y4)2] dy =

5

16

∫ 1

−1

(1− y8) dy =
5

16

[
y − 1

9
y9

]1

−1

=
5

9
. The center of gravity is

(
5

9
, 0

)
.

25. The region is described by 0 ≤ y ≤ 1, −y ≤ x ≤ y. The area is A = 1, so the mass is M = δA = 3 · 1 = 3. By

symmetry, x = 0. By the analogue of Formula (10) with the roles of x and y reversed, y =

∫ 1

0

y[y − (−y)] dy =

∫ 1

0

2y2 dy =
2

3
y3

]1

0

=
2

3
. The center of gravity is

(
0,

2

3

)
.

26. The region is described by −1 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x2. The area is A =

∫ 1

−1

(1 − x2) dx =

[
x− 1

3
x3

]1

−1

=
4

3
,

so the mass is M = δA = 3 · 4

3
= 4. By symmetry, x = 0. By Formula (9), y =

3

4

∫ 1

−1

1

2
(1 − x2)2 dx =

3

8

∫ 1

−1

(1− 2x2 + x4) dx =
3

8

[
x− 2

3
x3 +

1

5
x5

]1

−1

=
2

5
. The center of gravity is

(
0,

2

5

)
.

27. The region is described by 0 ≤ x ≤ π, 0 ≤ y ≤ sinx. The area is A =

∫ π

0

sinx dx = 2, so the mass is

M = δA = 4 · 2 = 8. By symmetry, x =
π

2
. By Formula (9), y =

1

2

∫ π

0

1

2
(sinx)2 dx =

π

8
. The center of gravity is

(π
2
,
π

8

)
.

28. The region is described by 0 ≤ x ≤ 1, 0 ≤ y ≤ ex. The area is A =

∫ 1

0

ex dx = e − 1, so the mass is M = δA =

1

e− 1
· (e− 1) = 1. By Formulas (8) and (9), x =

1

e− 1

∫ 1

0

xex dx =
1

e− 1
and y =

1

e− 1

∫ 1

0

1

2
(ex)2 dx =

e+ 1

4
.

The center of gravity is

(
1

e− 1
,
e+ 1

4

)
.

29. The region is described by 1 ≤ x ≤ 2, 0 ≤ y ≤ lnx. The area is A =

∫ 2

1

lnx dx = 2 ln 2− 1 = ln 4− 1, so the mass

is M = δA = ln 4− 1. By Formulas (8) and (9), x =
1

ln 4− 1

∫ 2

1

x lnx dx =
1

ln 4− 1

(
ln 4− 3

4

)
=

4 ln 4− 3

4(ln 4− 1)
and

y =
1

ln 4− 1

∫ 2

1

1

2
(lnx)2 dx =

(ln 2)2 − ln 4 + 1

ln 4− 1
. The center of gravity is

(
4 ln 4− 3

4(ln 4− 1)
,

(ln 2)2 − ln 4 + 1

ln 4− 1

)
.

30. The region is described by 0 ≤ x ≤ π

4
, sinx ≤ y ≤ cosx. The area is A =

∫ π/4

0

(cosx − sinx) dx =
√

2 − 1,

so the mass is M = δA = (1 +
√

2)(
√

2 − 1) = 1. By Formulas (10) and (11), x =
1√

2− 1

∫ π/4

0

x(cosx −

sinx) dx =
(π
√

2− 4)(
√

2 + 1)

4
and y =

1√
2− 1

∫ π/4

0

1

2
(cos2 x − sin2 x) dx =

√
2 + 1

4
. The center of gravity is

(
(π
√

2− 4)(
√

2 + 1)

4
,

√
2 + 1

4

)
.
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31. True, by symmetry.

32. True, by symmetry.

33. True, by symmetry.

34. False. Rotating the square does not change its area or its centroid, so the Theorem of Pappus implies that the
volume is also unchanged.

35. By symmetry, y = 0. We use Formula (10) with a replaced by 0, b replaced by a, f(x) =
bx

a
, and g(x) = −bx

a
:

The area is ab, so x =
1

ab

∫ a

0

x

(
bx

a
−
(
−bx
a

))
dx =

2

a2

∫ a

0

x2 dx =
2

a2
· a

3

3
=

2a

3
. The centroid is

(
2a

3
, 0

)
.

36. Let M be a median of the triangle, joining one vertex to the midpoint P of the opposite side. Establish a
coordinate system so that the origin is at P , the side containing P lies along the y-axis, and the rest of the
triangle is to the right of the y-axis. Then the coordinates of the vertices are (0,−a), (0, a), and (b, c), where

a > 0 and b > 0. The upper edge has equation y = a+
c− a
b

x =
cx

b
+
a(b− x)

b
and the lower edge has equation

y = −a +
c+ a

b
x =

cx

b
− a(b− x)

b
, where x runs from 0 to b. The triangle’s area is

1

2
· 2a · b = ab. By Formulas

(8) and (9),

x =
1

ab

∫ b

0

x

[(
cx

b
+
a(b− x)

b

)
−
(
cx

b
− a(b− x)

b

)]
dx =

1

ab

∫ b

0

2a

b
(bx− x2) dx =

2

b2

[
b

2
x2 − 1

3
x3

]b

0

=
b

3
, and

y =
1

ab

∫ b

0

1

2

[(
cx

b
+
a(b− x)

b

)2

−
(
cx

b
− a(b− x)

b

)2
]
dx =

1

2ab

∫ b

0

4acx(b− x)

b2
dx=

1

2ab
·4ac
b2

[
b

2
x2 − 1

3
x3

]b

0

=

c

3
.

The centroid is

(
b

3
,
c

3

)
. Note that this lies on the line y =

c

b
x, which is the median M . Since we picked M

arbitrarily, the centroid lies on all 3 medians, so it is their intersection.

37. We will assume that a, b, and c are positive; the other cases are similar. The region is described by 0 ≤ y ≤ c,

−a − b− a
c

y ≤ x ≤ a +
b− a
c

y. By symmetry, x = 0. To find y, we use the analogue of Formula (10) with the

roles of x and y reversed. The area is c(a + b), so y =
1

c(a+ b)

∫ c

0

y

[(
a+

b− a
c

y

)
−
(
−a− b− a

c
y

)]
dy =

1

c(a+ b)

∫ c

0

(
2ay +

2(b− a)

c
y2

)
dy =

1

c(a+ b)

[
ay2 +

2(b− a)

3c
y3

]c

0

=
c(a+ 2b)

3(a+ b)
. The centroid is

(
0,
c(a+ 2b)

3(a+ b)

)
.

38. A parallelogram is symmetric about the intersection of its diagonals: it is identical to its 180◦ rotation about that
point. By symmetry, the intersection of the diagonals is the centroid.

39. x = 0 from the symmetry of the region, πa2/2 is the area of the semicircle, 2πy is the distance traveled by the
centroid to generate the sphere so 4πa3/3 = (πa2/2)(2πy), y = 4a/(3π).

40. (a) V =

[
1

2
πa2

] [
2π

(
a+

4a

3π

)]
=

1

3
π(3π + 4)a3.

(b) The distance between the centroid and the line is

√
2

2

(
a+

4a

3π

)
, so V =

[
1

2
πa2

] [
2π

√
2

2

(
a+

4a

3π

)]
=

1

6

√
2π(3π + 4)a3.

41. x = k so V = (πab)(2πk) = 2π2abk.
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42. y = 4 from the symmetry of the region, A =

∫ 2

−2

∫ 8−x2

x2

dy dx = 64/3 so V = (64/3)[2π(4)] = 512π/3.

43. The region generates a cone of volume
1

3
πab2 when it is revolved about the x-axis, the area of the region is

1

2
ab

so
1

3
πab2 =

(
1

2
ab

)
(2πy), y = b/3. A cone of volume

1

3
πa2b is generated when the region is revolved about the

y-axis so
1

3
πa2b =

(
1

2
ab

)
(2πx), x = a/3. The centroid is (a/3, b/3).

44. The centroid of a region is defined to be the center of gravity of a lamina of constant density occupying the region.
So assume that both R1 and R2 have density δ. By equation (6), the moment of R1 about the y-axis is δA1x1, and
the moment of R2 about the y-axis is δA2x2. The moment of the union R is the sum of these, δ(A1x1 +A2x2). The
mass of R is the sum of the masses of R1 and R2, δ(A1 + A2). Again using equation (6), the x-coordinate of the

centroid of R is
δ(A1x1 +A2x2)

δ(A1 +A2)
=
A1x1 +A2x2

A1 +A2
. Similarly, the y-coordinate of the centroid of R is

A1y1 +A2y2

A1 +A2
.

In words, the centroid of R lies on the line segment joining the centroids of R1 and R2, and its distance from

the centroid of R1 is
A2

A1 +A2
times the distance between the centroids of R1 and R2. For example, if A1 = 2A2

then the centroid of R is one third of the way from the centroid of R1 to the centroid of R2. If R is decomposed
into n regions R1, · · · , Rn of areas A1, · · · , An and centroids (x1, y1), · · · , (xn, yn), then the centroid of R is(
A1x1 + · · ·+Anxn
A1 + · · ·+An

,
A1y1 + · · ·+Anyn
A1 + · · ·+An

)
.

45. The Theorem of Pappus says that V = 2πAd, where A is the area of a region in the plane, d is the distance from
the region’s centroid to an axis of rotation, and V is the volume of the resulting solid of revolution. In any problem
in which 2 of these quantities are given, the Theorem of Pappus can be used to compute the third.

Exercise Set 6.8

1. (a) F = ρhA = 62.4(5)(100) = 31,200 lb, P = ρh = 62.4(5) = 312 lb/ft
2
.

(b) F = ρhA = 9810(10)(25) = 2,452,500 N, P = ρh = 9810(10) = 98.1 kPa.

2. (a) F = PA = 6 · 105(160) = 9.6× 107 N. (b) F = PA = 100(60) = 6000 lb.

3. F =

∫ 2

0

62.4x(4) dx = 249.6

∫ 2

0

x dx = 499.2 lb.

2

0 4

x

4. F =

∫ 3

1

9810x(4) dx = 39,240

∫ 3

1

x dx = 156,960 N.

3

1

0
4

x

5. F =

∫ 5

0

9810x(2
√

25− x2) dx = 19,620

∫ 5

0

x(25− x2)1/2 dx = 8.175× 105 N.
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50

5

x y = √25 – x2

y

2√25 – x2

6. By similar triangles,
w(x)

4
=

2
√

3− x
2
√

3
, w(x) =

2√
3

(2
√

3 − x), so F =

∫ 2
√

3

0

62.4x

[
2√
3

(2
√

3− x)

]
dx =

124.8√
3

∫ 2
√

3

0

(2
√

3x− x2) dx = 499.2 lb.

2√3

0 4

4 4

x
w(x)

7. By similar triangles,
w(x)

6
=

10− x
8

, w(x) =
3

4
(10− x), so F =

∫ 10

2

9810x

[
3

4
(10− x)

]
dx =

= 7357.5

∫ 10

2

(10x− x2) dx = 1,098,720 N.

10

2

0

x
w(x)

8

6

8. w(x) = 16 + 2u(x), but
u(x)

4
=

12− x
8

, so u(x) =
1

2
(12 − x), w(x) = 16 + (12 − x) = 28 − x, and F =

∫ 12

4

62.4x(28− x) dx = 62.4

∫ 12

4

(28x− x2) dx = 77,209.6 lb.

12

4 4

16

4

0

x
w(x)

u(x)

9. Yes: if ρ2 = 2ρ1 then F2 =

∫ b

a

ρ2h(x)w(x) dx =

∫ b

a

2ρ1h(x)w(x) dx = 2

∫ b

a

ρ1h(x)w(x) dx = 2F1.

10. F =

∫ 2

0

50x(2
√

4− x2) dx = 100

∫ 2

0

x(4− x2)1/2 dx = 800/3 lb.

20

x

y

2√4 – x2

y = √4 – x2
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11. Find the forces on the upper and lower halves and add them:
w1(x)√

2a
=

x√
2a/2

, w1(x) = 2x, F1 =

∫ √2a/2

0

ρx(2x) dx =

2ρ

∫ √2a/2

0

x2 dx =
√

2ρa3/6,
w2(x)√

2a
=

√
2a− x√
2a/2

, w2(x) = 2(
√

2a − x), F2 =

∫ √2a

√
2a/2

ρx[2(
√

2a − x)] dx =

2ρ

∫ √2a

√
2a/2

(
√

2ax− x2) dx =
√

2ρa3/3, F = F1 + F2 =
√

2ρa3/6 +
√

2ρa3/3 = ρa3/
√

2 lb.

0

x

x

√2a

√2a
√2a/2

w1(x)

w2(x)
aa

aa

12. False. The units of pressure are the units of force divided by the units of area. In SI, the units of force are newtons
and the units of pressure are newtons per square meter, or pascals.

13. True. By equation (6), the fluid force equals ρhA. For a cylinder, hA is the volume, so ρhA is the weight of the
water.

14. False. Consider a tank of height h, whose horizontal cross-sections are a by b rectangles. By equation (6), the
fluid force on the bottom of the tank is ρhab. By equation (8), the fluid force on either a by h side of the tank is∫ h

0

ρxa dx =
ρh2a

2
. So if h > 2b, then the fluid force on the side is larger than the fluid force on the bottom.

15. False. Let the height of the tank be h, the area of the base be A, and the volume of the tank be V . Then the fluid
force on the base is ρhA and the weight of the water is ρV . So if hA > V , then the force exceeds the weight. This

is true, for example, for a conical tank with its vertex at the top, for which V =
hA

3
.

16. Suppose that a flat surface is immersed, at an angle θ with the vertical, in a fluid of weight density ρ, and that
the submerged portion of the surface extends from x = a to x = b along an x-axis whose positive direction is
down. Following the derivation of equation (8), we divide the interval [a, b] into n subintervals a = x0 < x1 <
. . . < xn−1 < xn = b. As in that derivation, we have Fk = ρh(x∗k)Ak, for some point x∗k between xk−1 and xk.
Because the surface is tilted, the k’th strip is approximately a rectangle with width w(x∗k) and length ∆xk sec θ;
its area is Ak ≈ w(x∗k)∆xk sec θ. So Fk ≈ ρh(x∗k)w(x∗k)∆xk sec θ. Following the argument in the text we arrive at

the desired equation F =

∫ b

a

ρh(x)w(x) sec θ dx.

x =xk

x =xk -1

!xk
"

! x k
sec

"

17. Place the x-axis pointing down with its origin at the top of the pool, so that h(x) = x and w(x) = 10. The
angle between the bottom of the pool and the vertical is θ = tan−1(16/(8− 4)) = tan−1 4, so sec θ =

√
17. Hence

F =

∫ 8

4

62.4h(x)w(x) sec θ dx = 624
√

17

∫ 8

4

x dx = 14976
√

17 ≈ 61748 lb.

18. If we lower the water level by k ft, k < 4, then the force is computed as in Exercise 17, but with h(x) = x− k, so

F =

∫ 8

4

62.4h(x)w(x) sec θ dx = 624
√

17

∫ 8

4

(x− k) dx = 624
√

17(24− 4k) lb. For this to be half of 14976
√

17, we

need k = 3, so we should lower the water level by 3 ft. (Note that this is plausible, since this lowers the average
depth from 6 ft to 3 ft, cutting the volume and weight of the water in half.)
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19. Place the x-axis starting from the surface, pointing downward. Then using the given formula with θ = 30◦,

sec θ = 2/
√

3, the force is F =

∫ 50
√

3

0

9810x(200)(2/
√

3) dx = 4, 905, 000, 000
√

3 N.

20. F =

∫ h+2

h

ρ0x(2) dx = 2ρ0

∫ h+2

h

x dx = 4ρ0(h+ 1).

h + 2

h

0

2

2x

h

21. (a) The force on the window is F =

∫ h+2

h

ρ0x(2) dx = 4ρ0(h + 1) so (assuming that ρ0 is constant) dF/dt =

4ρ0(dh/dt) which is a positive constant if dh/dt is a positive constant.

(b) If dh/dt = 20, then dF/dt = 80ρ0 lb/min from part (a).

22. (a) Let h1 and h2 be the maximum and minimum depths of the disk Dr. The pressure P (r) on one side of the disk
satisfies inequality (5): ρh1 ≤ P (r) ≤ ρh2. But lim

r→0+
h1 = lim

r→0+
h2 = h, and hence ρh = lim

r→0+
ρh1 ≤ lim

r→0+
P (r) ≤

lim
r→0+

ρh2 = ρh, so lim
r→0+

P (r) = ρh.

(b) The disks Dr in part (a) have no particular direction (the axes of the disks have arbitrary direction). Thus
P , the limiting value of P (r), is independent of direction.

23. h =
P

ρ
=

14.7 lb/in2

4.66× 10−5 lb/in3
≈ 315, 000 in ≈ 5 mi. The answer is not reasonable. In fact the atmosphere is thinner

at higher altitudes, and it’s difficult to define where the “top” of the atmosphere is.

24. According to equation (6), if the density is constant then the fluid force on a horizontal surface of area A at depth
h equals the weight of the water above it. It is plausible to assume that this is also true if the density is not
constant. To compute this weight, partition the interval [0, h] with 0 = x0 < x1 < . . . < xn−1 < xn = h. Let
x∗k be an arbitrary point of [xk−1, xk]. The volume of water which is above the flat surface and at depth between
xk−1 and xk is A ∆xk so its weight is approximately ρ(x∗k)A ∆xk. Adding these estimates, we find that the total

weight is approximately
n∑

k=1

ρ(x∗k)A ∆xk. Taking the limit as n → +∞ and the lengths of the subintervals all

approach zero gives the total weight, and hence the total force on the surface:

∫ h

0

ρ(x)Adx. Dividing by A gives

the pressure: P =

∫ h

0

ρ(x) dx.

Exercise Set 6.9

1. (a) sinh 3 ≈ 10.0179. (b) cosh(−2) ≈ 3.7622. (c) tanh(ln 4) = 15/17 ≈ 0.8824.

(d) sinh−1(−2) ≈ −1.4436. (e) cosh−1 3 ≈ 1.7627. (f) tanh−1 3

4
≈ 0.9730.

2. (a) csch(−1) ≈ −0.8509. (b) sech(ln 2) = 0.8. (c) coth 1 ≈ 1.3130.

(d) sech−1 1

2
≈ 1.3170. (e) coth−1 3 ≈ 0.3466. (f) csch−1(−

√
3) ≈ −0.5493.
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3. (a) sinh(ln 3) =
1

2
(eln 3 − e− ln 3) =

1

2

(
3− 1

3

)
=

4

3
.

(b) cosh(− ln 2) =
1

2
(e− ln 2 + eln 2) =

1

2

(
1

2
+ 2

)
=

5

4
.

(c) tanh(2 ln 5) =
e2 ln 5 − e−2 ln 5

e2 ln 5 + e−2 ln 5
=

25− 1/25

25 + 1/25
=

312

313
.

(d) sinh(−3 ln 2) =
1

2
(e−3 ln 2 − e3 ln 2) =

1

2

(
1

8
− 8

)
= −63

16
.

4. (a)
1

2
(eln x + e− ln x) =

1

2

(
x+

1

x

)
=
x2 + 1

2x
, x > 0.

(b)
1

2
(eln x − e− ln x) =

1

2

(
x− 1

x

)
=
x2 − 1

2x
, x > 0.

(c)
e2 ln x − e−2 ln x

e2 ln x + e−2 ln x
=
x2 − 1/x2

x2 + 1/x2
=
x4 − 1

x4 + 1
, x > 0.

(d)
1

2
(e− ln x + eln x) =

1

2

(
1

x
+ x

)
=

1 + x2

2x
, x > 0.

5. sinhx0 coshx0 tanhx0 coth x0 sech x0 csch x0

(a) 2
√

5 2/
√

5
√

5/2 1/
√

5 1/2

(b) 3/4 5/4 3/5 5/3 4/5 4/3

(c) 4/3 5/3 4/5 5/4 3/5 3/4

(a) cosh2 x0 = 1 + sinh2 x0 = 1 + (2)2 = 5, coshx0 =
√

5.

(b) sinh2 x0 = cosh2 x0 − 1 =
25

16
− 1 =

9

16
, sinhx0 =

3

4
(because x0 > 0).

(c) sech2x0 = 1 − tanh2 x0 = 1 −
(

4

5

)2

= 1 − 16

25
=

9

25
, sech x0 =

3

5
, coshx0 =

1

sech x0
=

5

3
, from

sinhx0

coshx0
=

tanhx0 we get sinhx0 =

(
5

3

)(
4

5

)
=

4

3
.

6.
d

dx
cschx =

d

dx

1

sinhx
= − coshx

sinh2 x
= − cothx csch x for x 6= 0.

d

dx
sech x =

d

dx

1

coshx
= − sinhx

cosh2 x
= − tanhx sech x for all x.

d

dx
cothx =

d

dx

coshx

sinhx
=

sinh2 x− cosh2 x

sinh2 x
= − csch2x for x 6= 0.

7.
d

dx
cosh−1 x =

d

dx
ln(x+

√
x2 − 1) =

1

x+
√
x2 − 1

(
1 +

2x

2
√
x2 − 1

)
=

1

x+
√
x2 − 1

√
x2 − 1 + x√
x2 − 1

=
1√

x2 − 1
.

d

dx
tanh−1 x =

d

dx

[
1

2
ln

(
1 + x

1− x

)]
=

1

2
· 1

1+x
1−x
· (1− x) · 1− (1 + x)(−1)

(1− x)2
=

2

2(1 + x)(1− x)
=

1

1− x2
.
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8. y = sinh−1 x if and only if x = sinh y; 1 =
dy

dx

dx

dy
=
dy

dx
cosh y; so

d

dx
[sinh−1 x] =

dy

dx
=

1

cosh y
=

1√
1 + sinh2 y

=

1√
1 + x2

for all x.

Let x ≥ 1. Then y = cosh−1 x if and only if x = cosh y; 1 =
dy

dx

dx

dy
=
dy

dx
sinh y, so

d

dx
[cosh−1 x] =

dy

dx
=

1

sinh y
=

1√
cosh2 y − 1

=
1√

x2 − 1
for x ≥ 1.

Let −1 < x < 1. Then y = tanh−1 x if and only if x = tanh y; thus 1 =
dy

dx

dx

dy
=
dy

dx
sech2y =

dy

dx
(1− tanh2 y) =

1− x2, so
d

dx
[tanh−1 x] =

dy

dx
=

1

1− x2
.

9.
dy

dx
= 4 cosh(4x− 8).

10.
dy

dx
= 4x3 sinh(x4).

11.
dy

dx
= − 1

x
csch2(lnx).

12.
dy

dx
= 2

sech22x

tanh 2x
.

13.
dy

dx
=

1

x2
csch(1/x) coth(1/x).

14.
dy

dx
= −2e2x sech(e2x) tanh(e2x).

15.
dy

dx
=

2 + 5 cosh(5x) sinh(5x)√
4x+ cosh2(5x)

.

16.
dy

dx
= 6 sinh2(2x) cosh(2x).

17.
dy

dx
= x5/2 tanh(

√
x) sech2(

√
x) + 3x2 tanh2(

√
x).

18.
dy

dx
= −3 cosh(cos 3x) sin 3x.

19.
dy

dx
=

1√
1 + x2/9

(
1

3

)
= 1/

√
9 + x2.

20.
dy

dx
=

1√
1 + 1/x2

(−1/x2) = − 1

|x|
√
x2 + 1

.

21.
dy

dx
= 1/

[
(cosh−1 x)

√
x2 − 1

]
.

22.
dy

dx
= 1/

[√
(sinh−1 x)2 − 1

√
1 + x2

]
.

23.
dy

dx
= −(tanh−1 x)−2/(1− x2).
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24.
dy

dx
= 2(coth−1 x)/(1− x2).

25.
dy

dx
=

sinhx√
cosh2 x− 1

=
sinhx

| sinhx| =

{
1, x > 0
−1, x < 0

.

26.
dy

dx
= (sech2x)/

√
1 + tanh2 x.

27.
dy

dx
= − ex

2x
√

1− x + ex sech−1√x.

28.
dy

dx
= 10(1 + x csch−1x)9

(
− x

|x|
√

1 + x2
+ csch−1x

)
.

29. u = sinhx,

∫
u6 du =

1

7
sinh7 x+ C.

30. u = 2x− 3,

∫
1

2
coshu du =

1

2
sinh(2x− 3) + C.

31. u = tanhx,

∫ √
u du =

2

3
(tanhx)3/2 + C.

32. u = 3x,

∫
1

3
csch2u du = −1

3
coth(3x) + C.

33. u = coshx,

∫
1

u
du = ln(coshx) + C.

34. u = cothx, −
∫
u2 du = −1

3
coth3 x+ C.

35. −1

3
sech3x

]ln 3

ln 2

= 37/375.

36. ln(coshx)
]ln 3

0
= ln 5− ln 3.

37. u = 3x,
1

3

∫
1√

1 + u2
du =

1

3
sinh−1 3x+ C.

38. x =
√

2u,

∫ √
2√

2u2 − 2
du =

∫
1√

u2 − 1
du = cosh−1(x/

√
2) + C.

39. u = ex,

∫
1

u
√

1− u2
du = − sech−1(ex) + C.

40. u = cos θ, −
∫

1√
1 + u2

du = − sinh−1(cos θ) + C

41. u = 2x,

∫
du

u
√

1 + u2
= −csch−1|u|+ C = −csch−1|2x|+ C.

42. x = 5u/3,

∫
5/3√

25u2 − 25
du =

1

3

∫
1√

u2 − 1
du =

1

3
cosh−1(3x/5) + C.
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43. tanh−1 x
]1/2

0
= tanh−1(1/2)− tanh−1(0) =

1

2
ln

1 + 1/2

1− 1/2
=

1

2
ln 3.

44. sinh−1 t
]√3

0
= sinh−1

√
3− sinh−1 0 = ln(

√
3 + 2).

45. True. coshx− sinhx =
ex + e−x

2
− ex − e−x

2
= e−x is positive for all x.

46. True. tanhx and sech x are bounded; the other 4 hyperbolic functions are not.

47. True. Only sinhx has this property.

48. False. For example, cos2 x+ sin2 x = 1, but the corresponding identity for hyperbolic functions has a minus sign:
cosh2 x− sinh2 x = 1.

49. A =

∫ ln 3

0

sinh 2x dx =
1

2
cosh 2x

]ln 3

0

=
1

2
[cosh(2 ln 3) − 1], but cosh(2 ln 3) = cosh(ln 9) =

1

2
(eln 9 + e− ln 9) =

1

2
(9 + 1/9) = 41/9 so A =

1

2
[41/9− 1] = 16/9.

50. V = π

∫ ln 2

0

sech2x dx = π tanhx

]ln 2

0

= π tanh(ln 2) = 3π/5.

51. V = π

∫ 5

0

(cosh2 2x− sinh2 2x) dx = π

∫ 5

0

dx = 5π.

52.

∫ 1

0

cosh ax dx = 2,
1

a
sinh ax

]1

0

= 2,
1

a
sinh a = 2, sinh a = 2a; let f(a) = sinh a − 2a, then an+1 = an −

sinh an − 2an
cosh an − 2

, a1 = 2.2, . . . , a4 ≈ a5 ≈ 2.177318985.

53. y′ = sinhx, 1 + (y′)2 = 1 + sinh2 x = cosh2 x, L =

∫ ln 2

0

coshx dx = sinhx

]ln 2

0

= sinh(ln 2) =
1

2
(eln 2 − e− ln 2) =

1

2

(
2− 1

2

)
=

3

4
.

54. y′ = sinh(x/a), 1 + (y′)2 = 1 + sinh2(x/a) = cosh2(x/a), L =

∫ x1

0

cosh(x/a) dx = a sinh(x/a)

]x1

0

= a sinh(x1/a).

55. (a) lim
x→+∞

sinhx = lim
x→+∞

1

2
(ex − e−x) = +∞− 0 = +∞.

(b) lim
x→−∞

sinhx = lim
x→−∞

1

2
(ex − e−x) = 0−∞ = −∞.

(c) lim
x→+∞

tanhx = lim
x→+∞

ex − e−x
ex + e−x

= lim
x→+∞

1− e−2x

1 + e−2x
= 1.

(d) lim
x→−∞

tanhx = lim
x→−∞

ex − e−x
ex + e−x

= lim
x→−∞

e2x − 1

e2x + 1
= −1.

(e) lim
x→+∞

sinh−1 x = lim
x→+∞

ln(x+
√
x2 + 1) = +∞.

(f) lim
x→1−

tanh−1 x = lim
x→1−

1

2
[ln(1 + x)− ln(1− x)] = +∞.
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56. Since lim
x→+∞

sinhx

ex/2
= 1 and lim

x→+∞
coshx

ex/2
= 1, lim

x→+∞
tanhx =

lim
x→+∞

sinhx

ex/2

lim
x→+∞

coshx

ex/2

= 1.

Since lim
x→−∞

sinhx

e−x/2
= −1 and lim

x→−∞
coshx

e−x/2
= 1, lim

x→−∞
tanhx =

lim
x→−∞

sinhx

e−x/2

lim
x→+∞

coshx

e−x/2

= −1.

57. sinh(−x) =
1

2
(e−x − ex) = −1

2
(ex − e−x) = − sinhx, cosh(−x) =

1

2
(e−x + ex) =

1

2
(ex + e−x) = coshx.

58. (a) coshx+ sinhx =
1

2
(ex + e−x) +

1

2
(ex − e−x) = ex.

(b) coshx− sinhx =
1

2
(ex + e−x)− 1

2
(ex − e−x) = e−x.

(c) sinhx cosh y + coshx sinh y =
1

4
(ex − e−x)(ey + e−y) +

1

4
(ex + e−x)(ey − e−y) =

=
1

4
[(ex+y − e−x+y + ex−y − e−x−y) + (ex+y + e−x+y − ex−y − e−x−y)] =

1

2
[e(x+y) − e−(x+y)] = sinh(x+ y).

(d) Let y = x in part (c).

(e) The proof is similar to part (c), or: treat x as variable and y as constant, and differentiate the result in part
(c) with respect to x.

(f) Let y = x in part (e).

(g) Use cosh2 x = 1 + sinh2 x together with part (f).

(h) Use sinh2 x = cosh2 x− 1 together with part (f).

59. (a) Divide cosh2 x− sinh2 x = 1 by cosh2 x.

(b) tanh(x+ y) =
sinhx cosh y + coshx sinh y

coshx cosh y + sinhx sinh y
=

sinhx

coshx
+

sinh y

cosh y

1 +
sinhx sinh y

coshx cosh y

=
tanhx+ tanh y

1 + tanhx tanh y
.

(c) Let y = x in part (b).

60. (a) Let y = cosh−1 x; then x = cosh y =
1

2
(ey+e−y), ey−2x+e−y = 0, e2y−2xey+1 = 0, ey =

2x±
√

4x2 − 4

2
=

x±
√
x2 − 1. To determine which sign to take, note that y ≥ 0 so e−y ≤ ey, x = (ey + e−y)/2 ≤ (ey + ey)/2 = ey,

hence ey ≥ x thus ey = x+
√
x2 − 1, y = cosh−1 x = ln(x+

√
x2 − 1).

(b) Let y = tanh−1 x; then x = tanh y =
ey − e−y
ey + e−y

=
e2y − 1

e2y + 1
, xe2y + x = e2y − 1, 1 + x = e2y(1 − x),

e2y = (1 + x)/(1− x), 2y = ln
1 + x

1− x , y =
1

2
ln

1 + x

1− x .

61. (a)
d

dx
(cosh−1 x) =

1 + x/
√
x2 − 1

x+
√
x2 − 1

= 1/
√
x2 − 1.
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(b)
d

dx
(tanh−1 x) =

d

dx

[
1

2
(ln(1 + x)− ln(1− x))

]
=

1

2

(
1

1 + x
+

1

1− x

)
= 1/(1− x2).

62. Let y = sech−1x then x = sechy = 1/ cosh y, cosh y = 1/x, y = cosh−1(1/x); the proofs for the remaining two are
similar.

63. If |u| < 1 then, by Theorem 6.9.6,

∫
du

1− u2
= tanh−1 u+C. For |u| > 1,

∫
du

1− u2
= coth−1 u+C = tanh−1(1/u)+

C.

64. (a)
d

dx
(sech−1|x|) =

d

dx
(sech−1

√
x2) = − 1√

x2
√

1− x2

x√
x2

= − 1

x
√

1− x2
.

(b) Similar to solution of part (a).

65. (a) lim
x→+∞

(cosh−1 x− lnx) = lim
x→+∞

[ln(x+
√
x2 − 1)− lnx] = lim

x→+∞
ln
x+
√
x2 − 1

x
= lim
x→+∞

ln(1+
√

1− 1/x2) =

ln 2.

(b) lim
x→+∞

coshx

ex
= lim
x→+∞

ex + e−x

2ex
= lim
x→+∞

1

2
(1 + e−2x) = 1/2.

66. For |x| < 1, y = tanh−1 x is defined and dy/dx = 1/(1 − x2) > 0; y′′ = 2x/(1 − x2)2 changes sign at x = 0, so
there is a point of inflection there.

67. Let x = −u/a,

∫
1√

u2 − a2
du = −

∫
a

a
√
x2 − 1

dx = − cosh−1 x+ C = − cosh−1(−u/a) + C.

− cosh−1(−u/a) = − ln(−u/a +
√
u2/a2 − 1) = ln

[
a

−u+
√
u2 − a2

u+
√
u2 − a2

u+
√
u2 − a2

]
= ln

∣∣∣u+
√
u2 − a2

∣∣∣ − ln a =

ln |u+
√
u2 − a2|+ C1, so

∫
1√

u2 − a2
du = ln

∣∣∣u+
√
u2 − a2

∣∣∣+ C2.

68. Using sinhx+ coshx = ex (Exercise 58a), (sinhx+ coshx)n = (ex)n = enx = sinhnx+ coshnx.

69.

∫ a

−a
etx dx =

1

t
etx
]a

−a
=

1

t
(eat − e−at) =

2 sinh at

t
for t 6= 0.

70. (a) y′ = sinh(x/a), 1 + (y′)2 = 1 + sinh2(x/a) = cosh2(x/a), so

L = 2

∫ b

0

cosh(x/a) dx = 2a sinh(x/a)]
b
0 = 2a sinh(b/a).

(b) The highest point is at x = −b and x = b, the lowest at x = 0, so S = a cosh(b/a)−a cosh(0) = a cosh(b/a)−a.

71. From part (b) of Exercise 70, S = a cosh(b/a) − a so 30 = a cosh(200/a) − a. Let u = 200/a, then a = 200/u so

30 = (200/u)[coshu− 1], coshu− 1 = 0.15u. If f(u) = coshu− 0.15u− 1, then un+1 = un−
coshun − 0.15un − 1

sinhun − 0.15
;

u1 = 0.3, . . . , u4 ≈ u5 ≈ 0.297792782 ≈ 200/a so a ≈ 671.6079505. From part (a), L = 2a sinh(b/a) ≈
2(671.6079505) sinh(0.297792782) ≈ 405.9 ft.

72. From part (a) of Exercise 70, L = 2a sinh(b/a) so 120 = 2a sinh(50/a), a sinh(50/a) = 60. Let u = 50/a, then

a = 50/u so (50/u) sinhu = 60, sinhu = 1.2u. If f(u) = sinhu − 1.2u, then un+1 = un −
sinhun − 1.2un
coshun − 1.2

;

u1 = 1, . . . , u5 ≈ u6 ≈ 1.064868548 ≈ 50/a so a ≈ 46.95415231. From part (b), S = a cosh(b/a) − a ≈
46.95415231[cosh(1.064868548)− 1] ≈ 29.2 ft.
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73. Set a = 68.7672, b = 0.0100333, c = 693.8597, d = 299.2239.

(a)

650

0
–300 300

(b) L = 2

∫ d

0

√
1 + a2b2 sinh2 bx dx ≈ 1480.2798 ft.

(c) x ≈ ±283.6249 ft. (d) 82◦

74. (a) 1

1

2

t

r

(b) r = 1 when t ≈ 0.673080 s. (c) dr/dt ≈ 4.48 m/s.

75. (a) When the bow of the boat is at the point (x, y) and the person has walked a distance D, then the person is
located at the point (0, D), the line segment connecting (0, D) and (x, y) has length a; thus a2 = x2 + (D − y)2,
D = y +

√
a2 − x2 = a sech−1(x/a).

(b) Find D when a = 15, x = 10: D = 15 sech−1(10/15) = 15 ln

(
1 +

√
5/9

2/3

)
≈ 14.44 m.

(c) dy/dx = − a2

x
√
a2 − x2

+
x√

a2 − x2
=

1√
a2 − x2

[
−a

2

x
+ x

]
= − 1

x

√
a2 − x2, 1 + [y′]2 = 1 +

a2 − x2

x2
=
a2

x2
;

with a = 15, L =

∫ 15

5

√
225

x2
dx =

∫ 15

5

15

x
dx = 15 lnx

]15

5

= 15 ln 3 ≈ 16.48 m.

76. First we would need to show that the line segment from the origin to P meets the right branch of the hyperbola
only at P , so that the shaded region in Figure 6.9.3b is well-defined. (This is easy.)

Next we’d need to show that the area of the shaded region approaches +∞ as the point P moves upward and to
the right along the curve, so that cosh t and sinh t will be defined for all t > 0 (and hence, by symmetry, for all
t.) (This is not quite as easy.)

77. Since (cosh t, sinh t) lies on the hyperbola x2 − y2 = 1, we have cosh2 t− sinh2 t = 1. Since it lies on the right half
of the hyperbola, cosh t > 0. From the symmetry of the hyperbola, cosh(−t) = cosh t and sinh(−t) = − sinh t.

Next, we can obtain the derivatives of the hyperbolic functions. Define tanh t =
sinh t

cosh t
and sech t =

1

cosh t
.

Suppose that h is a small positive number, (x0, y0) = (cosh t, sinh t), and (x1, y1) = (cosh(t+h), sinh(t+h)). Then
h/2 = (t + h)/2 − t/2 is approximately the area of the triangle with vertices (0, 0), (x0, y0), and (x1, y1), which
equals (x0y1 − x1y0)/2. Hence cosh t sinh(t + h) − cosh(t + h) sinh t ≈ h. Dividing by cosh t cosh(t + h) implies

tanh(t+h)− tanh t ≈ h

cosh t cosh(t+ h)
≈ h sech2t. Taking the limit as h→ 0 gives

d

dt
tanh t = sech2 t. Dividing

cosh2 t − sinh2 t = 1 by cosh2 t gives 1 − tanh2 t =
1

cosh2 t
, so cosh t = (1 − tanh2 t)−1/2. Hence

d

dt
cosh t =

−1

2
(1 − tanh2 t)−3/2(−2) tanh t · d

dt
tanh t = cosh3 t tanh t sech2 t = sinh t and

d

dt
sinh t =

d

dt
(cosh t tanh t) =

cosh t · d
dt

tanh t+ tanh t · d
dt

cosh t = cosh t sech2 t+ tanh t sinh t =
1 + sinh2 t

cosh t
= cosh t.
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Chapter 6 Review Exercises

6. (a) A =

∫ 2

0

(2 + x− x2) dx. (b) A =

∫ 2

0

√
y dy +

∫ 4

2

[
√
y − (y − 2)] dy.

(c) V = π

∫ 2

0

[(2 + x)2 − x4] dx. (d) V = 2π

∫ 2

0

y
√
y dy + 2π

∫ 4

2

y[
√
y − (y − 2)] dy.

(e) V = 2π

∫ 2

0

x(2 + x− x2) dx. (f) V = π

∫ 2

0

y dy +

∫ 4

2

π(y − (y − 2)2) dy.

(g) V = π

∫ 2

0

[(2 + x+ 3)2 − (x2 + 3)2] dx. (h) V = 2π

∫ 2

0

[2 + x− x2](5− x) dx.

7. (a) A =

∫ b

a

(f(x)− g(x)) dx+

∫ c

b

(g(x)− f(x)) dx+

∫ d

c

(f(x)− g(x)) dx.

(b) A =

∫ 0

−1

(x3 − x) dx+

∫ 1

0

(x− x3) dx+

∫ 2

1

(x3 − x) dx =
1

4
+

1

4
+

9

4
=

11

4
.

8. Distance =

∫
|v| dt, so

(a) distance =

∫ 60

0

(3t− t2/20) dt = 1800 ft.

(b) If T ≤ 60, then distance =

∫ T

0

(3t− t2/20) dt =
3

2
T 2 − 1

60
T 3 ft.

9. Find where the curves cross: set x3 = x2 + 4; by observation x = 2 is a solution. Then

V = π

∫ 2

0

[(x2 + 4)2 − (x3)2] dx =
4352

105
π.

10. V = 2

∫ L/2

0

π
16R2

L4
(x2 − L2/4)2 =

8π

15
LR2.

11. V =

∫ 4

1

(√
x− 1√

x

)2

dx = 2 ln 2 +
3

2
.

12. (a) π

∫ 1

0

(sin−1 x)2 dx. (b) 2π

∫ π/2

0

y(1− sin y) dy.

13. By implicit differentiation
dy

dx
= −

(y
x

)1/3
, so 1+

(
dy

dx

)2
= 1+

(y
x

)2/3
=
x2/3 + y2/3

x2/3
=

4

x2/3
, L =

∫ −1

−8

2

(−x)1/3
dx =

9.

14. (a) L =

∫ ln 10

0

√
1 + (ex)2 dx. (b) L =

∫ 10

1

√
1 +

1

y2
dy.

15. A =

∫ 16

9

2π
√

25− x
√

1 +

( −1

2
√

25− x

)2

dx = π

∫ 16

9

√
101− 4x dx =

π

6

(
653/2 − 373/2

)
.



Chapter 6 Review Exercises 359

16. (a) S =

∫ 8/27

0

2π · 3x1/3
√

1 + x−4/3 dx. (b) S =

∫ 2

0

2π
y3

27

√
1 + y4/81 dy.

(c) S =

∫ 2

0

2π(y + 2)
√

1 + y4/81 dy.

17. A cross section of the solid, perpendicular to the x-axis, has area equal to π(secx)2, and the average of these cross

sectional areas is given by Aave =
1

π/3

∫ π/3

0

π(secx)2 dx =
3

π
π tanx

]π/3

0

= 3
√

3.

18. The solid we generate this way is just a sphere with radius a. The average value of the area of the cross sections

is then the volume of this sphere divided by the diameter, so it is Aave =
1

2a

4

3
a3π = 2a2π/3.

19. (a) F = kx,
1

2
= k

1

4
, k = 2, W =

∫ 1/4

0

kx dx = 1/16 J. (b) 25 =

∫ L

0

kx dx = kL2/2, L = 5 m.

20. F = 30x+ 2000, W =

∫ 150

0

(30x+ 2000) dx = 15 · 1502 + 2000 · 150 = 637,500 lb·ft.

21. The region is described by −4 ≤ y ≤ 4,
y2

4
≤ x ≤ 2 +

y2

8
. By symmetry, y = 0. To find x, we use the analogue of

Formula (11) in Section 6.7. The area is A =

∫ 4

−4

(
2 +

y2

8
− y2

4

)
dy =

∫ 4

−4

(
2− y2

8

)
dy =

[
2y − y3

24

]4

−4

=
32

3
.

So x =
3

32

∫ 4

−4

1

2

[(
2 +

y2

8

)2

−
(
y2

4

)2
]
dy =

3

64

∫ 4

−4

(
4 +

y2

2
− 3y4

64

)
dy =

3

64

[
4y +

y3

6
− 3y5

320

]4

−4

=
8

5
. The

centroid is

(
8

5
, 0

)
.

22. The region is described by −a ≤ x ≤ a, 0 ≤ y ≤ b

a

√
a2 − x2. By symmetry, x = 0. To find y, we use Formula

(9) in Section 6.7. The area is A =

∫ a

−a

(
b

a

√
a2 − x2

)
dx. This is

b

a
times the area of a half-disc of radius a,

so A =
πab

2
. Hence y =

2

πab

∫ a

−a

1

2

(
b

a

√
a2 − x2

)2

dx =
b

πa3

∫ a

−a
(a2 − x2) dx =

b

πa3

[
a2x− x3

3

]a

−a
=

4b

3π
. The

centroid is

(
0,

4b

3π

)
.

23. (a) F =

∫ 1

0

ρx3 dx N.

(b) By similar triangles,
w(x)

4
=
x

2
, w(x) = 2x, so F =

∫ 2

0

ρ(1 + x)2x dx lb/ft2.

(c) A formula for the parabola is y =
8

125
x2 − 10, so F =

∫ 0

−10

9810|y|2
√

125

8
(y + 10) dy N.

0

4
2

h(x) = 1 + x

x
w(x)
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24. y′ = a cosh ax, y′′ = a2 sinh ax = a2y.

25. (a) cosh 3x = cosh(2x + x) = cosh 2x coshx + sinh 2x sinhx = (2 cosh2 x − 1) coshx + (2 sinhx coshx) sinhx =
2 cosh3 x− coshx+ 2 sinh2 x coshx = 2 cosh3 x− coshx+ 2(cosh2 x− 1) coshx = 4 cosh3 x− 3 coshx.

(b) From Theorem 6.9.2 with x replaced by
x

2
: coshx = 2 cosh2 x

2
− 1, 2 cosh2 x

2
= coshx + 1, cosh2 x

2
=

1

2
(coshx+ 1), cosh

x

2
=

√
1

2
(coshx+ 1) (because cosh

x

2
> 0).

(c) From Theorem 6.9.2 with x replaced by
x

2
: coshx = 2 sinh2 x

2
+ 1, 2 sinh2 x

2
= coshx − 1, sinh2 x

2
=

1

2
(coshx− 1), sinh

x

2
= ±

√
1

2
(coshx− 1).

Chapter 6 Making Connections

1. (a) By equation (2) of Section 6.3, the volume is V =

∫ 1

0

2πxf(x2) dx. Making the substitution u = x2,

du = 2x dx gives V =

∫ 1

0

2πf(u) · 1

2
du = π

∫ 1

0

f(u) du = πA1.

(b) By the Theorem of Pappus, the volume in (a) equals 2πA2x, where x = a is the x-coordinate of the centroid

of R. Hence a =
πA1

2πA2
=

A1

2A2
.

2. (a) At depth x feet below the surface, the radius is 10 − x

3
ft, so the area is π

(
10− x

3

)2

=
π

9
(30 − x)2 ft2.

Hence the weight of a thin layer at depth x ft with height ∆x ft is approximately 62.4
π

9
(30− x)2∆x lb. The work

needed to lift this layer to the top is approximately 62.4
π

9
x(30 − x)2∆x ft·lb. Hence the total work needed to

empty the tank is

∫ 15

0

62.4
π

9
x(30 − x)2 dx = 62.4

π

9

∫ 15

0

(900x − 60x2 + x3) dx = 62.4
π

9

[
450x2 − 20x3 +

1

4
x4

]15

0
= 321750π ≈ 1010807 ft·lb.

(b) When the piston has risen x feet from the bottom of the tank, its radius is 5 +
x

3
ft, so its area is

π
(

5 +
x

3

)2

=
π

9
(15 + x)2 ft2. The depth of the water above the piston is 15 − x ft, so the fluid force push-

ing down on the piston is 62.4(15− x)
π

9
(15 + x)2 lb; this also equals the force needed to raise the piston. So the

total work done raising the piston is

∫ 15

0

62.4(15 − x)
π

9
(15 + x)2 dx = 62.4

π

9

∫ 15

0

(3375 + 225x − 15x2 − x3) dx

= 62.4
π

9

[
3375x+

225

2
x2 − 5x3 − 1

4
x4

]15

0

= 321750π ft·lb.

3. The area of the annulus with inner radius r and outer radius r + ∆r is π(r + ∆r)2 − πr2 ≈ 2πr∆r, so its mass is

approximately 2πrf(r)∆r. Hence the total mass of the lamina is

∫ a

0

2πrf(r) dr.

4. Let the x-axis point downward, with x = 0 at the surface of the fluid. Let the y-axis be perpendicular to the
x-axis and in the plane of the submerged surface. Suppose the surface has area A and is described by a ≤ x ≤ b,
g(x) ≤ y ≤ f(x). In Formula (8) of Section 6.8 we have h(x) = x and w(x) = f(x) − g(x), so the fluid force on

the submerged surface is F =

∫ b

a

ρx(f(x)− g(x)) dx = ρA · 1

A

∫ b

a

x(f(x)− g(x)) dx = ρAx = A · ρx, by Formula

(10) of Section 6.7. Since ρx is the pressure at the centroid, the fluid force equals the area times the pressure at
the centroid.
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If the same surface were horizontal at the depth of the centroid, then Formula (6) of Section 6.8 implies that the
fluid force would be ρxA, the same as above.

5. (a) Consider any solid obtained by sliding a horizontal region, of any shape, some distance vertically. Thus the
top and bottom faces, and every horizontal cross-section in between, are all congruent. This includes all of the
cases described in part (a) of the problem.

Suppose such a solid, whose base has area A, is floating in a fluid so that its base is a distance h below the surface.
The pressure at the base is ρh, so the fluid exerts an upward force on the base of magnitude ρhA. The fluid also
exerts forces on the sides of the solid, but those are horizontal, so they don’t contribute to the buoyancy. Hence
the buoyant force equals ρhA. Since the part of the solid which is below the surface has volume hA, the buoyant
force equals the weight of fluid which would fill that volume; i.e. the weight of the fluid displaced by the solid.

(b) Now consider a solid which is the union of finitely many solids of the type described above. The buoyant
force on such a solid is the sum of the buoyant forces on its constituents, which equals the sum of the weights of
the fluid displaced by them, which equals the weight of the fluid displaced by the whole solid. So the Archimedes
Principle applies to the union.

Any solid can be approximated by such unions, so it is plausible that the Archimedes Principle applies to all solids.
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Principles of Integral Evaluation

Exercise Set 7.1

1. u = 4− 2x, du = −2dx, − 1

2

∫
u3 du = −1

8
u4 + C = −1

8
(4− 2x)4 + C.

2. u = 4 + 2x, du = 2dx,
3

2

∫ √
u du = u3/2 + C = (4 + 2x)3/2 + C.

3. u = x2, du = 2xdx,
1

2

∫
sec2 u du =

1

2
tanu+ C =

1

2
tan(x2) + C.

4. u = x2, du = 2xdx, 2

∫
tanu du = −2 ln | cosu |+ C = −2 ln | cos(x2)|+ C.

5. u = 2 + cos 3x, du = −3 sin 3xdx, − 1

3

∫
du

u
= −1

3
ln |u|+ C = −1

3
ln(2 + cos 3x) + C.

6. u =
2

3
x, du =

2

3
dx,

1

6

∫
du

1 + u2
=

1

6
tan−1 u+ C =

1

6
tan−1 2

3
x+ C.

7. u = ex, du = exdx,

∫
sinhu du = coshu+ C = cosh ex + C.

8. u = lnx, du =
1

x
dx,

∫
secu tanu du = secu+ C = sec(lnx) + C.

9. u = tanx, du = sec2 xdx,

∫
eu du = eu + C = etan x + C.

10. u = x2, du = 2xdx,
1

2

∫
du√

1− u2
=

1

2
sin−1 u+ C =

1

2
sin−1(x2) + C.

11. u = cos 5x, du = −5 sin 5xdx, − 1

5

∫
u5 du = − 1

30
u6 + C = − 1

30
cos6 5x+ C.

12. u = sinx, du = cosx dx,

∫
du

u
√
u2 + 1

= − ln

∣∣∣∣∣
1 +
√

1 + u2

u

∣∣∣∣∣+ C = − ln

∣∣∣∣∣
1 +

√
1 + sin2 x

sinx

∣∣∣∣∣+ C.

13. u = ex, du = exdx,

∫
du√

4 + u2
= ln

(
u+

√
u2 + 4

)
+ C = ln

(
ex +

√
e2x + 4

)
+ C.

14. u = tan−1 x, du =
1

1 + x2
dx,

∫
eu du = eu + C = etan−1 x + C.

15. u =
√
x− 1, du =

1

2
√
x− 1

dx, 2

∫
eu du = 2eu + C = 2e

√
x−1 + C.

363



364 Chapter 7

16. u = x2 + 2x, du = (2x+ 2)dx,
1

2

∫
cotu du =

1

2
ln | sinu|+ C =

1

2
ln sin |x2 + 2x|+ C.

17. u =
√
x, du =

1

2
√
x
dx,

∫
2 coshu du = 2 sinhu+ C = 2 sinh

√
x+ C.

18. u = lnx, du =
dx

x
,

∫
du

u2
= − 1

u
+ C = − 1

lnx
+ C.

19. u =
√
x, du =

1

2
√
x
dx,

∫
2 du

3u
= 2

∫
e−u ln 3 du = − 2

ln 3
e−u ln 3 + C = − 2

ln 3
3−
√
x + C.

20. u = sin θ, du = cos θdθ,

∫
secu tanu du = secu+ C = sec(sin θ) + C.

21. u =
2

x
, du = − 2

x2
dx, − 1

2

∫
csch2u du =

1

2
cothu+ C =

1

2
coth

2

x
+ C.

22.

∫
dx√
x2 − 4

= ln
∣∣∣x+

√
x2 − 4

∣∣∣+ C.

23. u = e−x, du = −e−xdx, −
∫

du

4− u2
= −1

4
ln

∣∣∣∣
2 + u

2− u

∣∣∣∣+ C = −1

4
ln

∣∣∣∣
2 + e−x

2− e−x
∣∣∣∣+ C.

24. u = lnx, du =
1

x
dx,

∫
cosu du = sinu+ C = sin(lnx) + C.

25. u = ex, du = exdx,

∫
ex dx√
1− e2x

=

∫
du√

1− u2
= sin−1 u+ C = sin−1 ex + C.

26. u = x−1/2, du = − 1

2x3/2
dx, −

∫
2 sinhu du = −2 coshu+ C = −2 cosh(x−1/2) + C.

27. u = x2, du = 2xdx,
1

2

∫
du

cscu
=

1

2

∫
sinu du = −1

2
cosu+ C = −1

2
cos(x2) + C.

28. 2u = ex, 2du = exdx,

∫
2du√

4− 4u2
= sin−1 u+ C = sin−1(ex/2) + C.

29. 4−x
2

= e−x
2 ln 4, u = −x2 ln 4, du = −2x ln 4 dx = −x ln 16 dx,− 1

ln 16

∫
eu du = − 1

ln 16
eu +C = − 1

ln 16
e−x

2 ln 4 +

C = − 1

ln 16
4−x

2

+ C.

30. 2πx = eπx ln 2,

∫
2πx dx =

1

π ln 2
eπx ln 2 + C =

1

π ln 2
2πx + C.

31. (a) u = sinx, du = cosx dx,

∫
u du =

1

2
u2 + C =

1

2
sin2 x+ C.

(b)

∫
sinx cosx dx =

1

2

∫
sin 2x dx = −1

4
cos 2x+ C = −1

4
(cos2 x− sin2 x) + C.

(c) −1

4
(cos2 x− sin2 x) +C = −1

4
(1− sin2 x− sin2 x) +C = −1

4
+

1

2
sin2 x+C, and this is the same as the answer

in part (a) except for the constants.
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32. (a) sech 2x =
1

cosh 2x
=

1

cosh2 x+ sinh2 x
=

sech2x

1 + tanh2 x
.

(b)

∫
sech2x dx =

∫
sech2x

1 + tanh2 x
dx = tan−1(tanhx)+C, or, by substituting u = 2x, we obtain that

∫
sechx dx =

2 tan−1(tanh(x/2)) + C.

(c) sechx =
1

coshx
=

2

ex + e−x
=

2ex

e2x + 1
.

(d)

∫
sechx dx = 2

∫
ex

e2x + 1
dx = 2 tan−1(ex) + C.

(e) Using the identity tan−1 x+ tan−1 y = tan−1

(
x− y
1 + xy

)
, the difference between the two functions obtained is

the constant tan−1(ex)− tan−1(tanh(x/2)) = tan−1 e
3x/2 + e−x/2

e3x/2 + e−x/2
= tan−1(1) = π/2.

33. (a)
sec2 x

tanx
=

1

cos2 x tanx
=

1

cosx sinx
.

(b) csc 2x =
1

sin 2x
=

1

2 sinx cosx
=

1

2

sec2 x

tanx
, so

∫
csc 2x dx =

1

2
ln tanx+C, then using the substitution u = 2x

we obtain that

∫
cscx dx = ln(tan(x/2)) + C.

(c) secx =
1

cosx
=

1

sin(π/2− x)
= csc(π/2−x), so

∫
secx dx = −

∫
csc(π/2−x) dx = − ln tan(π/4−x/2) +C.

Exercise Set 7.2

1. u = x, dv = e−2xdx, du = dx, v = −1

2
e−2x;

∫
xe−2xdx = −1

2
xe−2x +

∫
1

2
e−2xdx = −1

2
xe−2x − 1

4
e−2x + C.

2. u = x, dv = e3xdx, du = dx, v =
1

3
e3x;

∫
xe3xdx =

1

3
xe3x − 1

3

∫
e3xdx =

1

3
xe3x − 1

9
e3x + C.

3. u = x2, dv = exdx, du = 2x dx, v = ex;

∫
x2exdx = x2ex − 2

∫
xexdx. For

∫
xexdx use u = x, dv = exdx,

du = dx, v = ex to get

∫
xexdx = xex − ex + C1 so

∫
x2exdx = x2ex − 2xex + 2ex + C.

4. u = x2, dv = e−2xdx, du = 2x dx, v = −1

2
e−2x;

∫
x2e−2xdx = −1

2
x2e−2x +

∫
xe−2xdx. For

∫
xe−2xdx use

u = x, dv = e−2xdx to get

∫
xe−2xdx = −1

2
xe−2x +

1

2

∫
e−2xdx = −1

2
xe−2x − 1

4
e−2x + C, so

∫
x2e−2xdx =

−1

2
x2e−2x − 1

2
xe−2x − 1

4
e−2x + C.

5. u = x, dv = sin 3x dx, du = dx, v = −1

3
cos 3x;

∫
x sin 3x dx = −1

3
x cos 3x +

1

3

∫
cos 3x dx = −1

3
x cos 3x +

1

9
sin 3x+ C.

6. u = x, dv = cos 2x dx, du = dx, v =
1

2
sin 2x;

∫
x cos 2x dx =

1

2
x sin 2x− 1

2

∫
sin 2x dx =

1

2
x sin 2x+

1

4
cos 2x+C.
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7. u = x2, dv = cosx dx, du = 2x dx, v = sinx;

∫
x2 cosx dx = x2 sinx− 2

∫
x sinx dx. For

∫
x sinx dx use u = x,

dv = sinx dx to get

∫
x sinx dx = −x cosx+ sinx+ C1 so

∫
x2 cosx dx = x2 sinx+ 2x cosx− 2 sinx+ C.

8. u = x2, dv = sinx dx, du = 2x dx, v = − cosx;

∫
x2 sinx dx = −x2 cosx + 2

∫
x cosx dx; for

∫
x cosx dx use

u = x, dv = cosx dx to get

∫
x cosx dx = x sinx+ cosx+C1 so

∫
x2 sinx dx = −x2 cosx+ 2x sinx+ 2 cosx+C.

9. u = lnx, dv = x dx, du =
1

x
dx, v =

1

2
x2;

∫
x lnx dx =

1

2
x2 lnx− 1

2

∫
x dx =

1

2
x2 lnx− 1

4
x2 + C.

10. u = lnx, dv =
√
x dx, du =

1

x
dx, v =

2

3
x3/2;

∫ √
x lnx dx =

2

3
x3/2 lnx− 2

3

∫
x1/2dx =

2

3
x3/2 lnx− 4

9
x3/2 + C.

11. u = (lnx)2, dv = dx, du = 2
lnx

x
dx, v = x;

∫
(lnx)2dx = x(lnx)2 − 2

∫
lnx dx. Use u = lnx, dv = dx to get

∫
lnx dx = x lnx−

∫
dx = x lnx− x+ C1 so

∫
(lnx)2dx = x(lnx)2 − 2x lnx+ 2x+ C.

12. u = lnx, dv =
1√
x
dx, du =

1

x
dx, v = 2

√
x;

∫
lnx√
x
dx = 2

√
x lnx− 2

∫
1√
x
dx = 2

√
x lnx− 4

√
x+ C.

13. u = ln(3x− 2), dv = dx, du =
3

3x− 2
dx, v = x;

∫
ln(3x− 2)dx = x ln(3x− 2)−

∫
3x

3x− 2
dx, but

∫
3x

3x− 2
dx =

∫ (
1 +

2

3x− 2

)
dx = x+

2

3
ln(3x− 2) + C1 so

∫
ln(3x− 2)dx = x ln(3x− 2)− x− 2

3
ln(3x− 2) + C.

14. u = ln(x2 + 4), dv = dx, du =
2x

x2 + 4
dx, v = x;

∫
ln(x2 + 4)dx = x ln(x2 + 4)− 2

∫
x2

x2 + 4
dx, but

∫
x2

x2 + 4
dx =

∫ (
1− 4

x2 + 4

)
dx = x− 2 tan−1 x

2
+ C1 so

∫
ln(x2 + 4)dx = x ln(x2 + 4)− 2x+ 4 tan−1 x

2
+ C.

15. u = sin−1 x, dv = dx, du = 1/
√

1− x2dx, v = x;

∫
sin−1 x dx = x sin−1 x −

∫
x/
√

1− x2dx = x sin−1 x +
√

1− x2 + C.

16. u = cos−1(2x), dv = dx, du = − 2√
1− 4x2

dx, v = x;

∫
cos−1(2x)dx = x cos−1(2x) +

∫
2x√

1− 4x2
dx =

x cos−1(2x)− 1

2

√
1− 4x2 + C.

17. u = tan−1(3x), dv = dx, du =
3

1 + 9x2
dx, v = x;

∫
tan−1(3x)dx = x tan−1(3x) −

∫
3x

1 + 9x2
dx = x tan−1(3x) −

1

6
ln(1 + 9x2) + C.

18. u = tan−1 x, dv = x dx, du =
1

1 + x2
dx, v =

1

2
x2;

∫
x tan−1 x dx =

1

2
x2 tan−1 x−1

2

∫
x2

1 + x2
dx, but

∫
x2

1 + x2
dx =

∫ (
1− 1

1 + x2

)
dx = x− tan−1 x+ C1 so

∫
x tan−1 x dx =

1

2
x2 tan−1 x− 1

2
x+

1

2
tan−1 x+ C.

19. u = ex, dv = sinx dx, du = exdx, v = − cosx;

∫
ex sinx dx = −ex cosx+

∫
ex cosx dx. For

∫
ex cosx dx use u =

ex, dv = cosx dx to get

∫
ex cosx = ex sinx−

∫
ex sinx dx, so

∫
ex sinx dx = −ex cosx+ ex sinx−

∫
ex sinx dx,
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2

∫
ex sinx dx = ex(sinx− cosx) + C1,

∫
ex sinx dx =

1

2
ex(sinx− cosx) + C.

20. u = e3x, dv = cos 2x dx, du = 3e3xdx, v =
1

2
sin 2x;

∫
e3x cos 2x dx =

1

2
e3x sin 2x− 3

2

∫
e3x sin 2x dx. Use u = e3x,

dv = sin 2x dx to get

∫
e3x sin 2x dx = −1

2
e3x cos 2x +

3

2

∫
e3x cos 2x dx, so

∫
e3x cos 2x dx =

1

2
e3x sin 2x +

3

4
e3x cos 2x−9

4

∫
e3x cos 2x dx,

13

4

∫
e3x cos 2x dx =

1

4
e3x(2 sin 2x+3 cos 2x)+C1,

∫
e3x cos 2x dx =

1

13
e3x(2 sin 2x+

3 cos 2x) + C.

21. u = sin(lnx), dv = dx, du =
cos(lnx)

x
dx, v = x;

∫
sin(lnx)dx = x sin(lnx) −

∫
cos(lnx)dx. Use u =

cos(lnx), dv = dx to get

∫
cos(lnx)dx = x cos(lnx) +

∫
sin(lnx)dx so

∫
sin(lnx)dx = x sin(lnx)− x cos(lnx)−

∫
sin(lnx)dx,

∫
sin(lnx)dx =

1

2
x[sin(lnx)− cos(lnx)] + C.

22. u = cos(lnx), dv = dx, du = − 1

x
sin(lnx)dx, v = x;

∫
cos(lnx)dx = x cos(lnx) +

∫
sin(lnx)dx. Use u =

sin(lnx), dv = dx to get

∫
sin(lnx)dx = x sin(lnx)−

∫
cos(lnx)dx so

∫
cos(lnx)dx = x cos(lnx) + x sin(lnx)−

∫
cos(lnx)dx,

∫
cos(lnx)dx =

1

2
x[cos(lnx) + sin(lnx)] + C.

23. u = x, dv = sec2 x dx, du = dx, v = tanx;

∫
x sec2 x dx = x tanx −

∫
tanx dx = x tanx −

∫
sinx

cosx
dx =

x tanx+ ln | cosx|+ C.

24. u = x, dv = tan2 x dx = (sec2 x− 1)dx, du = dx, v = tanx− x;

∫
x tan2 x dx = x tanx− x2 −

∫
(tanx− x)dx =

x tanx− x2 + ln | cosx|+ 1

2
x2 + C = x tanx− 1

2
x2 + ln | cosx|+ C.

25. u = x2, dv = xex
2

dx, du = 2x dx, v =
1

2
ex

2

;

∫
x3ex

2

dx =
1

2
x2ex

2 −
∫
xex

2

dx =
1

2
x2ex

2 − 1

2
ex

2

+ C.

26. u = xex, dv =
1

(x+ 1)2
dx, du = (x+1)ex dx, v = − 1

x+ 1
;

∫
xex

(x+ 1)2
dx = − xex

x+ 1
+

∫
exdx = − xex

x+ 1
+ex+C =

ex

x+ 1
+ C.

27. u = x, dv = e2xdx, du = dx, v =
1

2
e2x;

∫ 2

0

xe2xdx =
1

2
xe2x

]2

0

− 1

2

∫ 2

0

e2xdx = e4 − 1

4
e2x

]2

0

= e4 − 1

4
(e4 − 1) =

(3e4 + 1)/4.

28. u = x, dv = e−5xdx, du = dx, v = −1

5
e−5x;

∫ 1

0

xe−5xdx = −1

5
xe−5x

]1

0

+
1

5

∫ 1

0

e−5xdx = −1

5
e−5 − 1

25
e−5x

]1

0

=

−1

5
e−5 − 1

25
(e−5 − 1) = (1− 6e−5)/25.

29. u = lnx, dv = x2dx, du =
1

x
dx, v =

1

3
x3;

∫ e

1

x2 lnx dx =
1

3
x3 lnx

]e

1

− 1

3

∫ e

1

x2dx =
1

3
e3 − 1

9
x3

]e

1

=
1

3
e3 − 1

9
(e3 −

1) = (2e3 + 1)/9.

30. u = lnx, dv =
1

x2
dx, du =

1

x
dx, v = − 1

x
;

∫ e

√
e

lnx

x2
dx = − 1

x
lnx

]e
√
e

+

∫ e

√
e

1

x2
dx = −1

e
+

1√
e

ln
√
e − 1

x

]e
√
e

=
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−1

e
+

1

2
√
e
− 1

e
+

1√
e

=
3
√
e− 4

2e
.

31. u = ln(x + 2), dv = dx, du =
1

x+ 2
dx, v = x;

∫ 1

−1

ln(x + 2)dx = x ln(x + 2)

]1

−1

−
∫ 1

−1

x

x+ 2
dx = ln 3 + ln 1 −

∫ 1

−1

[
1− 2

x+ 2

]
dx = ln 3− [x− 2 ln(x+ 2)]

]1

−1

= ln 3− (1− 2 ln 3) + (−1− 2 ln 1) = 3 ln 3− 2.

32. u = sin−1 x, dv = dx, du =
1√

1− x2
dx, v = x;

∫ √3/2

0

sin−1 x dx = x sin−1 x

]√3/2

0

−
∫ √3/2

0

x√
1− x2

dx =

√
3

2
sin−1

√
3

2
+
√

1− x2

]√3/2

0

=

√
3

2

(π
3

)
+

1

2
− 1 =

π
√

3

6
− 1

2
.

33. u = sec−1
√
θ, dv = dθ, du =

1

2θ
√
θ − 1

dθ, v = θ;

∫ 4

2

sec−1
√
θdθ = θ sec−1

√
θ

]4

2

− 1

2

∫ 4

2

1√
θ − 1

dθ = 4 sec−1 2 −

2 sec−1
√

2−
√
θ − 1

]4

2

= 4
(π

3

)
− 2

(π
4

)
−
√

3 + 1 =
5π

6
−
√

3 + 1.

34. u = sec−1 x, dv = x dx, du =
1

x
√
x2 − 1

dx, v =
1

2
x2;

∫ 2

1

x sec−1 x dx =
1

2
x2 sec−1 x

]2

1

− 1

2

∫ 2

1

x√
x2 − 1

dx =

1

2
[(4)(π/3)− (1)(0)]− 1

2

√
x2 − 1

]2

1

= 2π/3−
√

3/2.

35. u = x, dv = sin 2x dx, du = dx, v = −1

2
cos 2x;

∫ π

0

x sin 2x dx = −1

2
x cos 2x

]π

0

+
1

2

∫ π

0

cos 2x dx = −π/2 +

1

4
sin 2x

]π

0

= −π/2.

36.

∫ π

0

(x + x cosx)dx =
1

2
x2

]π

0

+

∫ π

0

x cosx dx =
π2

2
+

∫ π

0

x cosx dx; u = x, dv = cosx dx, du = dx, v = sinx;
∫ π

0

x cosx dx = x sinx

]π

0

−
∫ π

0

sinx dx = cosx

]π

0

= −2, so

∫ π

0

(x+ x cosx)dx = π2/2− 2.

37. u = tan−1
√
x, dv =

√
xdx, du =

1

2
√
x(1 + x)

dx, v =
2

3
x3/2;

∫ 3

1

√
x tan−1

√
xdx =

2

3
x3/2 tan−1

√
x

]3

1

−

1

3

∫ 3

1

x

1 + x
dx =

2

3
x3/2 tan−1

√
x

]3

1

− 1

3

∫ 3

1

[
1− 1

1 + x

]
dx =

[
2

3
x3/2 tan−1

√
x− 1

3
x+

1

3
ln |1 + x|

]3

1

= (2
√

3π −
π/2− 2 + ln 2)/3.

38. u = ln(x2 + 1), dv = dx, du =
2x

x2 + 1
dx, v = x;

∫ 2

0

ln(x2 + 1)dx = x ln(x2 + 1)

]2

0

−
∫ 2

0

2x2

x2 + 1
dx = 2 ln 5 −

2

∫ 2

0

(
1− 1

x2 + 1

)
dx = 2 ln 5− 2(x− tan−1 x)

]2

0

= 2 ln 5− 4 + 2 tan−1 2.

39. True.

40. False; choose u = lnx.

41. False; ex is not a factor of the integrand.

42. True; the column of p(x) eventually has zero entries.
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43. t =
√
x, t2 = x, dx = 2t dt,

∫
e
√
xdx = 2

∫
tet dt; u = t, dv = etdt, du = dt, v = et,

∫
e
√
xdx = 2tet − 2

∫
et dt =

2(t− 1)et + C = 2(
√
x− 1)e

√
x + C.

44. t =
√
x, t2 = x, dx = 2t dt,

∫
cos
√
x dx = 2

∫
t cos t dt; u = t, dv = cos tdt, du = dt, v = sin t,

∫
cos
√
x dx =

2t sin t− 2

∫
sin tdt = 2t sin t+ 2 cos t+ C = 2

√
x sin

√
x+ 2 cos

√
x+ C.

45. Let f1(x), f2(x), f3(x) denote successive antiderivatives of f(x), so that f ′3(x) = f2(x), f ′2(x) = f1(x), f ′1(x) = f(x).
Let p(x) = ax2 + bx+ c.

diff. antidiff.

ax2 + bx+ c f(x)
↘ +

2ax+ b f1(x)
↘ −

2a f2(x)
↘ +

0 f3(x)

Then

∫
p(x)f(x) dx = (ax2 + bx+ c)f1(x)− (2ax+ b)f2(x) + 2af3(x) +C. Check:

d

dx
[(ax2 + bx+ c)f1(x)− (2ax+

b)f2(x) + 2af3(x)] = (2ax+ b)f1(x) + (ax2 + bx+ c)f(x)− 2af2(x)− (2ax+ b)f1(x) + 2af2(x) = p(x)f(x).

46. Let I denote

∫
ex cosx dx. Then (Method 1)

diff. antidiff.

ex cosx
↘ +

ex sinx
↘ −

ex − cosx

and thus I = ex(sinx+ cosx)− I, so I =
1

2
ex(sinx+ cosx) + C.

On the other hand (Method 2)

diff. antidiff.

cosx ex

↘ +
− sinx ex

↘ −
− cosx ex

and thus I = ex(sinx+ cosx)− I, so I =
1

2
ex(sinx+ cosx) + C, as before.

47. Let I denote

∫
(3x2 − x+ 2)e−x dx. Then

diff. antidiff.

3x2 − x+ 2 e−x

↘ +
6x− 1 −e−x

↘ −
6 e−x

↘ +
0 −e−x
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I =

∫
(3x2 − x+ 2)e−x = −(3x2 − x+ 2)e−x − (6x− 1)e−x − 6e−x + C = −e−x[3x2 + 5x+ 7] + C.

48. Let I denote

∫
(x2 + x+ 1) sinx dx. Then

diff. antidiff.

x2 + x+ 1 sinx
↘ +

2x+ 1 − cosx
↘ −

2 − sinx
↘ +

0 cosx

I =

∫
(x2 +x+1) sinx dx = −(x2 +x+1) cosx+(2x+1) sinx+2 cosx+C = −(x2 +x−1) cosx+(2x+1) sinx+C.

49. Let I denote

∫
4x4 sin 2x dx. Then

diff. antidiff.

4x4 sin 2x
↘ +

16x3 −1

2
cos 2x

↘ −
48x2 −1

4
sin 2x

↘ +

96x
1

8
cos 2x

↘ −
96

1

16
sin 2x

↘ +

0 − 1

32
cos 2x

I =

∫
4x4 sin 2x dx = (−2x4 + 6x2 − 3) cos 2x+ (4x3 − 6x) sin 2x+ C.

50. Let I denote

∫
x3
√

2x+ 1 dx. Then

diff. antidiff.

x3
√

2x+ 1
↘ +

3x2 1

3
(2x+ 1)3/2

↘ −
6x

1

15
(2x+ 1)5/2

↘ +

6
1

105
(2x+ 1)7/2

↘ −
0

1

945
(2x+ 1)9/2

I =

∫
x3
√

2x+ 1 dx =
1

3
x3(2x+ 1)3/2 − 1

5
x2(2x+ 1)5/2 +

2

35
x(2x+ 1)7/2 − 2

315
(2x+ 1)9/2 + C.
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51. Let I denote

∫
eax sin bx dx. Then

diff. antidiff.

eax sin bx
↘ +

aeax −1

b
cos bx

↘ −
a2eax − 1

b2
sin bx

I =

∫
eax sin bx dx = −1

b
eax cos bx+

a

b2
eax sin bx− a2

b2
I, so I =

eax

a2 + b2
(a sin bx− b cos bx) + C.

52. From Exercise 51 with a = −3, b = 5, x = θ, answer =
e−3θ

34
(−3 sin 5θ − 5 cos 5θ) + C.

53. (a) We perform a single integration by parts: u = cosx, dv = sinx dx, du = − sinx dx, v = − cosx,
∫

sinx cosx dx = − cos2 x−
∫

sinx cosx dx. This implies that 2

∫
sinx cosx dx = − cos2 x+C,

∫
sinx cosx dx =

−1

2
cos2 x+ C.

Alternatively, u = sinx, du = cosx dx,

∫
sinx cosx dx =

∫
u du =

1

2
u2 + C =

1

2
sin2 x+ C.

(b) Since sin2 x + cos2 x = 1, they are equal (although the symbol ’C’ refers to different constants in the two
equations).

54. (a) u = x2, dv =
x√

x2 + 1
, du = 2x dx, v =

√
x2 + 1,

∫ 1

0

x3

√
x2 + 1

dx = x2
√
x2 + 1

]1

0

−
∫ 1

0

2x
√
x2 + 1 dx =

√
2− 2

3
(x2 + 1)3/2

]1

0

= −1

3

√
2 +

2

3
.

(b) u =
√
x2 + 1, du =

x√
x2 + 1

dx,

∫ √2

1

(u2 − 1) du =

(
1

3
u3 − u

)]√2

1

=
2

3

√
2−
√

2− 1

3
+ 1 = −1

3

√
2 +

2

3
.

55. (a) A =

∫ e

1

lnx dx = (x lnx− x)

]e

1

= 1.

(b) V = π

∫ e

1

(lnx)2dx = π
[
(x(lnx)2 − 2x lnx+ 2x)

]e
1

= π(e− 2).

56. A =

∫ π/2

0

(x− x sinx)dx =
1

2
x2

]π/2

0

−
∫ π/2

0

x sinx dx =
π2

8
− (−x cosx+ sinx)

]π/2

0

= π2/8− 1.

57. V = 2π

∫ π

0

x sinx dx = 2π(−x cosx+ sinx)

]π

0

= 2π2.

58. V = 2π

∫ π/2

0

x cosx dx = 2π(cosx+ x sinx)

]π/2

0

= π(π − 2).

59. Distance =

∫ π

0

t3 sin tdt;



372 Chapter 7

diff. antidiff.

t3 sin t
↘ +

3t2 − cos t
↘ −

6t − sin t
↘ +

6 cos t
↘ −

0 sin t
∫ π

0

t3 sin t dx = [(−t3 cos t+ 3t2 sin t+ 6t cos t− 6 sin t)]

]π

0

= π3 − 6π.

60. u = 2t, dv = sin(kωt)dt, du = 2dt, v = − 1

kω
cos(kωt); the integrand is an even function of t so

∫ π/ω

−π/ω
t sin(kωt) dt =

2

∫ π/ω

0

t sin(kωt) dt = − 2

kω
t cos(kωt)

]π/ω

0

+2

∫ π/ω

0

1

kω
cos(kωt) dt =

2π(−1)k+1

kω2
+

2

k2ω2
sin(kωt)

]π/ω

0

=
2π(−1)k+1

kω2
.

61. (a)

∫
sin4 x dx = −1

4
sin3 x cosx+

3

4

∫
sin2 x dx = −1

4
sin3 x cosx+

3

4

(
−1

2
sinx cosx+

1

2
x

)
+C = −1

4
sin3 x cosx−

3

8
sinx cosx+

3

8
x+ C.

(b)

∫ π/2

0

sin5 x dx = −1

5
sin4 x cosx

]π/2

0

+
4

5

∫ π/2

0

sin3 x dx =
4

5

(
−1

3
sin2 x cosx

]π/2

0

+
2

3

∫ π/2

0

sinx dx

)

= − 8

15
cosx

]π/2

0

=
8

15
.

62. (a)

∫
cos5 x dx =

1

5
cos4 x sinx+

4

5

∫
cos3 x dx =

1

5
cos4 x sinx+

4

5

[
1

3
cos2 x sinx+

2

3
sinx

]
+C =

1

5
cos4 x sinx+

4

15
cos2 x sinx+

8

15
sinx+ C.

(b)

∫
cos6 x dx =

1

6
cos5 x sinx+

5

6

∫
cos4 x dx =

1

6
cos5 x sinx+

5

6

[
1

4
cos3 x sinx+

3

4

∫
cos2 x dx

]
=

1

6
cos5 x sinx+

5

24
cos3 x sinx+

5

8

[
1

2
cosx sinx+

1

2
x

]
+C, so

[
1

6
cos5 x sinx+

5

24
cos3 x sinx+

5

16
cosx sinx+

5

16
x

]π/2

0

= 5π/32.

63. u = sinn−1 x, dv = sinx dx, du = (n − 1) sinn−2 x cosx dx, v = − cosx;

∫
sinn x dx = − sinn−1 x cosx +

(n − 1)

∫
sinn−2 x cos2 x dx = − sinn−1 x cosx + (n − 1)

∫
sinn−2 x (1 − sin2 x)dx = − sinn−1 x cosx + (n −

1)

∫
sinn−2 x dx−(n−1)

∫
sinn x dx, so n

∫
sinn x dx = − sinn−1 x cosx+(n−1)

∫
sinn−2 x dx, and

∫
sinn x dx =

− 1

n
sinn−1 x cosx+

n− 1

n

∫
sinn−2 x dx.

64. (a) u = secn−2 x, dv = sec2 x dx, du = (n − 2) secn−2 x tanx dx, v = tanx;

∫
secn x dx = secn−2 x tanx − (n −

2)

∫
secn−2 x tan2 x dx = secn−2 x tanx− (n−2)

∫
secn−2 x (sec2 x−1)dx = secn−2 x tanx− (n−2)

∫
secn x dx+

(n− 2)

∫
secn−2 x dx, so (n− 1)

∫
secn x dx = secn−2 x tanx+ (n− 2)

∫
secn−2 x dx, and then
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∫
secn x dx =

1

n− 1
secn−2 x tanx+

n− 2

n− 1

∫
secn−2 x dx.

(b)

∫
tann x dx =

∫
tann−2 x (sec2 x − 1) dx =

∫
tann−2 x sec2 x dx −

∫
tann−2 x dx =

1

n− 1
tann−1 x −

∫
tann−2 x dx.

(c) u = xn, dv = exdx, du = nxn−1dx, v = ex;

∫
xnexdx = xnex − n

∫
xn−1exdx.

65. (a)

∫
tan4 x dx =

1

3
tan3 x−

∫
tan2 x dx =

1

3
tan3 x− tanx+

∫
dx =

1

3
tan3 x− tanx+ x+ C.

(b)

∫
sec4 x dx =

1

3
sec2 x tanx+

2

3

∫
sec2 x dx =

1

3
sec2 x tanx+

2

3
tanx+ C.

(c)

∫
x3exdx = x3ex − 3

∫
x2exdx = x3ex − 3

[
x2ex − 2

∫
xexdx

]
= x3ex − 3x2ex + 6

[
xex −

∫
exdx

]
=

x3ex − 3x2ex + 6xex − 6ex + C.

66. (a) u = 3x,

∫
x2e3xdx =

1

27

∫
u2eudu =

1

27

[
u2eu − 2

∫
ueudu

]
=

1

27
u2eu − 2

27

[
ueu −

∫
eudu

]
=

1

27
u2eu −

2

27
ueu +

2

27
eu + C =

1

3
x2e3x − 2

9
xe3x +

2

27
e3x + C.

(b) u = −√x,

∫ 1

0

xe−
√
xdx = 2

∫ −1

0

u3eudu,

∫
u3eudu = u3eu − 3

∫
u2eudu = u3eu − 3

[
u2eu − 2

∫
ueudu

]
=

u3eu−3u2eu+6

[
ueu −

∫
eudu

]
= u3eu−3u2eu+6ueu−6eu+C, so 2

∫ −1

0

u3eudu = 2(u3 − 3u2 + 6u− 6)eu
]−1

0

=

12− 32e−1.

67. u = x, dv = f ′′(x)dx, du = dx, v = f ′(x);

∫ 1

−1

x f ′′(x)dx = xf ′(x)

]1

−1

−
∫ 1

−1

f ′(x)dx = f ′(1) + f ′(−1)− f(x)

]1

−1

=

f ′(1) + f ′(−1)− f(1) + f(−1).

68. (a)

∫
u dv = uv −

∫
v du = x(sinx+C1) + cosx−C1x+C2 = x sinx+ cosx+C2; the constant C1 cancels out

and hence plays no role in the answer.

(b) u(v + C1)−
∫

(v + C1)du = uv + C1u−
∫
v du− C1u = uv −

∫
v du.

69. u = ln(x+ 1), dv = dx, du =
dx

x+ 1
, v = x+ 1;

∫
ln(x+ 1) dx =

∫
u dv = uv−

∫
v du = (x+ 1) ln(x+ 1)−

∫
dx =

(x+ 1) ln(x+ 1)− x+ C.

70. u = ln(3x− 2), dv = dx, du =
3dx

3x− 2
, v = x− 2

3
;

∫
ln(3x− 2) dx =

∫
u dv = uv−

∫
v du =

(
x− 2

3

)
ln(3x− 2)−

∫ (
x− 2

3

)
1

x− 2/3
dx =

(
x− 2

3

)
ln(3x− 2)−

(
x− 2

3

)
+ C.

71. u = tan−1 x, dv = x dx, du =
1

1 + x2
dx, v =

1

2
(x2 + 1)

∫
x tan−1 x dx =

∫
u dv = uv −

∫
v du =

1

2
(x2 +

1) tan−1 x− 1

2

∫
dx =

1

2
(x2 + 1) tan−1 x− 1

2
x+ C.
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72. u =
1

lnx
, dv =

1

x
dx, du = − 1

x(lnx)2
dx, v = lnx,

∫
1

x lnx
dx = 1 +

∫
1

x lnx
dx. This seems to imply that

1 = 0, but recall that both sides represent a function plus an arbitrary constant; these two arbitrary constants will
take care of the 1.

Exercise Set 7.3

1. u = cosx, −
∫
u3du = −1

4
cos4 x+ C.

2. u = sin 3x,
1

3

∫
u5 du =

1

18
sin6 3x+ C.

3.

∫
sin2 5θ =

1

2

∫
(1− cos 10θ) dθ =

1

2
θ − 1

20
sin 10θ + C.

4.

∫
cos2 3x dx =

1

2

∫
(1 + cos 6x)dx =

1

2
x+

1

12
sin 6x+ C.

5.

∫
sin3 aθ dθ =

∫
sin aθ(1− cos2 aθ) dθ = −1

a
cos aθ +

1

3a
cos3 aθ + C. (a 6= 0)

6.

∫
cos3 at dt =

∫
(1− sin2 at) cos at dt =

∫
cos at dt−

∫
sin2 at cos at dt =

1

a
sin at− 1

3a
sin3 at+ C. (a 6= 0)

7. u = sin ax,
1

a

∫
u du =

1

2a
sin2 ax+ C. (a 6= 0)

8.

∫
sin3 x cos3 x dx =

∫
sin3 x(1− sin2 x) cosx dx =

∫
(sin3 x− sin5 x) cosx dx =

1

4
sin4 x− 1

6
sin6 x+ C.

9.

∫
sin2 t cos3 t dt =

∫
sin2 t(1− sin2 t) cos t dt =

∫
(sin2 t− sin4 t) cos t dt =

1

3
sin3 t− 1

5
sin5 t+ C.

10.

∫
sin3 x cos2 x dx =

∫
(1− cos2 x) cos2 x sinx dx =

∫
(cos2 x− cos4 x) sinx dx = −1

3
cos3 x+

1

5
cos5 x+ C.

11.

∫
sin2 x cos2 x dx =

1

4

∫
sin2 2x dx =

1

8

∫
(1− cos 4x)dx =

1

8
x− 1

32
sin 4x+ C.

12.

∫
sin2 x cos4 x dx =

1

8

∫
(1− cos 2x)(1 + cos 2x)2dx =

1

8

∫
(1− cos2 2x)(1 + cos 2x)dx

=
1

8

∫
sin2 2x dx+

1

8

∫
sin2 2x cos 2x dx =

1

16

∫
(1− cos 4x)dx+

1

48
sin3 2x =

1

16
x− 1

64
sin 4x+

1

48
sin3 2x+ C.

13.

∫
sin 2x cos 3x dx =

1

2

∫
(sin 5x− sinx)dx = − 1

10
cos 5x+

1

2
cosx+ C.

14.

∫
sin 3θ cos 2θdθ =

1

2

∫
(sin 5θ + sin θ)dθ = − 1

10
cos 5θ − 1

2
cos θ + C.

15.

∫
sinx cos(x/2)dx =

1

2

∫
[sin(3x/2) + sin(x/2)]dx = −1

3
cos(3x/2)− cos(x/2) + C.

16. u = cosx, −
∫
u1/3du = −3

4
cos4/3 x+ C.
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17.

∫ π/2

0

cos3 x dx =

∫ π/2

0

(1− sin2 x) cosx dx =

[
sinx− 1

3
sin3 x

]π/2

0

=
2

3
.

18.

∫ π/2

0

sin2(x/2) cos2(x/2)dx =
1

4

∫ π/2

0

sin2 x dx =
1

8

∫ π/2

0

(1− cos 2x)dx =
1

8

(
x− 1

2
sin 2x

)]π/2

0

= π/16.

19.

∫ π/3

0

sin4 3x cos3 3x dx =

∫ π/3

0

sin4 3x(1− sin2 3x) cos 3x dx =

[
1

15
sin5 3x− 1

21
sin7 3x

]π/3

0

= 0.

20.

∫ π

−π
cos2 5θ dθ =

1

2

∫ π

−π
(1 + cos 10θ)dθ =

1

2

(
θ +

1

10
sin 10θ

)]π

−π
= π.

21.

∫ π/6

0

sin 4x cos 2x dx =
1

2

∫ π/6

0

(sin 2x + sin 6x)dx =

[
−1

4
cos 2x− 1

12
cos 6x

]π/6

0

= [(−1/4)(1/2) − (1/12)(−1)] −
[−1/4− 1/12] = 7/24.

22.

∫ 2π

0

sin2 kx dx =
1

2

∫ 2π

0

(1− cos 2kx)dx =
1

2

(
x− 1

2k
sin 2kx

)]2π

0

= π − 1

4k
sin 4πk. (k 6= 0)

23. u = 2x− 1, du = 2dx,
1

2

∫
sec2 u du =

1

2
tan(2x− 1) + C.

24. u = 5x, du = 5dx,
1

5

∫
tanu du = −1

5
ln | cos 5x|+ C.

25. u = e−x, du = −e−x dx; −
∫

tanu du = ln | cosu|+ C = ln | cos(e−x)|+ C.

26. u = 3x, du = 3dx,
1

3

∫
cotu du =

1

3
ln | sin 3x|+ C.

27. u = 4x, du = 4dx,
1

4

∫
secu du =

1

4
ln | sec 4x+ tan 4x|+ C.

28. u =
√
x, du =

1

2
√
x
dx;

∫
2 secu du = 2 ln | secu+ tanu|+ C = 2 ln

∣∣sec
√
x+ tan

√
x
∣∣+ C.

29. u = tanx,

∫
u2du =

1

3
tan3 x+ C.

30.

∫
tan5 x(1 + tan2 x) sec2 x dx =

∫
(tan5 x+ tan7 x) sec2 x dx =

1

6
tan6 x+

1

8
tan8 x+ C.

31.

∫
tan 4x(1 + tan2 4x) sec2 4x dx =

∫
(tan 4x+ tan3 4x) sec2 4x dx =

1

8
tan2 4x+

1

16
tan4 4x+ C.

32.

∫
tan4 θ(1 + tan2 θ) sec2 θ dθ =

1

5
tan5 θ +

1

7
tan7 θ + C.

33.

∫
sec4 x(sec2 x− 1) secx tanx dx =

∫
(sec6 x− sec4 x) secx tanx dx =

1

7
sec7 x− 1

5
sec5 x+ C.

34.

∫
(sec2 θ − 1)2 sec θ tan θdθ =

∫
(sec4 θ − 2 sec2 θ + 1) sec θ tan θdθ =

1

5
sec5 θ − 2

3
sec3 θ + sec θ + C.
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35.

∫
(sec2 x−1)2 secx dx =

∫
(sec5 x−2 sec3 x+secx)dx =

∫
sec5 x dx−2

∫
sec3 x dx+

∫
secx dx =

1

4
sec3 x tanx+

3

4

∫
sec3 x dx−2

∫
sec3 x dx+ln | secx+tanx| = 1

4
sec3 x tanx− 5

4

[
1

2
secx tanx+

1

2
ln | secx+ tanx|

]
+ln | secx+

tanx|+ C =
1

4
sec3 x tanx− 5

8
secx tanx+

3

8
ln | secx+ tanx|+ C.

36.

∫
[sec2 x− 1] sec3 x dx =

∫
[sec5 x− sec3 x]dx =

(
1

4
sec3 x tanx+

3

4

∫
sec3 x dx

)
−
∫

sec3 x dx =
1

4
sec3 x tanx−

1

4

∫
sec3 x dx =

1

4
sec3 x tanx− 1

8
secx tanx− 1

8
ln | secx+ tanx|+ C.

37.

∫
sec2 t(sec t tan t)dt =

1

3
sec3 t+ C.

38.

∫
sec4 x(secx tanx)dx =

1

5
sec5 x+ C.

39.

∫
sec4 x dx =

∫
(1 + tan2 x) sec2 x dx =

∫
(sec2 x+ tan2 x sec2 x)dx = tanx+

1

3
tan3 x+ C.

40. Using equation (20),

∫
sec5 x dx =

1

4
sec3 x tanx +

3

4

∫
sec3 x dx =

1

4
sec3 x tanx +

3

8
secx tanx +

3

8
ln | secx +

tanx|+ C.

41. u = 4x, use equation (19) to get
1

4

∫
tan3 u du =

1

4

[
1

2
tan2 u+ ln | cosu|

]
+ C =

1

8
tan2 4x+

1

4
ln | cos 4x|+ C.

42. Use equation (19) to get

∫
tan4 x dx =

1

3
tan3 x− tanx+ x+ C.

43.

∫ √
tanx(1 + tan2 x) sec2 x dx =

2

3
tan3/2 x+

2

7
tan7/2 x+ C.

44.

∫
sec1/2 x(secx tanx)dx =

2

3
sec3/2 x+ C.

45.

∫ π/8

0

(sec2 2x− 1)dx =

[
1

2
tan 2x− x

]π/8

0

= 1/2− π/8.

46.

∫ π/6

0

sec2 2θ(sec 2θ tan 2θ)dθ =
1

6
sec3 2θ

]π/6

0

= (1/6)(2)3 − (1/6)(1) = 7/6.

47. u = x/2, 2

∫ π/4

0

tan5 u du =

[
1

2
tan4 u− tan2 u− 2 ln | cosu|

]π/4

0

= 1/2− 1− 2 ln(1/
√

2) = −1/2 + ln 2.

48. u = πx,
1

π

∫ π/4

0

secu tanu du =
1

π
secu

]π/4

0

= (
√

2− 1)/π.

49.

∫
(csc2 x− 1) csc2 x(cscx cotx)dx =

∫
(csc4 x− csc2 x)(cscx cotx)dx = −1

5
csc5 x+

1

3
csc3 x+ C.

50.

∫
cos2 3t

sin2 3t
· 1

cos 3t
dt =

∫
csc 3t cot 3t dt = −1

3
csc 3t+ C.
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51.

∫
(csc2 x− 1) cotx dx =

∫
cscx(cscx cotx)dx−

∫
cosx

sinx
dx = −1

2
csc2 x− ln | sinx|+ C.

52.

∫
(cot2 x+ 1) csc2 x dx = −1

3
cot3 x− cotx+ C.

53. True.

54. False; the method would work but is tedious. Better to use the identity cos2 x = 1 − sin2 x and the substitution
u = sinx.

55. False.

56. True.

57. (a)

∫ 2π

0

sinmx cosnx dx =
1

2

∫ 2π

0

[sin(m+n)x+sin(m−n)x]dx =

[
−cos(m+ n)x

2(m+ n)
− cos(m− n)x

2(m− n)

]2π

0

, but we know

that cos(m+ n)x

]2π

0

= 0, cos(m− n)x

]2π

0

= 0.

(b)

∫ 2π

0

cosmx cosnx dx =
1

2

∫ 2π

0

[cos(m+n)x+ cos(m−n)x]dx; since m 6= n, evaluate sine at integer multiples

of 2π to get 0.

(c)

∫ 2π

0

sinmx sinnx dx =
1

2

∫ 2π

0

[cos(m− n)x− cos(m+ n)x] dx; since m 6= n, evaluate sine at integer multiples

of 2π to get 0.

58. (a)

∫ 2π

0

sinmx cosmxdx =
1

2

∫ 2π

0

sin 2mxdx = − 1

4m
cos 2mx

∣∣∣∣∣

2π

0

= 0.

(b)

∫ 2π

0

cos2mxdx =
1

2

∫ 2π

0

(1 + cos 2mx) dx =
1

2

(
x+

1

2m
sin 2mx

) ∣∣∣∣∣

2π

0

= π.

(c)

∫ 2π

0

sin2mxdx =
1

2

∫ 2π

0

(1− cos 2mx) dx =
1

2

(
x− 1

2m
sin 2mx

) ∣∣∣∣∣

2π

0

= π.

59. y′ = tanx, 1 + (y′)2 = 1 + tan2 x = sec2 x, L =

∫ π/4

0

√
sec2 x dx =

∫ π/4

0

secx dx = ln | secx+ tanx|]π/40 =

ln(
√

2 + 1).

60. V = π

∫ π/4

0

(1− tan2 x)dx = π

∫ π/4

0

(2− sec2 x)dx = π(2x− tanx)

]π/4

0

=
1

2
π(π − 2).

61. V = π

∫ π/4

0

(cos2 x− sin2 x)dx = π

∫ π/4

0

cos 2x dx =
1

2
π sin 2x

]π/4

0

= π/2.

62. V = π

∫ π

0

sin2 x dx =
π

2

∫ π

0

(1− cos 2x)dx =
π

2

(
x− 1

2
sin 2x

)]π

0

= π2/2.

63. With 0 < α < β, D = Dβ −Dα =
L

2π

∫ βπ/180

απ/180

secx dx =
L

2π
ln | secx+ tanx|

]βπ/180

απ/180

=
L

2π
ln

∣∣∣∣
secβ◦ + tanβ◦

secα◦ + tanα◦

∣∣∣∣.
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64. (a) D =
100

2π
ln(sec 25◦ + tan 25◦) = 7.18 cm.

(b) D =
100

2π
ln

∣∣∣∣
sec 50◦ + tan 50◦

sec 30◦ + tan 30◦

∣∣∣∣ = 7.34 cm.

65. (a)

∫
cscx dx =

∫
sec(π/2− x)dx = − ln | sec(π/2− x) + tan(π/2− x)|+ C = − ln | cscx+ cotx|+ C.

(b) − ln | cscx + cotx| = ln
1

| cscx+ cotx| = ln
| cscx− cotx|
| csc2 x− cot2 x| = ln | cscx − cotx|, − ln | cscx + cotx| =

− ln

∣∣∣∣
1

sinx
+

cosx

sinx

∣∣∣∣ = ln

∣∣∣∣
sinx

1 + cosx

∣∣∣∣ = ln

∣∣∣∣
2 sin(x/2) cos(x/2)

2 cos2(x/2)

∣∣∣∣ = ln | tan(x/2)|.

66. sinx+ cosx =
√

2
[
(1/
√

2) sinx+ (1/
√

2) cosx
]

=
√

2 [sinx cos(π/4) + cosx sin(π/4)] =
√

2 sin(x+ π/4),

∫
dx

sinx+ cosx
=

1√
2

∫
csc(x+π/4)dx =

−1√
2

ln | csc(x+π/4)+cot(x+π/4)|+C =
−1√

2
ln

∣∣∣∣∣

√
2 + cosx− sinx

sinx+ cosx

∣∣∣∣∣+C.

67. a sinx + b cosx =
√
a2 + b2

[
a√

a2 + b2
sinx+

b√
a2 + b2

cosx

]
=
√
a2 + b2(sinx cos θ + cosx sin θ), where cos θ =

a/
√
a2 + b2 and sin θ = b/

√
a2 + b2, so a sinx+ b cosx =

√
a2 + b2 sin(x+ θ) and then we obtain that

∫
dx

a sinx+ b cosx
=

1√
a2 + b2

∫
csc(x+ θ)dx = − 1√

a2 + b2
ln | csc(x+ θ) + cot(x+ θ)|+ C =

= − 1√
a2 + b2

ln

∣∣∣∣∣

√
a2 + b2 + a cosx− b sinx

a sinx+ b cosx

∣∣∣∣∣+ C.

68. (a)

∫ π/2

0

sinn x dx = − 1

n
sinn−1 x cosx

]π/2

0

+
n− 1

n

∫ π/2

0

sinn−2 x dx =
n− 1

n

∫ π/2

0

sinn−2 x dx.

(b) By repeated application of the formula in Part (a)
∫ π/2

0

sinn x dx =

(
n− 1

n

)(
n− 3

n− 2

)∫ π/2

0

sinn−4 x dx =

=





(
n− 1

n

)(
n− 3

n− 2

)(
n− 5

n− 4

)
· · ·
(

1

2

)∫ π/2

0

dx, n even

(
n− 1

n

)(
n− 3

n− 2

)(
n− 5

n− 4

)
· · ·
(

2

3

)∫ π/2

0

sinx dx, n odd

=





1 · 3 · 5 · · · (n− 1)

2 · 4 · 6 · · ·n · π
2
, n even

2 · 4 · 6 · · · (n− 1)

3 · 5 · 7 · · ·n , n odd

.

69. (a)

∫ π/2

0

sin3 x dx =
2

3
. (b)

∫ π/2

0

sin4 x dx =
1 · 3
2 · 4 ·

π

2
= 3π/16.

(c)

∫ π/2

0

sin5 x dx =
2 · 4
3 · 5 = 8/15. (d)

∫ π/2

0

sin6 x dx =
1 · 3 · 5
2 · 4 · 6 ·

π

2
= 5π/32.

70. Similar to proof in Exercise 68.

Exercise Set 7.4

1. x = 2 sin θ, dx = 2 cos θ dθ, 4

∫
cos2 θ dθ = 2

∫
(1 + cos 2θ)dθ = 2θ + sin 2θ + C = 2θ + 2 sin θ cos θ + C =

2 sin−1(x/2) +
1

2
x
√

4− x2 + C.
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2. x =
1

2
sin θ, dx =

1

2
cos θ dθ,

1

2

∫
cos2 θ dθ =

1

4

∫
(1 + cos 2θ)dθ =

1

4
θ +

1

8
sin 2θ + C =

1

4
θ +

1

4
sin θ cos θ + C =

1

4
sin−1 2x+

1

2
x
√

1− 4x2 + C.

3. x = 4 sin θ, dx = 4 cos θ dθ, 16

∫
sin2 θ dθ = 8

∫
(1 − cos 2θ)dθ = 8θ − 4 sin 2θ + C = 8θ − 8 sin θ cos θ + C =

8 sin−1(x/4)− 1

2
x
√

16− x2 + C.

4. x = 3 sin θ, dx = 3 cos θ dθ,
1

9

∫
1

sin2 θ
dθ =

1

9

∫
csc2 θ dθ = −1

9
cot θ + C = −

√
9− x2

9x
+ C.

5. x = 2 tan θ, dx = 2 sec2 θ dθ,
1

8

∫
1

sec2 θ
dθ =

1

8

∫
cos2 θ dθ =

1

16

∫
(1 + cos 2θ)dθ =

1

16
θ +

1

32
sin 2θ + C =

1

16
θ +

1

16
sin θ cos θ + C =

1

16
tan−1 x

2
+

x

8(4 + x2)
+ C.

6. x =
√

5 tan θ, dx =
√

5 sec2 θ dθ, 5

∫
tan2 θ sec θ dθ = 5

∫
(sec3 θ−sec θ)dθ = 5

(
1

2
sec θ tan θ − 1

2
ln | sec θ + tan θ|

)
+

C1 =
1

2
x
√

5 + x2 − 5

2
ln

√
5 + x2 + x√

5
+ C1 =

1

2
x
√

5 + x2 − 5

2
ln(
√

5 + x2 + x) + C.

7. x = 3 sec θ, dx = 3 sec θ tan θ dθ, 3

∫
tan2 θ dθ = 3

∫
(sec2 θ − 1)dθ = 3 tan θ − 3θ +C =

√
x2 − 9− 3 sec−1 x

3
+C.

8. x = 4 sec θ, dx = 4 sec θ tan θ dθ,
1

16

∫
1

sec θ
dθ =

1

16

∫
cos θ dθ =

1

16
sin θ + C =

√
x2 − 16

16x
+ C.

9. x = sin θ, dx = cos θ dθ, 3

∫
sin3 θ dθ = 3

∫ [
1− cos2 θ

]
sin θ dθ = 3

(
− cos θ + cos3 θ

)
+ C = −3

√
1− x2 + (1 −

x2)3/2 + C.

10. x =
√

5 sin θ, dx =
√

5 cos θ dθ, 25
√

5

∫
sin3 θ cos2 θ dθ = 25

√
5

(
−1

3
cos3 θ +

1

5
cos5 θ

)
+ C = −5

3
(5 − x2)3/2 +

1

5
(5− x2)5/2 + C.

11. x =
2

3
sec θ, dx =

2

3
sec θ tan θ dθ,

3

4

∫
1

sec θ
dθ =

3

4

∫
cos θ dθ =

3

4
sin θ + C =

1

4x

√
9x2 − 4 + C.

12. t = tan θ, dt = sec2 θ dθ,

∫
sec3 θ

tan θ
dθ =

∫
tan2 θ + 1

tan θ
sec θ dθ =

∫
(sec θ tan θ+ csc θ)dθ = sec θ+ ln | csc θ− cot θ|+

C =
√

1 + t2 + ln

√
1 + t2 − 1

|t| + C.

13. x = sin θ, dx = cos θ dθ,

∫
1

cos2 θ
dθ =

∫
sec2 θ dθ = tan θ + C = x/

√
1− x2 + C.

14. x = 5 tan θ, dx = 5 sec2 θ dθ,
1

25

∫
sec θ

tan2 θ
dθ =

1

25

∫
csc θ cot θ dθ = − 1

25
csc θ + C = −

√
x2 + 25

25x
+ C.

15. x = 3 sec θ, dx = 3 sec θ tan θ dθ,

∫
sec θ dθ = ln | sec θ + tan θ|+ C = ln

∣∣∣∣
1

3
x+

1

3

√
x2 − 9

∣∣∣∣+ C.
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16. 1+2x2 +x4 = (1+x2)2, x = tan θ, dx = sec2 θ dθ,

∫
1

sec2 θ
dθ =

∫
cos2 θ dθ =

1

2

∫
(1+cos 2θ)dθ =

1

2
θ+

1

4
sin 2θ+

C =
1

2
θ +

1

2
sin θ cos θ + C =

1

2
tan−1 x+

x

2(1 + x2)
+ C.

17. x =
3

2
sec θ, dx =

3

2
sec θ tan θ dθ,

3

2

∫
sec θ tan θ dθ

27 tan3 θ
=

1

18

∫
cos θ

sin2 θ
dθ = − 1

18

1

sin θ
+ C = − 1

18
csc θ + C =

− x

9
√

4x2 − 9
+ C.

18. x = 5 sec θ, dx = 5 sec θ tan θ dθ, 375

∫
sec4 θ dθ = 125 sec2 θ tan θ + 250

∫
sec2 θ dθ = 125 sec2 θ tan θ + 250 tan θ +

C = x2
√
x2 − 25 + 50

√
x2 − 25 + C.

19. ex = sin θ, exdx = cos θ dθ,

∫
cos2 θ dθ =

1

2

∫
(1+cos 2θ)dθ =

1

2
θ+

1

4
sin 2θ+C =

1

2
sin−1(ex)+

1

2
ex
√

1− e2x+C.

20. u = sin θ,

∫
1√

2− u2
du = sin−1

(
sin θ√

2

)
+ C.

21. x = sin θ, dx = cos θ dθ, 5

∫ 1

0

sin3 θ cos2 θ dθ = 5

[
−1

3
cos3 θ +

1

5
cos5 θ

]π/2

0

= 5(1/3− 1/5) = 2/3.

22. x = sin θ, dx = cos θ dθ,

∫ π/6

0

sec3 θ dθ =

[
1

2
sec θ tan θ +

1

2
ln | sec θ + tan θ|

]π/6

0

=

(
1

2

2√
3

1√
3

+
1

2
ln(

2√
3

+
1√
3

)
=

1

3
+

1

4
ln 3.

23. x = sec θ, dx = sec θ tan θ dθ,

∫ π/3

π/4

1

sec θ
dθ =

∫ π/3

π/4

cos θ dθ = sin θ]
π/3
π/4 = (

√
3−
√

2)/2.

24. x =
√

2 sec θ, dx =
√

2 sec θ tan θ dθ, 2

∫ π/4

0

tan2 θ dθ =

[
2 tan θ − 2θ

]π/4

0

= 2− π/2.

25. x =
√

3 tan θ, dx =
√

3 sec2 θ dθ,
1

9

∫ π/3

π/6

sec θ

tan4 θ
dθ =

1

9

∫ π/3

π/6

cos3 θ

sin4 θ
dθ =

1

9

∫ π/3

π/6

1− sin2 θ

sin4 θ
cos θ dθ

=
1

9

∫ √3/2

1/2

1− u2

u4
du (with u = sin θ) =

1

9

∫ √3/2

1/2

(u−4 − u−2)du =
1

9

[
− 1

3u3
+

1

u

]√3/2

1/2

=
10
√

3 + 18

243
.

26. x =
√

3 tan θ, dx =
√

3 sec2 θ dθ,

√
3

3

∫ π/3

0

tan3 θ

sec3 θ
dθ =

√
3

3

∫ π/3

0

sin3 θ dθ =

√
3

3

∫ π/3

0

[
1− cos2 θ

]
sin θ dθ =

√
3

3

[
− cos θ +

1

3
cos3 θ

]π/3

0

=

√
3

3

[(
−1

2
+

1

24

)
−
(
−1 +

1

3

)]
= 5
√

3/72.

27. True.

28. False; −π/2 ≤ θ ≤ π/2.

29. False; x = a sec θ.

30. True; A = 4

(
1

2

)∫ 1

0

√
1− x2 dx; let x = sin θ, 0 ≤ θ ≤ π/2, and A = 2

∫ π/2

0

cos2 θ dθ = π/2.
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31. u = x2 + 4, du = 2x dx,
1

2

∫
1

u
du =

1

2
ln |u|+ C =

1

2
ln(x2 + 4) + C; or x = 2 tan θ, dx = 2 sec2 θ dθ,

∫
tan θ dθ =

ln | sec θ|+ C1 = ln

√
x2 + 4

2
+ C1 = ln(x2 + 4)1/2 − ln 2 + C1 =

1

2
ln(x2 + 4) + C with C = C1 − ln 2.

32. x = 2 tan θ, dx = 2 sec2 θ dθ,

∫
2 tan2 θ dθ = 2 tan θ − 2θ + C = x − 2 tan−1 x

2
+ C; alternatively

∫
x2

x2 + 4
dx =

∫
dx− 4

∫
dx

x2 + 4
= x− 2 tan−1 x

2
+ C.

33. y′ =
1

x
, 1 + (y′)2 = 1 +

1

x2
=
x2 + 1

x2
, L =

∫ 2

1

√
x2 + 1

x2
dx; x = tan θ, dx = sec2 θ dθ, L =

∫ tan−1(2)

π/4

sec3 θ

tan θ
dθ =

∫ tan−1(2)

π/4

tan2 θ + 1

tan θ
sec θ dθ =

∫ tan−1(2)

π/4

(sec θ tan θ + csc θ)dθ =

[
sec θ + ln | csc θ − cot θ|

]tan−1(2)

π/4

=
√

5 + ln

(√
5

2
− 1

2

)
−
[√

2 + ln |
√

2− 1|
]

=
√

5−
√

2 + ln
2 + 2

√
2

1 +
√

5
.

34. y′ = 2x, 1 + (y′)2 = 1 + 4x2, L =

∫ 1

0

√
1 + 4x2dx; x =

1

2
tan θ, dx =

1

2
sec2 θ dθ, L =

1

2

∫ tan−1 2

0

sec3 θ dθ =

1

2

(
1

2
sec θ tan θ +

1

2
ln | sec θ + tan θ|

) ]tan−1 2

0

=
1

4
(
√

5)(2) +
1

4
ln |
√

5 + 2| = 1

2

√
5 +

1

4
ln(2 +

√
5).

35. y′ = 2x, 1+(y′)2 = 1+4x2, S = 2π

∫ 1

0

x2
√

1 + 4x2dx; x =
1

2
tan θ, dx =

1

2
sec2 θ dθ, S =

π

4

∫ tan−1 2

0

tan2 θ sec3 θ dθ =

π

4

∫ tan−1 2

0

(sec2 θ − 1) sec3 θ dθ =
π

4

∫ tan−1 2

0

(sec5 θ − sec3 θ)dθ =

=
π

4

[
1

4
sec3 θ tan θ − 1

8
sec θ tan θ − 1

8
ln | sec θ + tan θ|

]tan−1 2

0

=
π

32
[18
√

5− ln(2 +
√

5)].

36. V = π

∫ 1

0

y2
√

1− y2dy; y = sin θ, dy = cos θ dθ, V = π

∫ π/2

0

sin2 θ cos2 θ dθ =
π

4

∫ π/2

0

sin2 2θ dθ =
π

8

∫ π/2

0

(1 −

cos 4θ)dθ =
π

8

(
θ − 1

4
sin 4θ

)]π/2

0

=
π2

16
.

37.

∫
1

(x− 2)2 + 1
dx = tan−1 (x− 2) + C.

38.

∫
1√

1− (x− 1)2
dx = sin−1(x− 1) + C.

39.

∫
1√

4− (x− 1)2
dx = sin−1

(
x− 1

2

)
+ C

40.

∫
1

16(x+ 1/2)2 + 1
dx =

∫
1

(4x+ 2)2 + 1
dx =

1

4
tan−1(4x+ 2) + C.

41.

∫
1√

(x− 3)2 + 1
dx = ln

(
x− 3 +

√
(x− 3)2 + 1

)
+ C.

42.

∫
x

(x+ 1)2 + 1
dx, let u = x + 1,

∫
u− 1

u2 + 1
du =

∫ (
u

u2 + 1
− 1

u2 + 1

)
du =

1

2
ln(u2 + 1) − tan−1 u + C =
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1

2
ln(x2 + 2x+ 2)− tan−1(x+ 1) + C.

43.

∫ √
4− (x+ 1)2 dx, let x+1 = 2 sin θ,

∫
4 cos2 θ dθ =

∫
2(1+cos 2θ) dθ = 2θ+sin 2θ+C = 2 sin−1

(
x+ 1

2

)
+

1

2
(x+ 1)

√
3− 2x− x2 + C.

44.

∫
ex√

(ex + 1/2)2 + 3/4
dx, let u = ex + 1/2,

∫
1√

u2 + 3/4
du = sinh−1(2u/

√
3) + C = sinh−1

(
2ex + 1√

3

)
+ C; or,

alternatively, let ex+1/2 =

√
3

2
tan θ,

∫
sec θ dθ = ln | sec θ+tan θ|+C = ln

(
2
√
e2x + ex + 1√

3
+

2ex + 1√
3

)
+C1 =

ln(2
√
e2x + ex + 1 + 2ex + 1) + C.

45.

∫
1

2(x+ 1)2 + 5
dx =

1

2

∫
1

(x+ 1)2 + 5/2
dx =

1√
10

tan−1
√

2/5(x+ 1) + C.

46.

∫
2x+ 3

4(x+ 1/2)2 + 4
dx, let u = x+1/2,

∫
2u+ 2

4u2 + 4
du =

1

2

∫ (
u

u2 + 1
+

1

u2 + 1

)
du =

1

4
ln(u2+1)+

1

2
tan−1 u+C =

1

4
ln(x2 + x+ 5/4) +

1

2
tan−1(x+ 1/2) + C.

47.

∫ 2

1

1√
4x− x2

dx =

∫ 2

1

1√
4− (x− 2)2

dx = sin−1 x− 2

2

]2

1

= π/6.

48.

∫ 4

0

√
4x− x2dx =

∫ 4

0

√
4− (x− 2)2dx, let x− 2 = 2 sin θ, 4

∫ π/2

−π/2
cos2 θ dθ =

[
2θ + sin 2θ

]π/2

−π/2
= 2π.

49. u = sin2 x, du = 2 sinx cosx dx;
1

2

∫ √
1− u2 du =

1

4

[
u
√

1− u2 + sin−1 u
]

+ C =

1

4

[
sin2 x

√
1− sin4 x+ sin−1(sin2 x)

]
+ C.

50. u = x sinx, du = (x cosx + sinx) dx;

∫ √
1 + u2 du =

1

2
u
√

1 + u2 +
1

2
sinh−1 u + C =

1

2
x sinx

√
1 + x2 sin2 x +

1

2
sinh−1(x sinx) + C.

51. (a) x = 3 sinhu, dx = 3 coshu du,

∫
du = u+ C = sinh−1(x/3) + C.

(b) x = 3 tan θ, dx = 3 sec2 θ dθ,

∫
sec θ dθ = ln | sec θ+tan θ|+C = ln

(√
x2 + 9/3 + x/3

)
+C, but sinh−1(x/3) =

ln
(
x/3 +

√
x2/9 + 1

)
= ln

(
x/3 +

√
x2 + 9/3

)
, so the results agree.

52. x = coshu, dx = sinhu du,

∫
sinh2 u du =

1

2

∫
(cosh 2u−1)du =

1

4
sinh 2u− 1

2
u+C = =

1

2
sinhu coshu− 1

2
u+C =

1

2
x
√
x2 − 1− 1

2
cosh−1 x+ C, because coshu = x, and sinhu =

√
cosh2 u− 1 =

√
x2 − 1.

Exercise Set 7.5

1.
3x− 1

(x− 3)(x+ 4)
=

A

(x− 3)
+

B

(x+ 4)
.
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2.
5

x(x− 2)(x+ 2)
=
A

x
+

B

x− 2
+

C

x+ 2
.

3.
2x− 3

x2(x− 1)
=
A

x
+
B

x2
+

C

x− 1
.

4.
x2

(x+ 2)3
=

A

x+ 2
+

B

(x+ 2)2
+

C

(x+ 2)3
.

5.
1− x2

x3(x2 + 2)
=
A

x
+
B

x2
+
C

x3
+
Dx+ E

x2 + 2
.

6.
3x

(x− 1)(x2 + 6)
=

A

x− 1
+
Bx+ C

x2 + 6
.

7.
4x3 − x

(x2 + 5)2
=
Ax+B

x2 + 5
+

Cx+D

(x2 + 5)2
.

8.
1− 3x4

(x− 2)(x2 + 1)2
=

A

x− 2
+
Bx+ C

x2 + 1
+

Dx+ E

(x2 + 1)2
.

9.
1

(x− 4)(x+ 1)
=

A

x− 4
+

B

x+ 1
; A =

1

5
, B = −1

5
, so

1

5

∫
1

x− 4
dx− 1

5

∫
1

x+ 1
dx =

1

5
ln |x−4|− 1

5
ln |x+1|+C =

1

5
ln

∣∣∣∣
x− 4

x+ 1

∣∣∣∣+ C.

10.
1

(x+ 1)(x− 7)
=

A

x+ 1
+

B

x− 7
; A = −1

8
, B =

1

8
, so −1

8

∫
1

x+ 1
dx +

1

8

∫
1

x− 7
dx = −1

8
ln |x + 1| + 1

8
ln |x −

7|+ C =
1

8
ln

∣∣∣∣
x− 7

x+ 1

∣∣∣∣+ C.

11.
11x+ 17

(2x− 1)(x+ 4)
=

A

2x− 1
+

B

x+ 4
; A = 5, B = 3, so 5

∫
1

2x− 1
dx+ 3

∫
1

x+ 4
dx =

5

2
ln |2x−1|+ 3 ln |x+ 4|+C.

12.
5x− 5

(x− 3)(3x+ 1)
=

A

x− 3
+

B

3x+ 1
; A = 1, B = 2, so

∫
1

x− 3
dx+ 2

∫
1

3x+ 1
dx = ln |x− 3|+ 2

3
ln |3x+ 1|+ C.

13.
2x2 − 9x− 9

x(x+ 3)(x− 3)
=

A

x
+

B

x+ 3
+

C

x− 3
; A = 1, B = 2, C = −1, so

∫
1

x
dx + 2

∫
1

x+ 3
dx −

∫
1

x− 3
dx =

ln |x|+ 2 ln |x+ 3| − ln |x− 3|+C = ln

∣∣∣∣
x(x+ 3)2

x− 3

∣∣∣∣+C. Note that the symbol C has been recycled; to save space

this recycling is usually not mentioned.

14.
1

x(x+ 1)(x− 1)
=
A

x
+

B

x+ 1
+

C

x− 1
; A = −1, B =

1

2
, C =

1

2
, so −

∫
1

x
dx +

1

2

∫
1

x+ 1
dx +

1

2

∫
1

x− 1
dx

= − ln |x|+ 1

2
ln |x+ 1|+ 1

2
ln |x− 1|+ C =

1

2
ln

∣∣∣∣
(x+ 1)(x− 1)

x2

∣∣∣∣+ C =
1

2
ln
|x2 − 1|
x2

+ C.

15.
x2 − 8

x+ 3
= x− 3 +

1

x+ 3
,

∫ (
x− 3 +

1

x+ 3

)
dx =

1

2
x2 − 3x+ ln |x+ 3|+ C.

16.
x2 + 1

x− 1
= x+ 1 +

2

x− 1
,

∫ (
x+ 1 +

2

x− 1

)
dx =

1

2
x2 + x+ 2 ln |x− 1|+ C.
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17.
3x2 − 10

x2 − 4x+ 4
= 3 +

12x− 22

x2 − 4x+ 4
,

12x− 22

(x− 2)2
=

A

x− 2
+

B

(x− 2)2
; A = 12, B = 2, so

∫
3dx + 12

∫
1

x− 2
dx +

2

∫
1

(x− 2)2
dx = 3x+ 12 ln |x− 2| − 2/(x− 2) + C.

18.
x2

x2 − 3x+ 2
= 1 +

3x− 2

x2 − 3x+ 2
,

3x− 2

(x− 1)(x− 2)
=

A

x− 1
+

B

x− 2
; A = −1, B = 4, so

∫
dx −

∫
1

x− 1
dx +

4

∫
1

x− 2
dx = x− ln |x− 1|+ 4 ln |x− 2|+ C.

19. u = x2 − 3x− 10, du = (2x− 3) dx,

∫
du

u
= ln |u|+ C = ln |x2 − 3x− 10|+ C.

20. u = 3x2 + 2x− 1, du = (6x+ 2) dx,
1

2

∫
du

u
=

1

2
ln |u|+ C =

1

2
ln |3x2 + 2x− 1|+ C.

21.
x5 + x2 + 2

x3 − x = x2+1+
x2 + x+ 2

x3 − x ,
x2 + x+ 2

x(x+ 1)(x− 1)
=
A

x
+

B

x+ 1
+

C

x− 1
; A = −2, B = 1, C = 2, so

∫
(x2+1)dx−

∫
2

x
dx+

∫
1

x+ 1
dx+

∫
2

x− 1
dx =

1

3
x3+x−2 ln |x|+ln |x+1|+2 ln |x−1|+C =

1

3
x3+x+ln

∣∣∣∣
(x+ 1)(x− 1)2

x2

∣∣∣∣+C.

22.
x5 − 4x3 + 1

x3 − 4x
= x2 +

1

x3 − 4x
,

1

x(x+ 2)(x− 2)
=
A

x
+

B

x+ 2
+

C

x− 2
; A = −1

4
, B =

1

8
, C =

1

8
, so

∫
x2 dx −

1

4

∫
1

x
dx+

1

8

∫
1

x+ 2
dx+

1

8

∫
1

x− 2
dx =

1

3
x3 − 1

4
ln |x|+ 1

8
ln |x+ 2|+ 1

8
ln |x− 2|+ C.

23.
2x2 + 3

x(x− 1)2
=

A

x
+

B

x− 1
+

C

(x− 1)2
; A = 3, B = −1, C = 5, so 3

∫
1

x
dx −

∫
1

x− 1
dx + 5

∫
1

(x− 1)2
dx =

3 ln |x| − ln |x− 1| − 5/(x− 1) + C.

24.
3x2 − x+ 1

x2(x− 1)
=
A

x
+
B

x2
+

C

x− 1
; A = 0, B = −1, C = 3, so −

∫
1

x2
dx+ 3

∫
1

x− 1
dx = 1/x+ 3 ln |x− 1|+ C.

25.
2x2 − 10x+ 4

(x+ 1)(x− 3)2
=

A

x+ 1
+

B

x− 3
+

C

(x− 3)2
; A = 1, B = 1, C = −2, so

∫
1

x+ 1
dx+

∫
1

x− 3
dx−

∫
2

(x− 3)2
dx =

ln |x+ 1|+ ln |x− 3|+ 2

x− 3
+ C1.

26.
2x2 − 2x− 1

x2(x− 1)
=
A

x
+
B

x2
+

C

x− 1
; A = 3, B = 1, C = −1, so 3

∫
1

x
dx +

∫
1

x2
dx −

∫
1

x− 1
dx = 3 ln |x| − 1

x
−

ln |x− 1|+ C.

27.
x2

(x+ 1)3
=

A

x+ 1
+

B

(x+ 1)2
+

C

(x+ 1)3
; A = 1, B = −2, C = 1, so

∫
1

x+ 1
dx−

∫
2

(x+ 1)2
dx+

∫
1

(x+ 1)3
dx =

ln |x+ 1|+ 2

x+ 1
− 1

2(x+ 1)2
+ C.

28.
2x2 + 3x+ 3

(x+ 1)3
=

A

x+ 1
+

B

(x+ 1)2
+

C

(x+ 1)3
; A = 2, B = −1, C = 2, so 2

∫
1

x+ 1
dx −

∫
1

(x+ 1)2
dx +

2

∫
1

(x+ 1)3
dx = 2 ln |x+ 1|+ 1

x+ 1
− 1

(x+ 1)2
+ C.

29.
2x2 − 1

(4x− 1)(x2 + 1)
=

A

4x− 1
+
Bx+ C

x2 + 1
; A = −14/17, B = 12/17, C = 3/17, so

∫
2x2 − 1

(4x− 1)(x2 + 1)
dx =

− 7

34
ln |4x− 1|+ 6

17
ln(x2 + 1) +

3

17
tan−1 x+ C.
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30.
1

x(x2 + 2)
=
A

x
+
Bx+ C

x2 + 2
;A =

1

2
, B = −1

2
, C = 0, so

∫
1

x3 + 2x
dx =

1

2
ln |x|− 1

4
ln(x2 +2)+C =

1

4
ln

x2

x2 + 2
+C.

31.
x3 + 3x2 + x+ 9

(x2 + 1)(x2 + 3)
=
Ax+B

x2 + 1
+
Cx+D

x2 + 3
; A = 0, B = 3, C = 1, D = 0, so

∫
x3 + 3x2 + x+ 9

(x2 + 1)(x2 + 3)
dx = 3 tan−1 x +

1

2
ln(x2 + 3) + C.

32.
x3 + x2 + x+ 2

(x2 + 1)(x2 + 2)
=
Ax+B

x2 + 1
+
Cx+D

x2 + 2
; A = D = 0, B = C = 1, so

∫
x3 + x2 + x+ 2

(x2 + 1)(x2 + 2)
dx = tan−1 x+

1

2
ln(x2 +

2) + C.

33.
x3 − 2x2 + 2x− 2

x2 + 1
= x− 2 +

x

x2 + 1
, so

∫
x3 − 3x2 + 2x− 3

x2 + 1
dx =

1

2
x2 − 2x+

1

2
ln(x2 + 1) + C.

34.
x4 + 6x3 + 10x2 + x

x2 + 6x+ 10
= x2 +

x

x2 + 6x+ 10
,

∫
x

x2 + 6x+ 10
dx =

∫
x

(x+ 3)2 + 1
dx =

∫
u− 3

u2 + 1
du, u = x + 3 =

1

2
ln(u2 + 1)− 3 tan−1 u+ C1, so

∫
x4 + 6x3 + 10x2 + x

x2 + 6x+ 10
dx =

1

3
x3 +

1

2
ln(x2 + 6x+ 10)− 3 tan−1(x+ 3) + C.

35. True.

36. False; degree of numerator should be less than that of denominator.

37. True.

38. True.

39. Let x = sin θ to get

∫
1

x2 + 4x− 5
dx, and

1

(x+ 5)(x− 1)
=

A

x+ 5
+

B

x− 1
; A = −1/6, B = 1/6, so we get

−1

6

∫
1

x+ 5
dx+

1

6

∫
1

x− 1
dx =

1

6
ln

∣∣∣∣
x− 1

x+ 5

∣∣∣∣+ C =
1

6
ln

(
1− sin θ

5 + sin θ

)
+ C.

40. Let x = et; then

∫
et

e2t − 4
dt =

∫
1

x2 − 4
dx,

1

(x+ 2)(x− 2)
=

A

x+ 2
+

B

x− 2
; A = −1/4, B = 1/4, so

−1

4

∫
1

x+ 2
dx+

1

4

∫
1

x− 2
dx =

1

4
ln

∣∣∣∣
x− 2

x+ 2

∣∣∣∣+ C =
1

4
ln

∣∣∣∣
et − 2

et + 2

∣∣∣∣+ C.

41. u = ex, du = ex dx,

∫
e3x

e2x + 4
dx =

∫
u2

u2 + 4
du = u− 2 tan−1 u

2
+ C = ex − 2 tan−1(ex/2) + C.

42. Set u = 1+lnx, du =
1

x
dx,

∫
5 + 2 lnx

x(1 + lnx)2
dx =

∫
3 + 2u

u2
du = − 3

u
+2 ln |u|+C = − 3

1 + lnx
+2 ln |1+lnx|+C.

43. V = π

∫ 2

0

x4

(9− x2)2
dx,

x4

x4 − 18x2 + 81
= 1+

18x2 − 81

x4 − 18x2 + 81
,

18x2 − 81

(9− x2)2
=

18x2 − 81

(x+ 3)2(x− 3)2
=

A

x+ 3
+

B

(x+ 3)2
+

C

x− 3
+

D

(x− 3)2
; A = −9

4
, B =

9

4
, C =

9

4
, D =

9

4
, so V = π

[
x− 9

4
ln |x+ 3| − 9/4

x+ 3
+

9

4
ln |x− 3| − 9/4

x− 3

]2

0

=

π

(
19

5
− 9

4
ln 5

)
.

44. Let u = ex to get

∫ ln 5

− ln 5

dx

1 + ex
=

∫ ln 5

− ln 5

exdx

ex(1 + ex)
=

∫ 5

1/5

du

u(1 + u)
,

1

u(1 + u)
=
A

u
+

B

1 + u
; A = 1, B = −1;

∫ 5

1/5

du

u(1 + u)
= (lnu− ln(1 + u))

]5

1/5

= ln 5.
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45.
x2 + 1

(x2 + 2x+ 3)2
=

Ax+B

x2 + 2x+ 3
+

Cx+D

(x2 + 2x+ 3)2
; A = 0, B = 1, C = D = −2, so

∫
x2 + 1

(x2 + 2x+ 3)2
dx =

∫
1

(x+ 1)2 + 2
dx−

∫
2x+ 2

(x2 + 2x+ 3)2
dx =

1√
2

tan−1 x+ 1√
2

+ 1/(x2 + 2x+ 3) + C.

46.
x5 + x4 + 4x3 + 4x2 + 4x+ 4

(x2 + 2)3
=

Ax+B

x2 + 2
+

Cx+D

(x2 + 2)2
+

Ex+ F

(x2 + 2)3
; A = B = 1, C = D = E = F = 0, so

∫
x+ 1

x2 + 2
dx =

1

2
ln(x2 + 2) +

1√
2

tan−1(x/
√

2) + C.

47. x4−3x3−7x2+27x−18 = (x−1)(x−2)(x−3)(x+3),
1

(x− 1)(x− 2)(x− 3)(x+ 3)
=

A

x− 1
+

B

x− 2
+

C

x− 3
+

D

x+ 3
;

A = 1/8, B = −1/5, C = 1/12, D = −1/120, so

∫
dx

x4 − 3x3 − 7x2 + 27x− 18
=

1

8
ln |x − 1| − 1

5
ln |x − 2| +

1

12
ln |x− 3| − 1

120
ln |x+ 3|+ C.

48. 16x3 − 4x2 + 4x− 1 = (4x− 1)(4x2 + 1),
1

(4x− 1)(4x2 + 1)
=

A

4x− 1
+
Bx+ C

4x2 + 1
; A = 4/5, B = −4/5, C = −1/5,

so

∫
dx

16x3 − 4x2 + 4x− 1
=

1

5
ln |4x− 1| − 1

10
ln(4x2 + 1)− 1

10
tan−1(2x) + C.

49. Let u = x2, du = 2x dx,

∫ 1

0

x

x4 + 1
dx =

1

2

∫ 1

0

1

1 + u2
du =

1

2
tan−1 u

]1

0

=
1

2

π

4
=
π

8
.

50.
1

a2 − x2
=

A

a− x +
B

a+ x
;A =

1

2a
,B =

1

2a
, so

1

2a

∫ (
1

a− x +
1

a+ x

)
dx =

1

2a
(− ln |a− x|+ ln |a+ x| ) + C =

1

2a
ln

∣∣∣∣
a+ x

a− x

∣∣∣∣+ C.

51. If the polynomial has distinct roots r1, r2, r1 6= r2, then the partial fraction decomposition will contain terms of

the form
A

x− r1
,

B

x− r2
, and they will give logarithms and no inverse tangents. If there are two roots not distinct,

say x = r, then the terms
A

x− r ,
B

(x− r)2
will appear, and neither will give an inverse tangent term. The only

other possibility is no real roots, and the integrand can be written in the form
1

a
(
x+ b

2a

)2
+ c− b2

4a

, which will

yield an inverse tangent, specifically of the form tan−1

[
A

(
x+

b

2a

)]
for some constant A.

52. Since there are no inverse tangent terms, the roots are real. Since there are no logarithmic terms, there are no

terms of the form
1

x− r , so the only terms that can arise in the partial fraction decomposition form is one like

1

(x− a)2
. Therefore the original quadratic had a multiple root.

53. Yes, for instance the integrand
1

x2 + 1
, whose integral is precisely tan−1 x+ C.

Exercise Set 7.6

1. Formula (60):
4

9

[
3x+ ln |−1 + 3x|

]
+ C.

2. Formula (62):
1

25

[
4

4− 5x
+ ln |4− 5x|

]
+ C.
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3. Formula (65):
1

5
ln

∣∣∣∣
x

5 + 2x

∣∣∣∣+ C.

4. Formula (66): − 1

x
− 5 ln

∣∣∣∣
1− 5x

x

∣∣∣∣+ C.

5. Formula (102):
1

5
(x− 1)(2x+ 3)3/2 + C.

6. Formula (105):
2

3
(−x− 4)

√
2− x+ C.

7. Formula (108):
1

2
ln

∣∣∣∣
√

4− 3x− 2√
4− 3x+ 2

∣∣∣∣+ C.

8. Formula (108): tan−1

√
3x− 4

2
+ C.

9. Formula (69):
1

8
ln

∣∣∣∣
x+ 4

x− 4

∣∣∣∣+ C.

10. Formula (70):
1

6
ln

∣∣∣∣
x− 3

x+ 3

∣∣∣∣+ C.

11. Formula (73):
x

2

√
x2 − 3− 3

2
ln
∣∣∣x+

√
x2 − 3

∣∣∣+ C.

12. Formula (94): −
√
x2 − 5

x
+ ln(x+

√
x2 − 5) + C.

13. Formula (95):
x

2

√
x2 + 4− 2 ln(x+

√
x2 + 4) + C.

14. Formula (90):

√
x2 − 2

2x
+ C.

15. Formula (74):
x

2

√
9− x2 +

9

2
sin−1 x

3
+ C.

16. Formula (80): −
√

4− x2

x
− sin−1 x

2
+ C.

17. Formula (79):
√

4− x2 − 2 ln

∣∣∣∣∣
2 +
√

4− x2

x

∣∣∣∣∣+ C.

18. Formula (117): −
√

6x− x2

3x
+ C.

19. Formula (38): − 1

14
sin(7x) +

1

2
sinx+ C.

20. Formula (40): − 1

14
cos(7x) +

1

6
cos(3x) + C.

21. Formula (50):
x4

16
[4 lnx− 1] + C.
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22. Formula (50): −2
lnx+ 2√

x
+ C.

23. Formula (42):
e−2x

13
(−2 sin(3x)− 3 cos(3x)) + C.

24. Formula (43):
ex

5
(cos(2x) + 2 sin(2x)) + C.

25. u = e2x, du = 2e2xdx, Formula (62):
1

2

∫
u du

(4− 3u)2
=

1

18

[
4

4− 3e2x
+ ln

∣∣4− 3e2x
∣∣
]

+ C.

26. u = cos 2x, du = −2 sin 2xdx, Formula (65): −
∫

du

2u(3− u)
= −1

6
ln

∣∣∣∣
cos 2x

3− cos 2x

∣∣∣∣+ C.

27. u = 3
√
x, du =

3

2
√
x
dx, Formula (68):

2

3

∫
du

u2 + 4
=

1

3
tan−1 3

√
x

2
+ C.

28. u = sin 4x, du = 4 cos 4xdx, Formula (68):
1

4

∫
du

9 + u2
=

1

12
tan−1 sin 4x

3
+ C.

29. u = 2x, du = 2dx, Formula (76):
1

2

∫
du√
u2 − 9

=
1

2
ln
∣∣∣2x+

√
4x2 − 9

∣∣∣+ C.

30. u =
√

2x2, du = 2
√

2xdx, Formula (72):
1

2
√

2

∫ √
u2 + 3 du =

x2

4

√
2x4 + 3 +

3

4
√

2
ln
(√

2x2 +
√

2x4 + 3
)

+ C.

31. u = 2x2, du = 4xdx, u2du = 16x5 dx, Formula (81):
1

4

∫
u2 du√
2− u2

= −x
2

4

√
2− 4x4 +

1

4
sin−1(

√
2x2) + C.

32. u = 2x, du = 2dx, Formula (83): 2

∫
du

u2
√

3− u2
= − 1

3x

√
3− 4x2 + C.

33. u = lnx, du = dx/x, Formula (26):

∫
sin2 u du =

1

2
lnx− 1

4
sin(2 lnx) + C.

34. u = e−2x, du = −2e−2x, Formula (27): −1

2

∫
cos2 u du = −1

4
e−2x − 1

8
sin
(
2e−2x

)
+ C.

35. u = −2x, du = −2dx, Formula (51):
1

4

∫
ueu du =

1

4
(−2x− 1)e−2x + C.

36. u = 3x+ 1, du = 3 dx, Formula (11):
1

3

∫
lnu du =

1

3
(u lnu− u) + C =

1

3
(3x+ 1)[ln(3x+ 1)− 1] + C.

37. u = sin 3x, du = 3 cos 3x dx, Formula (67):
1

3

∫
du

u(u+ 1)2
=

1

3

[
1

1 + sin 3x
+ ln

∣∣∣∣
sin 3x

1 + sin 3x

∣∣∣∣
]

+ C.

38. u = lnx, du =
1

x
dx, Formula (105):

∫
u du√
4u− 1

=
1

12
(2 lnx+ 1)

√
4 lnx− 1 + C.

39. u = 4x2, du = 8xdx, Formula (70):
1

8

∫
du

u2 − 1
=

1

16
ln

∣∣∣∣
4x2 − 1

4x2 + 1

∣∣∣∣+ C.

40. u = 2ex, du = 2exdx, Formula (69):
1

2

∫
du

3− u2
=

1

4
√

3
ln

∣∣∣∣∣
2ex +

√
3

2ex −
√

3

∣∣∣∣∣+ C.
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41. u = 2ex, du = 2exdx, Formula (74):
1

2

∫ √
3− u2 du =

1

4
u
√

3− u2 +
3

4
sin−1(u/

√
3) + C =

1

2
ex
√

3− 4e2x +

3

4
sin−1(2ex/

√
3) + C.

42. u = 3x, du = 3dx, Formula (80): 3

∫ √
4− u2du

u2
= −3

√
4− u2

u
−3 sin−1(u/2)+C = −

√
4− 9x2

x
−3 sin−1(3x/2)+

C.

43. u = 3x, du = 3dx, Formula (112):
1

3

∫ √
5

3
u− u2 du =

1

6

(
u− 5

6

)√
5

3
u− u2 +

25

216
sin−1

(
6u− 5

5

)
+ C =

18x− 5

36

√
5x− 9x2 +

25

216
sin−1

(
18x− 5

5

)
+ C.

44. u =
√

5x, du =
√

5 dx, Formula (117):

∫
du

u
√

(u/
√

5)− u2

= −

√
(u/
√

5)− u2

u/(2
√

5)
+ C = −2

√
x− 5x2

x
+ C.

45. u = 2x, du = 2dx, Formula (44):

∫
u sinu du = (sinu− u cosu) + C = sin 2x− 2x cos 2x+ C.

46. u =
√
x, u2 = x, 2udu = dx, Formula (45): 2

∫
u cosu du = 2 cos

√
x+ 2

√
x sin

√
x+ C.

47. u = −√x, u2 = x, 2udu = dx, Formula (51): 2

∫
ueudu = −2(

√
x+ 1)e−

√
x + C.

48. u = 2 + x2, du = 2x dx, Formula (11):
1

2

∫
lnu du =

1

2
(u lnu− u) + C =

1

2
(2 + x2) ln(2 + x2)− 1

2
(2 + x2) + C.

49. x2 + 6x− 7 = (x+ 3)2 − 16;u = x+ 3, du = dx, Formula (70):

∫
du

u2 − 16
=

1

8
ln

∣∣∣∣
u− 4

u+ 4

∣∣∣∣+ C =
1

8
ln

∣∣∣∣
x− 1

x+ 7

∣∣∣∣+ C.

50. x2 + 2x − 3 = (x + 1)2 − 4, u = x + 1, du = dx, Formula (74):

∫ √
4− u2 du =

1

2
u
√

4− u2 + 2 sin−1(u/2) + C

=
1

2
(x+ 1)

√
3− 2x− x2 + 2 sin−1((x+ 1)/2) + C.

51. x2 − 4x − 5 = (x − 2)2 − 9, u = x − 2, du = dx, Formula (77):

∫
u+ 2√
9− u2

du =

∫
u du√
9− u2

+ 2

∫
du√

9− u2
=

−
√

9− u2 + 2 sin−1 u

3
+ C = −

√
5 + 4x− x2 + 2 sin−1

(
x− 2

3

)
+ C.

52. x2 + 6x+ 13 = (x+ 3)2 + 4, u = x+ 3, du = dx, Formula (71):

∫
(u− 3) du

u2 + 4
=

1

2
ln(u2 + 4)− 3

2
tan−1(u/2) +C =

1

2
ln(x2 + 6x+ 13)− 3

2
tan−1((x+ 3)/2) + C.

53. u =
√
x− 2, x = u2 + 2, dx = 2u du;

∫
2u2(u2 + 2)du = 2

∫
(u4 + 2u2)du =

2

5
u5 +

4

3
u3 +C =

2

5
(x− 2)5/2 +

4

3
(x−

2)3/2 + C.

54. u =
√
x+ 1, x = u2 − 1, dx = 2u du; 2

∫
(u2 − 1)du =

2

3
u3 − 2u+ C =

2

3
(x+ 1)3/2 − 2

√
x+ 1 + C.
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55. u =
√
x3 + 1, x3 = u2 − 1, 3x2dx = 2u du;

2

3

∫
u2(u2 − 1)du =

2

3

∫
(u4 − u2)du =

2

15
u5 − 2

9
u3 + C =

2

15
(x3 +

1)5/2 − 2

9
(x3 + 1)3/2 + C.

56. u =
√
x3 − 1, x3 = u2 + 1, 3x2dx = 2u du;

2

3

∫
1

u2 + 1
du =

2

3
tan−1 u+ C =

2

3
tan−1

√
x3 − 1 + C.

57. u = x1/3, x = u3, dx = 3u2 du;

∫
3u2

u3 − udu = 3

∫
u

u2 − 1
du = 3

∫ [
1

2(u+ 1)
+

1

2(u− 1)

]
du =

3

2
ln |x1/3 + 1|+

3

2
ln |x1/3 − 1|+ C.

58. u = x1/6, x = u6, dx = 6u5du;

∫
6u5

u3 + u2
du = 6

∫
u3

u+ 1
du = 6

∫ [
u2 − u+ 1− 1

u+ 1

]
du = 2x1/2 − 3x1/3 +

6x1/6 − 6 ln(x1/6 + 1) + C.

59. u = x1/4, x = u4, dx = 4u3du; 4

∫
1

u(1− u)
du = 4

∫ [
1

u
+

1

1− u

]
du = 4 ln

x1/4

|1− x1/4| + C.

60. u = x1/2, x = u2, dx = 2u du;

∫
2u2

u2 + 1
du = 2

∫
u2 + 1− 1

u2 + 1
du = 2u− 2 tan−1 u+ C = 2

√
x− 2 tan−1

√
x+ C.

61. u = x1/6, x = u6, dx = 6u5du; 6

∫
u3

u− 1
du = 6

∫ [
u2 + u+ 1 +

1

u− 1

]
du = 2x1/2 + 3x1/3 + 6x1/6 + 6 ln |x1/6 −

1|+ C.

62. u =
√
x, x = u2, dx = 2u du; −2

∫
u2 + u

u− 1
du = −2

∫ (
u+ 2 +

2

u− 1

)
du = −x− 4

√
x− 4 ln |√x− 1|+ C.

63. u =
√

1 + x2, x2 = u2 − 1, 2x dx = 2u du, x dx = u du;

∫
(u2 − 1)du =

1

3
(1 + x2)3/2 − (1 + x2)1/2 + C.

64. u = (x+ 3)1/5, x = u5 − 3, dx = 5u4du; 5

∫
(u8 − 3u3)du =

5

9
(x+ 3)9/5 − 15

4
(x+ 3)4/5 + C.

65. u = tan(x/2),

∫
1

1 +
2u

1 + u2
+

1− u2

1 + u2

2

1 + u2
du =

∫
1

u+ 1
du = ln | tan(x/2) + 1|+ C.

66.

∫
1

2 +
2u

1 + u2

2

1 + u2
du =

∫
1

u2 + u+ 1
du =

∫
1

(u+ 1/2)2 + 3/4
du =

2√
3

tan−1

(
2 tan(x/2) + 1√

3

)
+ C.

67. u = tan(θ/2),

∫
dθ

1− cos θ
=

∫
1

u2
du = − 1

u
+ C = − cot(θ/2) + C.

68. u = tan(x/2),

∫
2

3u2 + 8u− 3
du =

2

3

∫
1

(u+ 4/3)2 − 25/9
du =

2

3

∫
1

z2 − 25/9
dz (using z = u + 4/3) =

1

5
ln

∣∣∣∣
z − 5/3

z + 5/3

∣∣∣∣+ C =
1

5
ln

∣∣∣∣
tan(x/2)− 1/3

tan(x/2) + 3

∣∣∣∣+ C.

69. u = tan(x/2),
1

2

∫
1− u2

u
du =

1

2

∫
(1/u− u)du =

1

2
ln | tan(x/2)| − 1

4
tan2(x/2) + C.

70. u = tan(x/2),

∫
1− u2

1 + u2
du = −u+ 2 tan−1 u+ C = x− tan(x/2) + C.
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71.

∫ x

2

1

t(4− t) dt =
1

4
ln

t

4− t

]x

2

(Formula (65), a = 4, b = −1) =
1

4

[
ln

x

4− x − ln 1

]
=

1

4
ln

x

4− x ,
1

4
ln

x

4− x =

0.5, ln
x

4− x = 2,
x

4− x = e2, x = 4e2 − e2x, x(1 + e2) = 4e2, x = 4e2/(1 + e2) ≈ 3.523188312.

72.

∫ x

1

1

t
√

2t− 1
dt = 2 tan−1

√
2t− 1

]x

1

(Formula (108), a = −1, b = 2) = 2
(
tan−1

√
2x− 1− tan−1 1

)
=

= 2
(
tan−1

√
2x− 1− π/4

)
, 2(tan−1

√
2x− 1− π/4) = 1, tan−1

√
2x− 1 = 1/2 + π/4,

√
2x− 1 = tan(1/2 + π/4),

x = [1 + tan2(1/2 + π/4)]/2 ≈ 6.307993516.

73. A =

∫ 4

0

√
25− x2 dx =

(
1

2
x
√

25− x2 +
25

2
sin−1 x

5

)]4

0

(Formula (74), a = 5) = 6 +
25

2
sin−1 4

5
≈ 17.59119023.

74. A =

∫ 2

2/3

√
9x2 − 4 dx; u = 3x, A =

1

3

∫ 6

2

√
u2 − 4 du =

1

3

(
1

2
u
√
u2 − 4− 2 ln

∣∣∣u+
√
u2 − 4

∣∣∣
)]6

2

(Formula (73), a2 = 4) =
1

3

(
3
√

32− 2 ln(6 +
√

32) + 2 ln 2
)

= 4
√

2− 2

3
ln(3 + 2

√
2) ≈ 4.481689467.

75. A =

∫ 1

0

1

25− 16x2
dx; u = 4x, A =

1

4

∫ 4

0

1

25− u2
du =

1

40
ln

∣∣∣∣
u+ 5

u− 5

∣∣∣∣
]4

0

=
1

40
ln 9 ≈ 0.054930614. (Formula (69),

a = 5)

76. A =

∫ 4

1

√
x lnx dx =

4

9
x3/2

(
3

2
lnx− 1

)]4

1

(Formula (50), n = 1/2) =
4

9
(12 ln 4− 7) ≈ 4.282458815.

77. V = 2π

∫ π/2

0

x cosx dx = 2π(cosx+ x sinx)

]π/2

0

= π(π − 2) ≈ 3.586419094. (Formula (45))

78. V = 2π

∫ 8

4

x
√
x− 4 dx =

4π

15
(3x+ 8)(x− 4)3/2

]8

4

(Formula (102), a = −4, b = 1) =
1024

15
π ≈ 214.4660585.

79. V = 2π

∫ 3

0

xe−xdx; u = −x, V = 2π

∫ −3

0

ueudu = 2πeu(u−1)

]−3

0

= 2π(1−4e−3) ≈ 5.031899801. (Formula (51))

80. V = 2π

∫ 5

1

x lnx dx =
π

2
x2(2 lnx− 1)

]5

1

= π(25 ln 5− 12) ≈ 88.70584621. (Formula (50), n = 1)

81. L =

∫ 2

0

√
1 + 16x2 dx; u = 4x, L =

1

4

∫ 8

0

√
1 + u2 du =

1

4

(
u

2

√
1 + u2 +

1

2
ln
(
u+

√
1 + u2

))]8

0

(Formula (72), a2 = 1) =
√

65 +
1

8
ln(8 +

√
65) ≈ 8.409316783.

82. L =

∫ 3

1

√
1 + 9/x2 dx =

∫ 3

1

√
x2 + 9

x
dx =

(√
x2 + 9− 3 ln

∣∣∣∣∣
3 +
√
x2 + 9

x

∣∣∣∣∣

)]3

1

= 3
√

2 −
√

10 + 3 ln
3 +
√

10

1 +
√

2
≈

3.891581644. (Formula (89), a = 3)

83. S = 2π

∫ π

0

(sinx)
√

1 + cos2 x dx; u = cosx, a2 = 1, S = −2π

∫ −1

1

√
1 + u2 du = 4π

∫ 1

0

√
1 + u2 du

= 4π

(
u

2

√
1 + u2 +

1

2
ln
(
u+

√
1 + u2

))]1

0

= 2π
[√

2 + ln(1 +
√

2)
]
≈ 14.42359945. (Formula (72))
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84. S = 2π

∫ 4

1

1

x

√
1 + 1/x4 dx = 2π

∫ 4

1

√
x4 + 1

x3
dx; u = x2, S = π

∫ 16

1

√
u2 + 1

u2
du =

= π

(
−
√
u2 + 1

u
+ ln

(
u+

√
u2 + 1

))]16

1

= π

(
√

2−
√

257

16
+ ln

16 +
√

257

1 +
√

2

)
≈ 9.417237485. (Formula (93),

a2 = 1)

85. (a) s(t) = 2 +

∫ t

0

20 cos6 u sin3 u du = −20

9
sin2 t cos7 t− 40

63
cos7 t+

166

63
.

(b) 3 6 9 12 15

1

2

3

4

t

s(t)

86. (a) v(t) =

∫ t

0

a(u) du = − 1

10
e−t cos 2t+

1

5
e−t sin 2t+

1

74
e−t cos 6t− 3

37
e−t sin 6t+

1

10
− 1

74

s(t) = 10 +

∫ t

0

v(u) du = − 3

50
e−t cos 2t− 2

25
e−t sin 2t+

35

2738
e−t cos 6t+

6

1369
e−t sin 6t+

16

185
t+

343866

34225
.

(b) 2 6 10 14 18

2
4
6
8

10
12

t

s(t)

87. (a)

∫
secx dx =

∫
1

cosx
dx =

∫
2

1− u2
du = ln

∣∣∣∣
1 + u

1− u

∣∣∣∣+ C = ln

∣∣∣∣
1 + tan(x/2)

1− tan(x/2)

∣∣∣∣+ C =

= ln

{∣∣∣∣
cos(x/2) + sin(x/2)

cos(x/2)− sin(x/2)

∣∣∣∣
∣∣∣∣
cos(x/2) + sin(x/2)

cos(x/2) + sin(x/2)

∣∣∣∣
}

+ C = ln

∣∣∣∣
1 + sinx

cosx

∣∣∣∣+ C = ln |secx+ tanx|+ C.

(b) tan
(π

4
+
x

2

)
=

tan
π

4
+ tan

x

2

1− tan
π

4
tan

x

2

=
1 + tan

x

2

1− tan
x

2

.

88.

∫
cscx dx =

∫
1

sinx
dx =

∫
1/u du = ln | tan(x/2)|+C, but ln | tan(x/2)| = 1

2
ln

sin2(x/2)

cos2(x/2)
=

1

2
ln

(1− cosx)/2

(1 + cosx)/2
=

1

2
ln

1− cosx

1 + cosx
; also,

1− cosx

1 + cosx
=

1− cos2 x

(1 + cosx)2
=

1

(cscx+ cotx)2
so

1

2
ln

1− cosx

1 + cosx
= − ln | cscx+ cotx|.

89. Let u = tanh(x/2) then cosh(x/2) = 1/ sech(x/2) = 1/
√

1− tanh2(x/2) = 1/
√

1− u2,

sinh(x/2) = tanh(x/2) cosh(x/2) = u/
√

1− u2, so sinhx = 2 sinh(x/2) cosh(x/2) = 2u/(1 − u2), coshx =

cosh2(x/2) + sinh2(x/2) = (1 + u2)/(1 − u2), x = 2 tanh−1 u, dx = [2/(1 − u2)]du;

∫
dx

2 coshx+ sinhx
=

∫
1

u2 + u+ 1
du =

2√
3

tan−1 2u+ 1√
3

+ C =
2√
3

tan−1 2 tanh(x/2) + 1√
3

+ C.
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90. Let u = x4 to get
1

4

∫
1√

1− u2
du =

1

4
sin−1 u+ C =

1

4
sin−1(x4) + C.

91.

∫
(cos32 x sin30 x− cos30 x sin32 x)dx =

∫
cos30 x sin30 x(cos2 x− sin2 x)dx =

1

230

∫
sin30 2x cos 2x dx =

=
sin31 2x

31(231)
+ C.

92.

∫ √
x−

√
x2 − 4dx =

1√
2

∫
(
√
x+ 2−

√
x− 2)dx =

√
2

3
[(x+ 2)3/2 − (x− 2)3/2] + C.

93.

∫
1

x10(1 + x−9)
dx = −1

9

∫
1

u
du = −1

9
ln |u|+ C = −1

9
ln |1 + x−9|+ C.

94. (a) (x+ 4)(x− 5)(x2 + 1)2;
A

x+ 4
+

B

x− 5
+
Cx+D

x2 + 1
+

Ex+ F

(x2 + 1)2
.

(b) − 3

x+ 4
+

2

x− 5
− x− 2

x2 + 1
− 3

(x2 + 1)2
.

(c) −3 ln |x+ 4|+ 2 ln |x− 5|+ 2 tan−1 x− 1

2
ln(x2 + 1)− 3

2

(
x

x2 + 1
+ tan−1 x

)
+ C.

Exercise Set 7.7

1. Exact value = 14/3 ≈ 4.666666667.

(a) 4.667600662, |EM | ≈ 0.000933995. (b) 4.664795676, |ET | ≈ 0.001870991. (c) 4.666666602, |ES | ≈ 9.9 · 10−7.

2. Exact value = 2.

(a) 1.999542900, |EM | ≈ 0.000457100. (b) 2.000915091, |ET | ≈ 0.000915091. (c) 2.000000019, |ES | ≈ 2.97 · 10−7.

3. Exact value = 1.

(a) 1.001028824, |EM | ≈ 0.001028824. (b) 0.997942986, |ET | ≈ 0.002057013. (c) 1.000000013, |ES | ≈ 2.12 · 10−7.

4. Exact value = 1− cos(2) ≈ 1.416146836.

(a) 1.418509838, |EM | ≈ 0.002363002. (b) 1.411423197, |ET | ≈ 0.004723639. (c) 1.416146888, |ES | ≈ 7.88 · 10−7.

5. Exact value =
1

2
(e−2 − e−6) ≈ 0.06642826551.

(a) 0.065987468, |EM | ≈ 0.000440797. (b) 0.067311623, |ET | ≈ 0.000883357. (c) 0.066428302, |ES | ≈ 5.88 · 10−7.

6. Exact value =
1

3
ln 10 ≈ 0.7675283641.

(a) 0.757580075, |EM | ≈ 0.009948289. (b) 0.788404810, |ET | ≈ 0.020876446. (c) 0.767855, |ES | ≈ 0.0003266.

7. f(x) =
√
x+ 1, f ′′(x) = −1

4
(x+ 1)−3/2, f (4)(x) = −15

16
(x+ 1)−7/2; K2 = 1/4, K4 = 15/16.

(a) |EM | ≤
27

2400
(1/4) = 0.002812500. (b) |ET | ≤

27

1200
(1/4) = 0.00562500.

(c) |ES | ≤
81

10240000
≈ 0.000007910156250.
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8. f(x) = 1/
√
x, f ′′(x) =

3

4
x−5/2, f (4)(x) =

105

16
x−9/2; K2 = 3/128, K4 = 105/8192.

(a) |EM | ≤
125

2400
(3/128) = 0.001220703125 (b) |ET | ≤

125

1200
(3/128) = 0.002441406250.

(c) |ES | ≤
35

25165824
≈ 0.000001390775045.

9. f(x) = cosx, f ′′(x) = − cosx, f (4)(x) = cosx; K2 = K4 = 1.

(a) |EM | ≤
π3/8

2400
(1) ≈ 0.00161491. (b) |ET | ≤

π3/8

1200
(1) ≈ 0.003229820488.

(c) |ES | ≤
π5/32

180× 204
(1) ≈ 3.320526095 · 10−7.

10. f(x) = sinx, f ′′(x) = − sinx, f (4)(x) = sinx; K2 = K4 = 1.

(a) |EM | ≤
8

2400
(1) ≈ 0.003333333. (b) |ET | ≤

8

1200
(1) ≈ 0.006666667.

(c) |ES | ≤
32

180× 204
(1) ≈ 0.000001111.

11. f(x) = e−2x, f ′′(x) = 4e−2x; f (4)(x) = 16e−2x; K2 = 4e−2;K4 = 16e−2.

(a) |EM | ≤
8

2400
(4e−2) ≈ 0.0018044704. (b) |ET | ≤

8

1200
(4e−2) ≈ 0.0036089409.

(c) |ES | ≤
32

180× 204
(16e−2) ≈ 0.00000240596.

12. f(x) = 1/(3x+ 1), f ′′(x) = 18(3x+ 1)−3, f (4)(x) = 1944(3x+ 1)−5; K2 = 18, K4 = 1944.

(a) |EM | ≤
27

2400
(18) ≈ 0.202500. (b) |ET | ≤

27

1200
(18) ≈ 0.4050000000.

(c) |ES | ≤
243

180× 204
(1944) ≈ 0.0164025.

13. (a) n >

[
(27)(1/4)

(24)(5× 10−4)

]1/2

≈ 23.7; n = 24. (b) n >

[
(27)(1/4)

(12)(5× 10−4)

]1/2
≈ 33.5; n=34.

(c) n >

[
(243)(15/16)

(180)(5× 10−4)

]1/4

≈ 7.1; n = 8.

14. (a) n >

[
(125)(3/128)

(24)(5× 10−4)

]1/2

≈ 15.6; n = 16. (b) n >

[
(125)(3/128)

(12)(5× 10−4)

]1/2
≈ 22.1; n=23.

(c) n >

[
(3125)(105/8192)

(180)(5× 10−4)

]1/4

≈ 4.59; n = 6.

15. (a) n >

[
(π3/8)(1)

(24)(10−3)

]1/2

≈ 12.7; n = 13. (b) n >

[
(π3/8)(1)

(12)(10−3)

]1/2

≈ 17.97; n = 18.

(c) n >

[
(π5/32)(1)

(180)(10−3)

]1/4

≈ 2.7; n = 4.



Exercise Set 7.7 395

16. (a) n >

[
(8)(1)

(24)(10−3)

]1/2

≈ 18.26; n = 19. (b) n >

[
(8)(1)

(12)(10−3)

]1/2

≈ 25.8; n = 26.

(c) n >

[
(32)(1)

(180)(10−3)

]1/4

≈ 3.7; n = 4.

17. (a) n >

[
(8)(4e−2)

(24)(10−6)

]1/2

≈ 42.5; n = 43. (b) n >

[
(8)(4e−2)

(12)(10−6)

]1/2

≈ 60.2; n = 61.

(c) n >

[
(32)(16e−2)

(180)(10−6)

]1/4

≈ 7.9; n = 8.

18. (a) n >

[
(27)(18)

(24)(10−6)

]1/2

= 450; n = 451. (b) n >

[
(27)(18)

(12)(10−6)

]1/2

≈ 636.4;n = 637.

(c) n >

[
(243)(1944)

(180)(10−6)

]1/4

≈ 71.6; n = 72.

19. False; Tn is the average of Ln and Rn.

20. True, see Theorem 7.7.1(b).

21. False, it is the weighted average of M25 and T25.

22. True.

23. g(X0) = aX2
0 + bX0 + c = 4a + 2b + c = f(X0) = 1/X0 = 1/2; similarly 9a + 3b + c = 1/3, 16a + 4b + c = 1/4.

Three equations in three unknowns, with solution a = 1/24, b = −3/8, c = 13/12, g(x) = x2/24 − 3x/8 + 13/12.∫ 4

2

g(x) dx =

∫ 4

2

(
x2

24
− 3x

8
+

13

12

)
dx =

25

36
,

∆x

3
[f(X0) + 4f(X1) + f(X2)] =

1

3

[
1

2
+

4

3
+

1

4

]
=

25

36
.

24. Suppose g(x) = ax2+bx+c passes through the points (0, f(0)) = (0, 0), (m, f(m)) = (1/6, 1/4), and (1/3, f(2m)) =
(1/3, 3/4). Then g(0) = c = 0, 1/4 = g(1/6) = a/36 + b/6, and 3/4 = g(1/3) = a/9 + b/3, with solution
a = 9/2, b = 3/4 or g(x) = 9x2/2 + 3x/4. Then (∆x/3)(Y0 + 4Y1 + Y2) = (1/18)(0 + 4(1/4) + 3/4) = 7/72, and∫ 1/3

0

g(x) dx =

[
(3/2)x3 + (3/8)x2

]1/3

0

= 1/18 + 1/24 = 7/72.

25. 1.49367411, 1.493648266.

26. 1.367402147, 1.367479548.

27. 3.806779393, 3.805537256.

28. 1.899430473, 1.899406253.

29. 0.9045242448, 0.9045242380.

30. 0.265328932, 0.265280129.

31. Exact value = 4 tan−1(x/2)

]2

0

= π.

(a) 3.142425985, |EM | ≈ 0.000833331. (b) 3.139925989, |ET | ≈ 0.001666665.

(c) 3.141592654, |ES | ≈ 6.2× 10−10.
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32. Exact value =

(
2

9
x
√

9− x2 + 2 sin−1 x

3

)]3

0

= π.

(a) 3.152411433, |EM | ≈ 0.010818779. (b) 3.104518327, |ET | ≈ 0.037074327.

(c) 3.136447064, |ES | ≈ 0.005146787.

33. S14 = 0.693147984, |ES | ≈ 0.000000803 = 8.03×10−7; the method used in Example 6 results in a value of n which
ensures that the magnitude of the error will be less than 10−6, this is not necessarily the smallest value of n.

34. (a) Underestimates, because the graph of cosx2 is concave down on the interval (0, 1).

(b) Overestimates, because the graph of cosx2 is concave up on the interval (3/2, 2).

35. f(x) = x sinx, f ′′(x) = 2 cosx − x sinx, |f ′′(x)| ≤ 2| cosx| + |x| | sinx| ≤ 2 + 2 = 4, so K2 ≤ 4, n >[
(8)(4)

(24)(10−4)

]1/2

≈ 115.5; n = 116 (a smaller n might suffice).

36. f(x) = ecos x, f ′′(x) = (sin2 x)ecos x − (cosx)ecos x, |f ′′(x)| ≤ ecos x(sin2 x + | cosx|) ≤ 2e, so K2 ≤ 2e, n >[
(1)(2e)

(24)(10−4)

]1/2

≈ 47.6; n = 48 (a smaller n might suffice).

37. f(x) = x
√
x, f ′′(x) =

3

4
√
x

, lim
x→0+

|f ′′(x)| = +∞.

38. f(x) = sin
√
x, f ′′(x) = −

√
x sin

√
x+ cos

√
x

4x3/2
, lim
x→0+

|f ′′(x)| = +∞.

39. s(x) =

∫ x

0

√
1 + (y′(t))2 dt =

∫ x

0

√
1 + cos2 t dt, ` =

∫ π

0

√
1 + cos2 t dt ≈ 3.820187624.

40. s(x) =

∫ x

1

√
1 + (y′(t))2 dt =

∫ x

1

√
1 + 4/t6 dt, ` =

∫ 2

1

√
1 + 4/t6 dt ≈ 1.296827279.

41.

∫ 30

0

v dt ≈ 30

(3)(6)

22

15
[0 + 4(60) + 2(90) + 4(110) + 2(126) + 4(138) + 146] ≈ 4424 ft.

42.
t 0 1 2 3 4 5 6 7 8
a 0 0.02 0.08 0.20 0.40 0.60 0.70 0.60 0
∫ 8

0

a dt ≈ 8

(3)(8)
[0 + 4(0.02) + 2(0.08) + 4(0.20) + 2(0.40) + 4(0.60) + 2(0.70) + 4(0.60) + 0] ≈ 2.7 cm/s.

43.

∫ 180

0

v dt ≈ 180

(3)(6)
[0.00 + 4(0.03) + 2(0.08) + 4(0.16) + 2(0.27) + 4(0.42) + 0.65] = 37.9 mi.

44.

∫ 1800

0

(1/v)dx ≈ 1800

(3)(6)

[
1

3100
+

4

2908
+

2

2725
+

4

2549
+

2

2379
+

4

2216
+

1

2059

]
≈ 0.71 s.

45. V =

∫ 16

0

πr2dy = π

∫ 16

0

r2dy ≈ π 16

(3)(4)
[(8.5)2 + 4(11.5)2 + 2(13.8)2 + 4(15.4)2 + (16.8)2] ≈ 9270 cm3 ≈ 9.3 L.

46. A =

∫ 600

0

h dx ≈ 600

(3)(6)
[0+4(7)+2(16)+4(24)+2(25)+4(16)+0] = 9000 ft2, V = 75A ≈ 75(9000) = 675, 000 ft3.
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47. (a) The maximum value of |f ′′(x)| is approximately 3.8442. (b) n = 18. (c) 0.9047406684.

48. (a) The maximum value of |f ′′(x)| is approximately 1.46789. (b) n = 12. (c) 1.112830350.

49. (a) K4 = max
0≤x≤1

|f (4)(x)| ≈ 12.4282.

(b)
(b− a)5K4

180n4
< 10−4 provided n4 >

104K4

180
, n > 5.12, so n ≥ 6.

(c)
K4

180
· 64 ≈ 0.0000531 with S6 ≈ 0.983347.

50. (a) K4 = max
0≤x≤1

|f (4)(x)| ≈ 3.94136281877.

(b)
(b− a)5K4

180n4
< 10−6 provided n4 >

106K4

180
≈ 21896.5, n > 12.2 and even, so n ≥ 14.

(c) With n = 14, S14 ≈ 1.497185037, with possible error |ES | ≤
(b− a)5K4

180n4
≈ 0.00000057.

51. (a) Left endpoint approximation ≈ b− a
n

[y0 +y1 + . . .+yn−2 +yn−1]. Right endpoint approximation ≈ b− a
n

[y1 +

y2 + . . .+ yn−1 + yn]. Average of the two =
b− a
n

1

2
[y0 + 2y1 + 2y2 + . . .+ 2yn−2 + 2yn−1 + yn].

(b) Area of trapezoid = (xk+1 − xk)
yk + yk+1

2
. If we sum from k = 0 to k = n − 1 then we get the right hand

side of (2).
y

t

1

2

3

xk xk + 1

yk yk + 1

52. Right endpoint, trapezoidal, midpoint, left endpoint.

53. Given g(x) = Ax2 + Bx + C, suppose ∆x = 1 and m = 0. Then set Y0 = g(−1), Y1 = g(0), Y2 = g(1). Also
Y0 = g(−1) = A − B + C, Y1 = g(0) = C, Y2 = g(1) = A + B + C, with solution C = Y1, B = 1

2 (Y2 − Y0), and

A = 1
2 (Y0+Y2)−Y1. Then

∫ 1

−1

g(x) dx = 2

∫ 1

0

(Ax2+C) dx =
2

3
A+2C =

1

3
(Y0+Y2)− 2

3
Y1+2Y1 =

1

3
(Y0+4Y1+Y2),

which is exactly what one gets applying the Simpson’s Rule. The general case with the interval (m−∆x,m+ ∆x)

and values Y0, Y1, Y2, can be converted by the change of variables z =
x−m

∆x
. Set g(x) = h(z) = h((x−m)/∆x) to

get dx = ∆x dz and ∆x

∫ m+∆x

m−∆x

h(z) dz =

∫ 1

−1

g(x) dx. Finally, Y0 = g(m−∆x) = h(−1), Y1 = g(m) = h(0), Y2 =

g(m+ ∆x) = h(1).

54. From Exercise 53 we know, for i = 0, 1, . . . , n−1 that

∫ x2i+2

x2i

gi(x) dx =
1

3

b− a
2n

[y2i+4y2i+1+y2i+2], because
b− a
2n

is

the width of the partition and acts as ∆x in Exercise 53. Summing over all the subintervals note that y0 and y2n are

only listed once; so

∫ b

a

f(x) dx =

n−1∑

i=0

(∫ x2i+2

x2i

gi(x) dx

)
=

1

3

b− a
2n

[y0+4y1+2y2+4y3+. . .+4y2n−2+2y2n−1+y2n].
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Exercise Set 7.8

1. (a) Improper; infinite discontinuity at x = 3. (b) Continuous integrand, not improper.

(c) Improper; infinite discontinuity at x = 0. (d) Improper; infinite interval of integration.

(e) Improper; infinite interval of integration and infinite discontinuity at x = 1.

(f) Continuous integrand, not improper.

2. (a) Improper if p > 0. (b) Improper if 1 ≤ p ≤ 2.

(c) Integrand is continuous for all p, not improper.

3. lim
`→+∞

(
−1

2
e−2x

)]`

0

=
1

2
lim

`→+∞
(−e−2` + 1) =

1

2
.

4. lim
`→+∞

1

2
ln(1 + x2)

]`

−1

= lim
`→+∞

1

2
[ln(1 + `2)− ln 2] = +∞, divergent.

5. lim
`→+∞

−2 coth−1 x

]`

3

= lim
`→+∞

(
2 coth−1 3− 2 coth−1 `

)
= 2 coth−1 3.

6. lim
`→+∞

−1

2
e−x

2

]`

0

= lim
`→+∞

1

2

(
−e−`2 + 1

)
= 1/2.

7. lim
`→+∞

− 1

2 ln2 x

]`

e

= lim
`→+∞

[
− 1

2 ln2 `
+

1

2

]
=

1

2
.

8. lim
`→+∞

2
√

lnx

]`

2

= lim
`→+∞

(2
√

ln `− 2
√

ln 2) = +∞, divergent.

9. lim
`→−∞

− 1

4(2x− 1)2

]0

`

= lim
`→−∞

1

4
[−1 + 1/(2`− 1)2] = −1/4.

10. lim
`→−∞

1

3
tan−1 x

3

]3

`

= lim
`→−∞

1

3

[
π

4
− tan−1 `

3

]
=

1

3
[π/4− (−π/2)] = π/4.

11. lim
`→−∞

1

3
e3x

]0

`

= lim
`→−∞

[
1

3
− 1

3
e3`

]
=

1

3
.

12. lim
`→−∞

−1

2
ln(3− 2ex)

]0

`

= lim
`→−∞

1

2
ln(3− 2e`) =

1

2
ln 3.

13.

∫ +∞

−∞
x dx converges if

∫ 0

−∞
x dx and

∫ +∞

0

x dx both converge; it diverges if either (or both) diverges.

∫ +∞

0

x dx =

lim
`→+∞

1

2
x2

]`

0

= lim
`→+∞

1

2
`2 = +∞, so

∫ +∞

−∞
x dx is divergent.

14.

∫ +∞

0

x√
x2 + 2

dx = lim
`→+∞

√
x2 + 2

]`

0

= lim
`→+∞

(
√
`2 + 2−

√
2) = +∞, so

∫ ∞

−∞

x√
x2 + 2

dx is divergent.
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15.

∫ +∞

0

x

(x2 + 3)2
dx = lim

`→+∞
− 1

2(x2 + 3)

]`

0

= lim
`→+∞

1

2
[−1/(`2 + 3) + 1/3] =

1

6
, similarly

∫ 0

−∞

x

(x2 + 3)2
dx = −1/6,

so

∫ ∞

−∞

x

(x2 + 3)2
dx = 1/6 + (−1/6) = 0.

16.

∫ +∞

0

e−t

1 + e−2t
dt = lim

`→+∞
− tan−1(e−t)

]`

0

= lim
`→+∞

[
− tan−1(e−`) +

π

4

]
=
π

4
,

∫ 0

−∞

e−t

1 + e−2t
dt = lim

`→−∞
− tan−1(e−t)

]0

`

= lim
`→−∞

[
−π

4
+ tan−1(e−`)

]
=
π

4
, so

∫ +∞

−∞

e−t

1 + e−2t
dt =

π

4
+
π

4
=
π

2
.

17. lim
`→4−

− 1

x− 4

]`

0

= lim
`→4−

[
− 1

`− 4
− 1

4

]
= +∞, divergent.

18. lim
`→0+

3

2
x2/3

]8

`

= lim
`→0+

3

2
(4− `2/3) = 6.

19. lim
`→π/2−

− ln(cosx)

]`

0

= lim
`→π/2−

− ln(cos `) = +∞, divergent.

20. lim
`→4−

−2
√

4− x
]`

0

= lim
`→4−

2(−
√

4− `+ 2) = 4.

21. lim
`→1−

sin−1 x

]`

0

= lim
`→1−

sin−1 ` = π/2.

22. lim
`→−3+

−
√

9− x2

]1

`

= lim
`→−3+

(−
√

8 +
√

9− `2) = −
√

8.

23. lim
`→π/3+

√
1− 2 cosx

]π/2

`

= lim
`→π/3+

(1−
√

1− 2 cos `) = 1.

24. lim
`→π/4−

− ln(1− tanx)

]`

0

= lim
`→π/4−

− ln(1− tan `) = +∞, divergent.

25.

∫ 2

0

dx

x− 2
= lim

`→2−
ln |x− 2|

]`

0

= lim
`→2−

(ln |`− 2| − ln 2) = −∞, so

∫ 3

0

dx

x− 2
is divergent.

26.

∫ 2

0

dx

x2
= lim

`→0+
−1/x

]2

`

= lim
`→0+

(−1/2 + 1/`) = +∞, so

∫ 2

−2

dx

x2
is divergent.

27.

∫ 8

0

x−1/3dx = lim
`→0+

3

2
x2/3

]8

`

= lim
`→0+

3

2
(4 − `2/3) = 6,

∫ 0

−1

x−1/3dx = lim
`→0−

3

2
x2/3

]`

−1

= lim
`→0−

3

2
(`2/3 − 1) = −3/2,

so

∫ 8

−1

x−1/3dx = 6 + (−3/2) = 9/2.

28.

∫ 1

0

dx

(x− 1)2/3
= lim

`→1−
3(x− 1)1/3

]`

0

= lim
`→1−

3[(`− 1)1/3 − (−1)1/3] = 3.

29.

∫ +∞

0

1

x2
dx =

∫ a

0

1

x2
dx +

∫ +∞

a

1

x2
dx where a > 0; take a = 1 for convenience,

∫ 1

0

1

x2
dx = lim

`→0+
(−1/x)

]1

`

=
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lim
`→0+

(1/`− 1) = +∞ so

∫ +∞

0

1

x2
dx is divergent.

30.

∫ +∞

1

dx

x
√
x2 − 1

=

∫ a

1

dx

x
√
x2 − 1

+

∫ +∞

a

dx

x
√
x2 − 1

where a > 1, take a = 2 for convenience to get

∫ 2

1

dx

x
√
x2 − 1

=

lim
`→1+

sec−1 x

]2

`

= lim
`→1+

(π/3−sec−1 `) = π/3,

∫ +∞

2

dx

x
√
x2 − 1

= lim
`→+∞

sec−1 x

]`

2

= π/2−π/3, so

∫ +∞

1

dx

x
√
x2 − 1

=

π/2.

31. Let u =
√
x, x = u2, dx = 2u du. Then

∫
dx√

x(x+ 1)
=

∫
2

du

u2 + 1
= 2 tan−1 u + C = 2 tan−1

√
x + C and

∫ 1

0

dx√
x(x+ 1)

= 2 lim
ε→0+

tan−1
√
x

]1

ε

= 2 lim
ε→0+

(π/4− tan−1
√
ε) = π/2.

32.

∫ +∞

0

=

∫ 1

0

+

∫ +∞

1

. The first integral was studied in Exercise 31 through the transformation x = u2. We apply the

same transformation to the second integral and obtain

∫ +∞

1

dx√
x(x+ 1)

= lim
A→+∞

∫ A

1

2du

u2 + 1
= lim
A→+∞

[2 tan−1A−

2 tan−1 1] = 2
π

2
− 2

π

4
=
π

2
, and thus

∫ +∞

0

dx√
x(x+ 1)

= π.

33. True, Theorem 7.8.2.

34. False; consider f(x) = 1.

35. False, neither 0 nor 3 lies in [1, 2], so the integrand is continuous.

36. False, the integral is divergent.

37.

∫ +∞

0

e−
√
x

√
x
dx = 2

∫ +∞

0

e−udu = 2 lim
`→+∞

(
−e−u

)]`

0

= 2 lim
`→+∞

(
1− e−`

)
= 2.

38.

∫ +∞

12

dx√
x(x+ 4)

= 2

∫ +∞

2
√

3

du

u2 + 4
= 2 lim

`→+∞
1

2
tan−1 u

2

]`

2
√

3

= lim
`→+∞

tan−1 `

2
− tan−1

√
3 =

π

6
.

39.

∫ +∞

0

e−x√
1− e−x

dx =

∫ 1

0

du√
u

= lim
`→0+

2
√
u

]1

`

= lim
`→0+

2(1−
√
`) = 2.

40.

∫ +∞

0

e−x√
1− e−2x

dx = −
∫ 0

1

du√
1− u2

=

∫ 1

0

du√
1− u2

= lim
`→1

sin−1 u

]`

0

= lim
`→1

sin−1 ` =
π

2
.

41. lim
`→+∞

∫ `

0

e−x cosx dx = lim
`→+∞

1

2
e−x(sinx− cosx)

]`

0

= 1/2.

42. A =

∫ +∞

0

xe−3xdx = lim
`→+∞

−1

9
(3x+ 1)e−3x

]`

0

= 1/9.

43. (a) 2.726585 (b) 2.804364 (c) 0.219384 (d) 0.504067

45. 1 +

(
dy

dx

)2

= 1 +
4− x2/3

x2/3
=

4

x2/3
; the arc length is

∫ 8

0

2

x1/3
dx = 3x2/3

]8

0

= 12.
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46. 1 +

(
dy

dx

)2
= 1 +

x2

4− x2
=

4

4− x2
; the arc length is

∫ 2

0

√
4

4− x2
dx = lim

`→2−

∫ `

0

2√
4− x2

dx = lim
`→2−

2 sin−1 x

2

]`

0

=

2 sin−1 1 = π.

47.

∫
lnx dx = x lnx − x + C,

∫ 1

0

lnx dx = lim
`→0+

∫ 1

`

lnx dx = lim
`→0+

(x lnx− x)

]1

`

= lim
`→0+

(−1 − ` ln ` + `), but

lim
`→0+

` ln ` = lim
`→0+

ln `

1/`
= lim
`→0+

(−`) = 0, so

∫ 1

0

lnx dx = −1.

48.

∫
lnx

x2
dx = − lnx

x
− 1

x
+C,

∫ +∞

1

lnx

x2
dx = lim

`→+∞

∫ `

1

lnx

x2
dx = lim

`→+∞

(
− lnx

x
− 1

x

)]`

1

= lim
`→+∞

(
− ln `

`
− 1

`
+ 1

)
,

but lim
`→+∞

ln `

`
= lim
`→+∞

1

`
= 0, so

∫ +∞

1

lnx

x2
= 1.

49.

∫ ∞

0

e−3x dx = lim
`→+∞

∫ `

0

e−3x dx = lim
`→+∞

−1

3
e−3x

]`

0

=
1

3
.

50.

∫ ∞

4

8

x2 − 4
dx = lim

`→+∞

∫ `

4

8

x2 − 4
dx = lim

`→+∞
2 ln

x− 2

x+ 2

]`

4

= 2 ln 3.

51. (a) V = π

∫ +∞

0

e−2xdx = −π
2

lim
`→+∞

e−2x

]`

0

= π/2.

(b) S = π + 2π

∫ +∞

0

e−x
√

1 + e−2xdx, let u = e−x to get

S = π − 2π

∫ 0

1

√
1 + u2du = π + 2π

[
u

2

√
1 + u2 +

1

2
ln
∣∣∣u+

√
1 + u2

∣∣∣
]1

0

= π + π
[√

2 + ln(1 +
√

2)
]
.

53. (a) For x ≥ 1, x2 ≥ x, e−x2 ≤ e−x.

(b)

∫ +∞

1

e−x dx = lim
`→+∞

∫ `

1

e−x dx = lim
`→+∞

−e−x
]`

1
= lim
`→+∞

(e−1 − e−`) = 1/e.

(c) By parts (a) and (b) and Exercise 52(b),

∫ +∞

1

e−x
2

dx is convergent and is ≤ 1/e.

54. (a) If x ≥ 0 then ex ≥ 1,
1

2x+ 1
≤ ex

2x+ 1
.

(b) lim
`→+∞

∫ `

0

dx

2x+ 1
= lim
`→+∞

1

2
ln(2x+ 1)

]`

0

= +∞.

(c) By parts (a) and (b) and Exercise 52(a),

∫ +∞

0

ex

2x+ 1
dx is divergent.

55. V = lim
`→+∞

∫ `

1

(π/x2) dx = lim
`→+∞

−(π/x)
]`

1
= lim

`→+∞
(π − π/`) = π, A = π + lim

`→+∞

∫ `

1

2π(1/x)
√

1 + 1/x4 dx; use

Exercise 52(a) with f(x) = 2π/x, g(x) = (2π/x)
√

1 + 1/x4 and a = 1 to see that the area is infinite.

56. (a) 1 ≤
√
x3 + 1

x
for x ≥ 2,

∫ +∞

2

1dx = +∞.
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(b)

∫ +∞

2

x

x5 + 1
dx ≤

∫ +∞

2

dx

x4
= lim

`→+∞
− 1

3x3

]`

2

= 1/24.

(c)

∫ ∞

0

xex

2x+ 1
dx ≥

∫ +∞

1

xex

2x+ 1
≥
∫ +∞

1

dx

2x+ 1
= +∞.

57. The area under the curve y =
1

1 + x2
, above the x-axis, and to the right of the y-axis is given by

∫ ∞

0

1

1 + x2
.

Solving for x =

√
1− y
y

, the area is also given by the improper integral

∫ 1

0

√
1− y
y

dy.

1 2 3 4 5

0.5

1

x

y

58. (b) u =
√
x,

∫ +∞

0

cos
√
x√

x
dx = 2

∫ +∞

0

cosu du;

∫ +∞

0

cosu du diverges by part (a).

59. Let x = r tan θ to get

∫
dx

(r2 + x2)3/2
=

1

r2

∫
cos θ dθ =

1

r2
sin θ + C =

x

r2
√
r2 + x2

+ C, so

u =
2πNIr

k
lim

`→+∞
x

r2
√
r2 + x2

]`

a

=
2πNI

kr
lim

`→+∞
(`/
√
r2 + `2 − a/

√
r2 + a2)] =

2πNI

kr
(1− a/

√
r2 + a2).

60. Let a2 =
M

2RT
to get

(a) v̄ =
4√
π

(
M

2RT

)3/2
1

2

(
M

2RT

)−2

=
2√
π

√
2RT

M
=

√
8RT

πM
.

(b) v2
rms =

4√
π

(
M

2RT

)3/2
3
√
π

8

(
M

2RT

)−5/2

=
3RT

M
so vrms =

√
3RT

M
.

61.

∫ +∞

0

5(e−0.2t−e−t) dt = lim
`→+∞

−25e−0.2t + 5e−t
]`
0

= 20;

∫ +∞

0

4(e−0.2t−e−3t) dt = lim
`→+∞

−20e−0.2t +
4

3
e−3t

]`

0

=

56

3
, so Method 1 provides greater availability.

62.

∫ +∞

0

6(e−0.4t − e−1.3t) dt = lim
`→+∞

−15e−0.4t +
6

1.3
e−1.3t

]`

0

=
135

13
;

∫ +∞

0

5(e−0.4t − e−3t) dt =

= lim
`→+∞

−12.5e−0.4t +
5

3
e−3t

]`

0

=
65

6
, so Method 2 provides greater availability.

63. (a) Satellite’s weight = w(x) = k/x2 lb when x = distance from center of Earth; w(4000) = 6000, so k = 9.6×1010

and W =

∫ 4000+b

4000

9.6× 1010x−2dx mi·lb.

(b)

∫ +∞

4000

9.6× 1010x−2dx = lim
`→+∞

−9.6× 1010/x

]`

4000

= 2.4× 107 mi·lb.
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64. (a) L{1} =

∫ +∞

0

e−stdt = lim
`→+∞

−1

s
e−st

]`

0

=
1

s
.

(b) L{e2t} =

∫ +∞

0

e−ste2tdt =

∫ +∞

0

e−(s−2)tdt = lim
`→+∞

− 1

s− 2
e−(s−2)t

]`

0

=
1

s− 2
.

(c) L{sin t} =

∫ +∞

0

e−st sin t dt = lim
`→+∞

e−st

s2 + 1
(−s sin t− cos t)

]`

0

=
1

s2 + 1
.

(d) L{cos t} =

∫ +∞

0

e−st cos t dt = lim
`→+∞

e−st

s2 + 1
(−s cos t+ sin t)

]`

0

=
s

s2 + 1
.

65. (a) L{f(t)} =

∫ +∞

0

te−st dt = lim
`→+∞

−(t/s+ 1/s2)e−st
]`

0

=
1

s2
.

(b) L{f(t)} =

∫ +∞

0

t2e−st dt = lim
`→+∞

−(t2/s+ 2t/s2 + 2/s3)e−st
]`

0

=
2

s3
.

(c) L{f(t)} =

∫ +∞

3

e−stdt = lim
`→+∞

−1

s
e−st

]`

3

=
e−3s

s
.

66.

b 10 100 1000 10,000∫ b

0

e−x
2

dx 0.8862269 0.8862269 0.8862269 0.8862269

67. (a) u =
√
ax, du =

√
a dx, 2

∫ +∞

0

e−ax
2

dx =
2√
a

∫ +∞

0

e−u
2

du =
√
π/a.

(b) x =
√

2σu, dx =
√

2σ du,
2√
2πσ

∫ +∞

0

e−x
2/2σ2

dx =
2√
π

∫ +∞

0

e−u
2

du = 1.

68. (a)

∫ 3

0

e−x
2

dx ≈ 0.8862;
√
π/2 ≈ 0.8862.

(b)

∫ +∞

0

e−x
2

dx =

∫ 3

0

e−x
2

dx+

∫ +∞

3

e−x
2

dx, so E =

∫ +∞

3

e−x
2

dx <
1

3

∫ +∞

3

xe−x
2

dx = −1

6
e−x

2

]∞

3

=
1

6
e−9 < 2.1×10−5.

69. (a)

∫ 4

0

1

x6 + 1
dx ≈ 1.047; π/3 ≈ 1.047

(b)

∫ +∞

0

1

x6 + 1
dx =

∫ 4

0

1

x6 + 1
dx+

∫ +∞

4

1

x6 + 1
dx, so E =

∫ +∞

4

1

x6 + 1
dx <

∫ +∞

4

1

x6
dx =

1

5(4)5
< 2×10−4.

70. If p = 0, then

∫ +∞

0

(1)dx = lim
`→+∞

x

]`

0

= +∞, if p 6= 0, then

∫ +∞

0

epxdx = lim
`→+∞

1

p
epx
]`

0

= lim
`→+∞

1

p
(ep` − 1) =

{
−1/p, p < 0
+∞, p > 0

, so the integral converges for p < 0.

71. If p = 1, then

∫ 1

0

dx

x
= lim

`→0+
lnx

]1

`

= +∞; if p 6= 1, then

∫ 1

0

dx

xp
= lim

`→0+

x1−p

1− p

]1

`

= lim
`→0+

[(1 − `1−p)/(1 − p)] =
{

1/(1− p), p < 1
+∞, p > 1

.
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72. u =
√

1− x, u2 = 1 − x, 2u du = −dx;−2

∫ 0

1

√
2− u2 du = 2

∫ 1

0

√
2− u2 du =

[
u
√

2− u2 + 2 sin−1(u/
√

2)
]1

0
=

1 + π/2.

73. 2

∫ 1

0

cos(u2)du ≈ 1.809.

74. −2

∫ 0

1

sin(1− u2)du = 2

∫ 1

0

sin(1− u2)du ≈ 1.187.

Chapter 7 Review Exercises

1. u = 4 + 9x, du = 9 dx,
1

9

∫
u1/2 du =

2

27
(4 + 9x)3/2 + C.

2. u = πx, du = π dx,
1

π

∫
cosu du =

1

π
sinu+ C =

1

π
sinπx+ C.

3. u = cos θ, −
∫
u1/2du = −2

3
cos3/2 θ + C.

4. u = lnx, du =
dx

x
,

∫
du

u
= ln |u|+ C = ln |lnx|+ C.

5. u = tan(x2),
1

2

∫
u2du =

1

6
tan3(x2) + C.

6. u =
√
x, x = u2, dx = 2u du, 2

∫ 3

0

u2

u2 + 9
du = 2

∫ 3

0

(
1− 9

u2 + 9

)
du =

(
2u− 6 tan−1 u

3

)]3

0

= 6− 3

2
π.

7. (a) With u =
√
x:

∫
1√

x
√

2− x dx = 2

∫
1√

2− u2
du = 2 sin−1(u/

√
2) + C = 2 sin−1(

√
x/2) + C; with u =

√
2− x :

∫
1√

x
√

2− x dx = −2

∫
1√

2− u2
du = −2 sin−1(u/

√
2) + C = −2 sin−1(

√
2− x/

√
2) + C1; completing

the square:

∫
1√

1− (x− 1)2
dx = sin−1(x− 1) + C.

(b) In the three results in part (a) the antiderivatives differ by a constant, in particular 2 sin−1(
√
x/2) =

π − 2 sin−1(
√

2− x/
√

2) = π/2 + sin−1(x− 1).

8. (a) u = x2, dv =
x√

x2 + 1
dx, du = 2x dx, v =

√
x2 + 1;

∫ 1

0

x3

√
x2 + 1

dx = x2
√
x2 + 1

]1
0
− 2

∫ 1

0

x(x2 +

1)1/2dx =
√

2− 2

3
(x2 + 1)3/2

]1

0

=
√

2− 2

3
[2
√

2− 1] = (2−
√

2)/3.

(b) u2 = x2 +1, x2 = u2−1, 2x dx = 2u du, x dx = u du;

∫ 1

0

x3

√
x2 + 1

dx =

∫ 1

0

x2

√
x2 + 1

x dx =

∫ √2

1

u2 − 1

u
u du =

∫ √2

1

(u2 − 1)du =

(
1

3
u3 − u

)]√2

1

= (2−
√

2)/3.

9. u = x, dv = e−xdx, du = dx, v = −e−x;

∫
xe−xdx = −xe−x +

∫
e−xdx = −xe−x − e−x + C.



Chapter 7 Review Exercises 405

10. u = x, dv = sin 2x dx, du = dx, v = −1

2
cos 2x;

∫
x sin 2x dx = −1

2
x cos 2x +

1

2

∫
cos 2x dx = −1

2
x cos 2x +

1

4
sin 2x+ C.

11. u = ln(2x+ 3), dv = dx, du =
2

2x+ 3
dx, v = x;

∫
ln(2x+ 3)dx = x ln(2x+ 3)−

∫
2x

2x+ 3
dx, but

∫
2x

2x+ 3
dx =

∫ (
1− 3

2x+ 3

)
dx = x− 3

2
ln(2x+ 3) + C1, so

∫
ln(2x+ 3)dx = x ln(2x+ 3)− x+

3

2
ln(2x+ 3) + C.

12. u = tan−1(2x), dv = dx, du =
2

1 + 4x2
dx, v = x;

∫
tan−1(2x)dx = x tan−1(2x) −

∫
2x

1 + 4x2
dx = x tan−1(2x) −

1

4
ln(1 + 4x2) + C, thus

∫ 1/2

0

tan−1(2x) dx = (1/2)(π/4)− 1

4
ln 2 = π/8− 1

4
ln 2.

13. Let I denote

∫
8x4 cos 2x dx. Then

diff. antidiff.

8x4 cos 2x
↘ +

32x3 1

2
sin 2x

↘ −
96x2 −1

4
cos 2x

↘ +

192x −1

8
sin 2x

↘ −
192

1

16
cos 2x

↘ +

0
1

32
sin 2x

I =

∫
8x4 cos 2x dx = (4x4 − 12x2 + 6) sin 2x+ (8x3 − 12x) cos 2x+ C.

14. Distance =

∫ 5

0

t2e−tdt;u = t2, dv = e−tdt, du = 2tdt, v = −e−t, so distance = −t2e−t
]5

0
+ 2

∫ 5

0

te−tdt;u =

2t, dv = e−tdt, du = 2dt, v = −e−t, so distance = −25e−5 − 2te−t
]5

0
+ 2

∫ 5

0

e−tdt = −25e−5 − 10e−5 − 2e−t
]5

0
=

−25e−5 − 10e−5 − 2e−5 + 2 = −37e−5 + 2.

15.

∫
sin2 5θ dθ =

1

2

∫
(1− cos 10θ)dθ =

1

2
θ − 1

20
sin 10θ + C.

16.

∫
sin3 2x cos2 2x dx =

∫
(1−cos2 2x) cos2 2x sin 2x dx =

∫
(cos2 2x−cos4 2x) sin 2x dx = −1

6
cos3 2x+

1

10
cos5 2x+

C.

17.

∫
sinx cos 2x dx =

1

2

∫
(sin 3x− sinx)dx = −1

6
cos 3x+

1

2
cosx+ C.

18.

∫ π/6

0

sin 2x cos 4x dx =
1

2

∫ π/6

0

(sin 6x − sin 2x)dx =

[
− 1

12
cos 6x+

1

4
cos 2x

]π/6

0

= [(−1/12)(−1) + (1/4)(1/2)] −
[−1/12 + 1/4] = 1/24.
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19. u = 2x,

∫
sin4 2x dx =

1

2

∫
sin4 u du =

1

2

[
−1

4
sin3 u cosu+

3

4

∫
sin2 u du

]
= −1

8
sin3 u cosu+

+
3

8

[
−1

2
sinu cosu+

1

2

∫
du

]
= −1

8
sin3 u cosu− 3

16
sinu cosu+

3

16
u+C = −1

8
sin3 2x cos 2x− 3

16
sin 2x cos 2x+

3

8
x+ C.

20. u = x2,

∫
x cos5(x2)dx =

1

2

∫
cos5 u du =

1

2

∫
(cosu)(1 − sin2 u)2 du =

1

2

∫
cosu du −

∫
cosu sin2 u du +

1

2

∫
cosu sin4 u du =

1

2
sinu− 1

3
sin3 u+

1

10
sin5 u+ C =

1

2
sin(x2)− 1

3
sin3(x2) +

1

10
sin5(x2) + C.

21. x = 3 sin θ, dx = 3 cos θ dθ, 9

∫
sin2 θ dθ =

9

2

∫
(1 − cos 2θ)dθ =

9

2
θ − 9

4
sin 2θ + C =

9

2
θ − 9

2
sin θ cos θ + C

=
9

2
sin−1(x/3)− 1

2
x
√

9− x2 + C.

22. x = 4 sin θ, dx = 4 cos θ dθ,
1

16

∫
1

sin2 θ
dθ =

1

16

∫
csc2 θ dθ = − 1

16
cot θ + C = −

√
16− x2

16x
+ C.

23. x = sec θ, dx = sec θ tan θ dθ,

∫
sec θ dθ = ln | sec θ + tan θ|+ C = ln

∣∣∣x+
√
x2 − 1

∣∣∣+ C.

24. x = 5 sec θ, dx = 5 sec θ tan θ dθ, 25

∫
sec3 θ dθ =

25

2
sec θ tan θ +

25

2
ln | sec θ + tan θ| + C1 =

1

2
x
√
x2 − 25 +

25

2
ln |x+

√
x2 − 25|+ C.

25. x = 3 tan θ, dx = 3 sec2 θ dθ, 9

∫
tan2 θ sec θ dθ = 9

∫
sec3 θ dθ−9

∫
sec θ dθ =

9

2
sec θ tan θ− 9

2
ln | sec θ+tan θ|+C

=
1

2
x
√

9 + x2 − 9

2
ln |1

3

√
9 + x2 +

1

3
x|+ C.

26. 2x = tan θ, 2 dx = sec2 θ dθ,

∫
sec2 θ csc θ dθ =

∫
(sec θ tan θ+csc θ) dθ = sec θ−ln | csc θ+cot θ|+C =

√
1 + 4x2−

ln

∣∣∣∣∣

√
1 + 4x2

2x
+

1

2x

∣∣∣∣∣+ C.

27.
1

(x+ 4)(x− 1)
=

A

x+ 4
+

B

x− 1
; A = −1

5
, B =

1

5
, so −1

5

∫
1

x+ 4
dx +

1

5

∫
1

x− 1
dx = −1

5
ln |x + 4| + 1

5
ln |x −

1|+ C =
1

5
ln

∣∣∣∣
x− 1

x+ 4

∣∣∣∣+ C.

28.
1

(x+ 1)(x+ 7)
=

A

x+ 1
+

B

x+ 7
; A =

1

6
, B = −1

6
, so

1

6

∫
1

x+ 1
dx− 1

6

∫
1

x+ 7
dx =

1

6
ln |x+1|− 1

6
ln |x+7|+C =

1

6
ln

∣∣∣∣
x+ 1

x+ 7

∣∣∣∣+ C.

29.
x2 + 2

x+ 2
= x− 2 +

6

x+ 2
,

∫ (
x− 2 +

6

x+ 2

)
dx =

1

2
x2 − 2x+ 6 ln |x+ 2|+ C.

30.
x2 + x− 16

(x− 1)(x− 3)2
=

A

x− 1
+

B

x− 3
+

C

(x− 3)2
; A = −7/2, B = 9/2, C = −2, so −7

2

∫
1

x− 1
dx+

9

2

∫
1

x− 3
dx−

2

∫
1

(x− 3)2
dx = −7

2
ln |x− 1|+ 9

2
ln |x− 3|+ 2

x− 3
+ C.
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31.
x2

(x+ 2)3
=

A

x+ 2
+

B

(x+ 2)2
+

C

(x+ 2)3
; A = 1, B = −4, C = 4, so

∫
1

x+ 2
dx−4

∫
1

(x+ 2)2
dx+4

∫
1

(x+ 2)3
dx =

ln |x+ 2|+ 4

x+ 2
− 2

(x+ 2)2
+ C.

32.
1

x(x2 + 1)
=
A

x
+
Bx+ C

x2 + 1
; A = 1, B = −1, C = 0, so

∫
1

x3 + x
dx = ln |x| − 1

2
ln(x2 + 1) +C =

1

2
ln

x2

x2 + 1
+C.

33. (a) With x = sec θ:

∫
1

x3 − xdx =

∫
cot θ dθ = ln | sin θ|+ C = ln

√
x2 − 1

|x| + C; valid for |x| > 1.

(b) With x = sin θ:

∫
1

x3 − xdx = −
∫

1

sin θ cos θ
dθ = −

∫
2 csc 2θ dθ = − ln | csc 2θ − cot 2θ|+ C = ln | cot θ|+

C = ln

√
1− x2

|x| + C, 0 < |x| < 1.

(c)
1

x3 − x =
A

x
+

B

x− 1
+

C

x+ 1
= − 1

x
+

1

2(x− 1)
+

1

2(x+ 1)
;

∫
1

x3 − x dx = − ln |x|+ 1

2
ln |x−1|+ 1

2
ln |x+1|+C,

valid on any interval not containing the numbers x = 0,±1.

34. A =

∫ 2

1

3− x
x3 + x2

dx,
3− x

x2(x+ 1)
=
A

x
+
B

x2
+

C

x+ 1
; A = −4, B = 3, C = 4, A =

[
−4 ln |x| − 3

x
+ 4 ln |x+ 1|

]2

1

=

(−4 ln 2− 3

2
+ 4 ln 3)− (−4 ln 1− 3 + 4 ln 2) =

3

2
− 8 ln 2 + 4 ln 3 =

3

2
+ 4 ln

3

4
.

35. Formula (40);
1

4
cos 2x− 1

32
cos 16x+ C.

36. Formula (52); (−x3 − 2x2 − 4x− 4)e−x + C.

37. Formula (113);
1

24
(8x2 − 2x− 3)

√
x− x2 +

1

16
sin−1(2x− 1) + C.

38. Formula (108); − 2√
3

tanh−1

√
4x+ 3

3
.

39. Formula (28);
1

2
tan 2x− x+ C.

40. Formula (71); − 1√
2

tan−1 x√
2

+
3

2
ln(2 + x2) + C.

41. Exact value = 4− 2
√

2 ≈ 1.17157.

(a) 1.17138, |EM | ≈ 0.000190169. (b) 1.17195, |ET | ≈ 0.000380588. (c) 1.17157, |ES | ≈ 8.35× 10−8.

42. exact value =
π

2
≈ 1.57080.

(a) 1.57246, |EM | ≈ 0.00166661. (b) 1.56746, |ET | ≈ 0.00333327. (c) 1.57080, |ES | ≈ 2.0× 10−8.

43. f(x) =
1√
x+ 1

, f ′′(x) =
3

4(x+ 1)5/2
, f (4)(x) =

105

16(x+ 1)9/2
(x+ 1)−7/2; K2 =

3

24
√

2
, K4 =

105

28
√

2
.

(a) |EM | ≤
23

2400

3

24
√

2
=

1

10224
√

2
≈ 4.419417× 10−4.
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(b) |ET | ≤
23

1200

3

24
√

2
= 8.838834× 10−4.

(c) |ES | ≤
25

180× 204

105

28
√

2
=

7

3 · 104 · 29
√

2
≈ 3.2224918× 10−7.

44. Let f(x) =
1

1 + x2
and use a CAS to compute and then plot f ′′(x) and f (4)(x). One sees that the absolute maxima

|f ′′(x)| and |f (4)(x)| both occur at x = 0, and hence K2 = 2,K4 = 24.

(a) |EM | ≤
8

2400
(2) ≈ 0.006666667.

(b) |ET | ≤
8

1200
(2) ≈ 0.013333333.

(c) |ES | ≤
25 · 24

180 · 24 · 104
≈ 0.000026666667.

45. (a) n2 ≥ 104 8 · 3
24× 24

√
2

, so n ≥ 102

2221/4
≈ 21.02, n ≥ 22.

(b) n2 ≥ 104

23
√

2
, so n ≥ 102

2 · 23/4
≈ 29.73, n ≥ 30.

(c) Let n = 2k, then want
25K4

180(2k)4
≤ 10−4, or k4 ≥ 104 25

180

105

24 · 28
√

2
= 104 7

29 · 3
√

2
, so k ≥ 10

(
7

3 · 29
√

2

)1/4

≈
2.38; so k ≥ 3, n ≥ 6

46. Recall from Exercise 44 that K2 = 2,K4 = 24.

(a) n >

[
(8)(2)

(24)(10−4)

]1/2

≈ 81.6; n ≥ 82.

(b) n >

[
(8)(2)

(12)(10−4)

]1/2

≈ 115.47; n ≥ 116.

(c) Let n = 2k, then want
25K4

180(2k)4
≤ 10−4, or k ≥

[
104 25

180

24

24

]1/4

≈ 7.19, k ≥ 8, n ≥ 16.

47. lim
`→+∞

(−e−x)

]`

0

= lim
`→+∞

(−e−` + 1) = 1.

48. lim
`→−∞

1

2
tan−1 x

2

]2

`

= lim
`→−∞

1

2

[
π

4
− tan−1 `

2

]
=

1

2
[π/4− (−π/2)] = 3π/8.

49. lim
`→9−

−2
√

9− x
]`

0

= lim
`→9−

2(−
√

9− `+ 3) = 6.

50.

∫ 1

0

1

2x− 1
dx =

∫ 1/2

0

1

2x− 1
dx +

∫ 1

1/2

1

2x− 1
dx = lim

`→1/2−

1

2
ln(1 − 2`) + lim

`→1/2+

1

2
ln(2` − 1) + C; neither limit

exists hence the integral diverges.

51. A =

∫ +∞

e

lnx− 1

x2
dx = lim

`→+∞
c− lnx

x

]`

e

= 1/e.
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52. V = 2π

∫ +∞

0

xe−xdx = 2π lim
`→+∞

−e−x(x+ 1)

]`

0

= 2π lim
`→+∞

[
1− e−`(`+ 1)

]
, but lim

`→+∞
e−`(`+1) = lim

`→+∞
`+ 1

e`
=

lim
`→+∞

1

e`
= 0, so V = 2π.

53.

∫ +∞

0

dx

x2 + a2
= lim

`→+∞
1

a
tan−1(x/a)

]`

0

= lim
`→+∞

1

a
tan−1(`/a) =

π

2a
= 1, a = π/2.

54. (a) Integration by parts, u = x, dv = sinx dx. (b) u-substitution: u = sinx.

(c) Reduction formula. (d) u-substitution: u = tanx.

(e) u-substitution: u = x3 + 1. (f) u-substitution: u = x+ 1.

(g) Integration by parts: dv = dx, u = tan−1 x. (h) Trigonometric substitution: x = 2 sin θ.

(i) u-substitution: u = 4− x2.

55. x =
√

3 tan θ, dx =
√

3 sec2 θ dθ,
1

3

∫
1

sec θ
dθ =

1

3

∫
cos θ dθ =

1

3
sin θ + C =

x

3
√

3 + x2
+ C.

56. u = x, dv = cos 3x dx, du = dx, v =
1

3
sin 3x;

∫
x cos 3x dx =

1

3
x sin 3x− 1

3

∫
sin 3x dx =

1

3
x sin 3x+

1

9
cos 3x+C.

57. Use Endpaper Formula (31) to get

∫ π/4

0

tan7 θ dθ =
1

6
tan6 θ

]π/4

0

− 1

4
tan4 θ

]π/4

0

+
1

2
tan2 θ

]π/4

0

+ ln | cos θ|
]π/4

0

=

1

6
− 1

4
+

1

2
− ln
√

2 =
5

12
− ln
√

2.

58.

∫
cos θ

(sin θ − 3)2 + 3
dθ, let u = sin θ − 3,

∫
1

u2 + 3
du =

1√
3

tan−1[(sin θ − 3)/
√

3] + C.

59.

∫
sin2 2x cos3 2x dx =

∫
sin2 2x(1−sin2 2x) cos 2x dx =

∫
(sin2 2x−sin4 2x) cos 2x dx =

1

6
sin3 2x− 1

10
sin5 2x+C.

60.

∫ 3

0

1

(x− 3)2
dx = lim

`→3−

∫ `

0

1

(x− 3)2
dx = lim

`→3−
− 1

x− 3

]`

0

which is clearly divergent, so

∫ 4

0

1

(x− 3)2
dx diverges.

61. u = e2x, dv = cos 3x dx, du = 2e2xdx, v =
1

3
sin 3x;

∫
e2x cos 3x dx =

1

3
e2x sin 3x− 2

3

∫
e2x sin 3x dx. Use u = e2x,

dv = sin 3x dx to get

∫
e2x sin 3x dx = −1

3
e2x cos 3x +

2

3

∫
e2x cos 3x dx, so

∫
e2x cos 3x dx =

1

3
e2x sin 3x +

2

9
e2x cos 3x−4

9

∫
e2x cos 3x dx,

13

9

∫
e2x cos 3x dx =

1

9
e2x(3 sin 3x+2 cos 3x)+C1,

∫
e2x cos 3x dx =

1

13
e2x(3 sin 3x+

2 cos 3x) + C.

62. x = (1/
√

2) sin θ, dx = (1/
√

2) cos θ dθ,
1√
2

∫ π/2

−π/2
cos4 θ dθ =

1√
2

{
1

4
cos3 θ sin θ

]π/2

−π/2
+

3

4

∫ π/2

−π/2
cos2 θ dθ

}
=

3

4
√

2

{
1

2
cos θ sin θ

]π/2

−π/2
+

1

2

∫ π/2

−π/2
dθ

}
=

3

4
√

2

1

2
π =

3π

8
√

2
.

63.
1

(x− 1)(x+ 2)(x− 3)
=

A

x− 1
+

B

x+ 2
+

C

x− 3
; A = −1

6
, B =

1

15
, C =

1

10
, so −1

6

∫
1

x− 1
dx+

1

15

∫
1

x+ 2
dx+

1

10

∫
1

x− 3
dx = −1

6
ln |x− 1|+ 1

15
ln |x+ 2|+ 1

10
ln |x− 3|+ C.
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64. x =
2

3
sin θ, dx =

2

3
cos θ dθ,

1

24

∫ π/6

0

1

cos3 θ
dθ =

1

24

∫ π/6

0

sec3 θ dθ =

[
1

48
sec θ tan θ +

1

48
ln | sec θ + tan θ|

]π/6

0

=
1

48
[(2/
√

3)(1/
√

3) + ln |2/
√

3 + 1/
√

3|] =
1

48

(
2

3
+

1

2
ln 3

)
.

65. u =
√
x− 4, x = u2 + 4, dx = 2u du,

∫ 2

0

2u2

u2 + 4
du = 2

∫ 2

0

[
1− 4

u2 + 4

]
du =

[
2u− 4 tan−1(u/2)

]2

0

= 4− π.

66. u =
√
ex − 1, ex = u2 + 1, x = ln(u2 + 1), dx =

2u

u2 + 1
du,

∫ 1

0

2u2

u2 + 1
du = 2

∫ 1

0

(
1− 1

u2 + 1

)
du =

= (2u− 2 tan−1 u)
]1
0

= 2− π

2
.

67. u =
√
ex + 1, ex = u2 − 1, x = ln(u2 − 1), dx =

2u

u2 − 1
du,

∫
2

u2 − 1
du =

∫ [
1

u− 1
− 1

u+ 1

]
du = ln |u − 1| −

ln |u+ 1|+ C = ln

√
ex + 1− 1√
ex + 1 + 1

+ C.

68.
1

x(x2 + x+ 1)
=

A

x
+

Bx+ C

x2 + x+ 1
; A = 1, B = C = −1, so

∫ −x− 1

x2 + x+ 1
dx = −

∫
x+ 1

(x+ 1/2)2 + 3/4
dx =

−
∫

u+ 1/2

u2 + 3/4
du, u = x + 1/2; = −1

2
ln(u2 + 3/4) − 1√

3
tan−1(2u/

√
3) + C1, so

∫
dx

x(x2 + x+ 1)
= ln |x| −

1

2
ln(x2 + x+ 1)− 1√

3
tan−1 2x+ 1√

3
+ C.

69. u = sin−1 x, dv = dx, du =
1√

1− x2
dx, v = x;

∫ 1/2

0

sin−1 x dx = x sin−1 x

]1/2

0

−
∫ 1/2

0

x√
1− x2

dx =
1

2
sin−1 1

2
+

√
1− x2

]1/2

0

=
1

2

(π
6

)
+

√
3

4
− 1 =

π

12
+

√
3

2
− 1.

70.

∫
tan5 4x(1 + tan2 4x) sec2 4x dx =

∫
(tan5 4x+ tan7 4x) sec2 4x dx =

1

24
tan6 4x+

1

32
tan8 4x+ C.

71.

∫
x+ 3√

(x+ 1)2 + 1
dx, let u = x+1,

∫
u+ 2√
u2 + 1

du =

∫ [
u(u2 + 1)−1/2 +

2√
u2 + 1

]
du=

√
u2 + 1+2 sinh−1 u+C =

√
x2 + 2x+ 2 + 2 sinh−1(x+ 1) + C.

Alternate solution: let x + 1 = tan θ,

∫
(tan θ + 2) sec θ dθ =

∫
sec θ tan θ dθ + 2

∫
sec θ dθ = sec θ + 2 ln | sec θ +

tan θ|+ C =
√
x2 + 2x+ 2 + 2 ln(

√
x2 + 2x+ 2 + x+ 1) + C.

72. Let x = tan θ to get

∫
1

x3 − x2
dx.

1

x2(x− 1)
=
A

x
+
B

x2
+

C

x− 1
; A = −1, B = −1, C = 1, so −

∫
1

x
dx−

∫
1

x2
dx+

∫
1

x− 1
dx = − ln |x|+ 1

x
+ln |x−1|+C =

1

x
+ln

∣∣∣∣
x− 1

x

∣∣∣∣+C = cot θ+ln

∣∣∣∣
tan θ − 1

tan θ

∣∣∣∣+C = cot θ+ln |1−cot θ|+C.

73. lim
`→+∞

− 1

2(x2 + 1)

]`

a

= lim
`→+∞

[
− 1

2(`2 + 1)
+

1

2(a2 + 1)

]
=

1

2(a2 + 1)
.

74. lim
`→+∞

1

ab
tan−1 bx

a

]`

0

= lim
`→+∞

1

ab
tan−1 b`

a
=

π

2ab
.
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1. (a) u = f(x), dv = dx, du = f ′(x), v = x;

∫ b

a

f(x) dx = xf(x)

]b

a

−
∫ b

a

xf ′(x) dx = bf(b)− af(a)−
∫ b

a

xf ′(x) dx.

(b) Substitute y = f(x), dy = f ′(x) dx, x = a when y = f(a), x = b when y = f(b),

∫ b

a

xf ′(x) dx =

∫ f(b)

f(a)

x dy =

∫ f(b)

f(a)

f−1(y) dy.

(c) From a = f−1(α) and b = f−1(β), we get bf(b) − af(a) = βf−1(β) − αf−1(α); then

∫ β

α

f−1(x) dx =

∫ β

α

f−1(y) dy =

∫ f(b)

f(a)

f−1(y) dy, which, by part (b), yields

∫ β

α

f−1(x) dx = bf(b) − af(a) −
∫ b

a

f(x) dx =

βf−1(β) − αf−1(α) −
∫ f−1(β)

f−1(α)

f(x) dx. Note from the figure that A1 =

∫ β

α

f−1(x) dx,A2 =

∫ f−1(β)

f−1(α)

f(x) dx,

and A1 +A2 = βf−1(β)− αf−1(α), a ”picture proof”.

a

b

a = f –1(a) b = f –1(b)

x

y

A1

A2

2. (a) Use Exercise 1(c);

∫ 1/2

0

sin−1 x dx =
1

2
sin−1

(
1

2

)
− 0 · sin−1 0 −

∫ sin−1(1/2)

sin−1(0)

sinx dx =
1

2
sin−1

(
1

2

)
−

∫ π/6

0

sinx dx. Now sin−1(1/2)/2 = π/12,

∫ 1/2

0

sin−1 x dx =
√

1− x2 + x sin−1 x
]1/2

0
= π/12 +

√
3/2 − 1 and

∫ π/6

0

sinx dx = − cosx]
π/6
0 = 1−

√
3/2.

(b) Use Exercise 1(b);

∫ e2

e

lnx dx = e2 ln e2− e ln e−
∫ ln e2

ln e

f−1(y) dy = 2e2− e−
∫ 2

1

ey dy = 2e2− e−
∫ 2

1

ex dx.

Also,

∫ e2

e

lnx dx = x lnx− x]
e2

e = e2 and

∫ 2

1

ex dx = e2 − e.

3. (a) Γ(1) =

∫ +∞

0

e−tdt = lim
`→+∞

−e−t
]`

0

= lim
`→+∞

(−e−` + 1) = 1.

(b) Γ(x + 1) =

∫ +∞

0

txe−tdt; let u = tx, dv = e−tdt to get Γ(x + 1) = −txe−t
]+∞

0

+ x

∫ +∞

0

tx−1e−tdt =

−txe−t
]+∞

0

+xΓ(x), lim
t→+∞

txe−t = lim
t→+∞

tx

et
= 0 (by multiple applications of L’Hôpital’s rule), so Γ(x+1) = xΓ(x).

(c) Γ(2) = (1)Γ(1) = (1)(1) = 1, Γ(3) = 2Γ(2) = (2)(1) = 2, Γ(4) = 3Γ(3) = (3)(2) = 6. Thus Γ(n) = (n− 1)! if
n is a positive integer.

(d) Γ

(
1

2

)
=

∫ +∞

0

t−1/2e−tdt = 2

∫ +∞

0

e−u
2

du (with u =
√
t) = 2(

√
π/2) =

√
π.
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(e) Γ

(
3

2

)
=

1

2
Γ

(
1

2

)
=

1

2

√
π, Γ

(
5

2

)
=

3

2
Γ

(
3

2

)
=

3

4

√
π.

4. (a) t = − lnx, x = e−t, dx = −e−tdt,
∫ 1

0

(lnx)ndx = −
∫ 0

+∞
(−t)ne−tdt = (−1)n

∫ +∞

0

tne−tdt = (−1)nΓ(n+ 1).

(b) t = xn, x = t1/n, dx = (1/n)t1/n−1dt,

∫ +∞

0

e−x
n

dx = (1/n)

∫ +∞

0

t1/n−1e−tdt = (1/n)Γ(1/n) = Γ(1/n+ 1).

5. (a)
√

cos θ − cos θ0 =
√

2
[

sin2(θ0/2)− sin2(θ/2)
]

=

√
2(k2 − k2 sin2 φ) =

√
2k2 cos2 φ =

√
2 k cosφ; k sinφ =

sin(θ/2), so k cosφdφ =
1

2
cos(θ/2) dθ =

1

2

√
1− sin2(θ/2) dθ =

1

2

√
1− k2 sin2 φdθ, thus dθ =

2k cosφ√
1− k2 sin2 φ

dφ

and hence T =

√
8L

g

∫ π/2

0

1√
2k cosφ

· 2k cosφ√
1− k2 sin2 φ

dφ = 4

√
L

g

∫ π/2

0

1√
1− k2 sin2 φ

dφ.

(b) If L = 1.5 ft and θ0 = (π/180)(20) = π/9, then T =

√
3

2

∫ π/2

0

dφ√
1− sin2(π/18) sin2 φ

≈ 1.37 s.



Mathematical Modeling with Differential
Equations

Exercise Set 8.1

1. y′ = 9x2ex
3

= 3x2y and y(0) = 3 by inspection.

2. y′ = x3 − 2 sinx, y(0) = 3 by inspection.

3. (a) First order;
dy

dx
= c; (1 + x)

dy

dx
= (1 + x)c = y.

(b) Second order; y′ = c1 cos t− c2 sin t, y′′ + y = −c1 sin t− c2 cos t+ (c1 sin t+ c2 cos t) = 0.

4. (a) First order; 2
dy

dx
+ y = 2

(
− c

2
e−x/2 + 1

)
+ ce−x/2 + x− 3 = x− 1.

(b) Second order; y′ = c1e
t − c2e−t, y′′ − y = c1e

t + c2e
−t −

(
c1e

t + c2e
−t) = 0.

5. False. It is a first-order equation, because it involves y and dy/dx, but not dny/dxn for n > 1.

6. True. y = −1/2 is a solution.

7. True. As mentioned in the marginal note after equation (2), the general solution of an n’th order differential
equation usually involves n arbitrary constants.

8. False. Every solution of the first order differential equation y′ = y has the form y = Aex = Aex+b with b = 0.

9. (a) If y = e−2x then y′ = −2e−2x and y′′ = 4e−2x, so y′′ + y′ − 2y = 4e−2x + (−2e−2x)− 2e−2x = 0.

If y = ex then y′ = ex and y′′ = ex, so y′′ + y′ − 2y = ex + ex − 2ex = 0.

(b) If y = c1e
−2x+ c2e

x then y′ = −2c1e
−2x+ c2e

x and y′′ = 4c1e
−2x+ c2e

x, so y′′+ y′− 2y = (4c1e
−2x+ c2e

x) +
(−2c1e

−2x + c2e
x)− 2(c1e

−2x + c2e
x) = 0.

10. (a) If y = e−2x then y′ = −2e−2x and y′′ = 4e−2x, so y′′ − y′ − 6y = 4e−2x − (−2e−2x)− 6e−2x = 0.

If y = e3x then y′ = 3e3x and y′′ = 9e3x, so y′′ − y′ − 6y = 9e3x − 3e3x − 6e3x = 0.

(b) If y = c1e
−2x + c2e

3x then y′ = −2c1e
−2x + 3c2e

3x and y′′ = 4c1e
−2x + 9c2e

3x, so y′′ − y′ − 6y = (4c1e
−2x +

9c2e
3x)− (−2c1e

−2x + 3c2e
3x)− 6(c1e

−2x + c2e
3x) = 0.

11. (a) If y = e2x then y′ = 2e2x and y′′ = 4e2x, so y′′ − 4y′ + 4y = 4e2x − 4(2e2x) + 4e2x = 0.

If y = xe2x then y′ = (2x+ 1)e2x and y′′ = (4x+ 4)e2x, so y′′− 4y′+ 4y = (4x+ 4)e2x− 4(2x+ 1)e2x + 4xe2x = 0.

(b) If y = c1e
2x + c2xe

2x then y′ = 2c1e
2x + c2(2x + 1)e2x and y′′ = 4c1e

2x + c2(4x + 4)e2x, so y′′ − 4y′ + 4y =
(4c1e

2x + c2(4x+ 4)e2x)− 4(2c1e
2x + c2(2x+ 1)e2x) + 4(c1e

2x + c2xe
2x) = 0.

413
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12. (a) If y = e4x then y′ = 4e4x and y′′ = 16e4x, so y′′ − 8y′ + 16y = 16e4x − 8(4e4x) + 16e4x = 0.

If y = xe4x then y′ = (4x+1)e4x and y′′ = (16x+8)e4x, so y′′−8y′+16y = (16x+8)e4x−8(4x+1)e4x+16xe4x = 0.

(b) If y = c1e
4x + c2xe

4x then y′ = 4c1e
4x + c2(4x+ 1)e4x and y′′ = 16c1e

4x + c2(16x+ 8)e4x, so y′′− 8y′+ 16y =
(16c1e

4x + c2(16x+ 8)e4x)− 8(4c1e
4x + c2(4x+ 1)e4x) + 16(c1e

4x + c2xe
4x) = 0.

13. (a) If y = sin 2x then y′ = 2 cos 2x and y′′ = −4 sin 2x, so y′′ + 4y = −4 sin 2x+ 4 sin 2x = 0.

If y = cos 2x then y′ = −2 sin 2x and y′′ = −4 cos 2x, so y′′ + 4y = −4 cos 2x+ 4 cos 2x = 0.

(b) If y = c1 sin 2x + c2 cos 2x then y′ = 2c1 cos 2x − 2c2 sin 2x and y′′ = −4c1 sin 2x − 4c2 cos 2x, so y′′ + 4y =
(−4c1 sin 2x− 4c2 cos 2x) + 4(c1 sin 2x+ c2 cos 2x) = 0.

14. (a) If y = e−2x sin 3x then y′ = e−2x(−2 sin 3x+3 cos 3x) and y′′ = e−2x(−5 sin 3x−12 cos 3x), so y′′+4y′+13y =
e−2x(−5 sin 3x− 12 cos 3x) + 4e−2x(−2 sin 3x+ 3 cos 3x) + 13e−2x sin 3x = 0.

If y = e−2x cos 3x then y′ = e−2x(−3 sin 3x − 2 cos 3x) and y′′ = e−2x(12 sin 3x − 5 cos 3x), so y′′ + 4y′ + 13y =
e−2x(12 sin 3x− 5 cos 3x) + 4e−2x(−3 sin 3x− 2 cos 3x) + 13e−2x cos 3x = 0.

(b) If y = e−2x(c1 sin 3x+c2 cos 3x) then y′ = e−2x[−(2c1 +3c2) sin 3x+(3c1−2c2) cos 3x] and y′′ = e−2x[(−5c1 +
12c2) sin 3x−(12c1 +5c2) cos 3x], so y′′+4y′+13y = e−2x[(−5c1 +12c2) sin 3x−(12c1 +5c2) cos 3x]+4e−2x[−(2c1 +
3c2) sin 3x+ (3c1 − 2c2) cos 3x] + 13e−2x(c1 sin 3x+ c2 cos 3x) = 0.

15. From Exercise 9, y = c1e
−2x + c2e

x is a solution of the differential equation, with y′ = −2c1e
−2x + c2e

x. Setting
y(0) = −1 and y′(0) = −4 gives c1 + c2 = −1 and −2c1 + c2 = −4. So c1 = 1, c2 = −2, and y = e−2x − 2ex.

16. From Exercise 10, y = c1e
−2x + c2e

3x is a solution of the differential equation, with y′ = −2c1e
−2x + 3c2e

3x.
Setting y(0) = 1 and y′(0) = 8 gives c1 + c2 = 1 and −2c1 + 3c2 = 8. So c1 = −1, c2 = 2, and y = −e−2x + 2e3x.

17. From Exercise 11, y = c1e
2x + c2xe

2x is a solution of the differential equation, with y′ = 2c1e
2x + c2(2x + 1)e2x.

Setting y(0) = 2 and y′(0) = 2 gives c1 = 2 and 2c1 + c2 = 2, so c2 = −2 and y = 2e2x − 2xe2x.

18. From Exercise 12, y = c1e
4x + c2xe

4x is a solution of the differential equation, with y′ = 4c1e
4x + c2(4x + 1)e4x.

Setting y(0) = 1 and y′(0) = 1 gives c1 = 1 and 4c1 + c2 = 1, so c2 = −3 and y = e4x − 3xe4x.

19. From Exercise 13, y = c1 sin 2x+c2 cos 2x is a solution of the differential equation, with y′ = 2c1 cos 2x−2c2 sin 2x.
Setting y(0) = 1 and y′(0) = 2 gives c2 = 1 and 2c1 = 2, so c1 = 1 and y = sin 2x+ cos 2x.

20. From Exercise 14, y = e−2x(c1 sin 3x+ c2 cos 3x) is a solution of the differential equation, with y′ = e−2x[−(2c1 +
3c2) sin 3x+ (3c1 − 2c2) cos 3x]. Setting y(0) = −1 and y′(0) = −1 gives c2 = −1 and 3c1 − 2c2 = −1, so c1 = −1
and y = −e−2x(sin 3x+ cos 3x).

21. y′ = 2− 4x, so y =

∫
(2− 4x) dx = −2x2 + 2x+ C. Setting y(0) = 3 gives C = 3, so y = −2x2 + 2x+ 3.

22. (y′)′ = −6x so y′ =

∫
(−6x) dx = −3x2 + C. Setting y′(0) = 2 gives C = 2, so y′ = −3x2 + 2 and y =

∫
(−3x2 + 2) dx = −x3 + 2x+D. Setting y(0) = 1 gives D = 1 so y = −x3 + 2x+ 1.

23. If the solution has an inverse function x(y) then, by equation (3) of Section 3.3,
dx

dy
=

1

dy/dx
= y−2. So

x =

∫
y−2 dy = −y−1 + C. When x = 1, y = 2, so C =

3

2
and x =

3

2
− y−1. Solving for y gives y =

2

3− 2x
. The

solution is valid for x <
3

2
.
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24. If the solution has an inverse function x(y) then, by equation (3) of Section 3.3,
dx

dy
=

1

dy/dx
=

1

1 + y2
. So

x =

∫
dy

1 + y2
= tan−1 y + C. When x = 0, y = 0, so C = 0, x = tan−1 y, and y = tanx. The solution is valid for

−π/2 < x < π/2.

25. By the product rule,
d

dx
(x2y) = x2y′ + 2xy = 0, so x2y = C and y = C/x2. Setting y(1) = 2 gives C = 2 so

y = 2/x2. The solution is valid for x > 0.

26. By the product rule,
d

dx
(xy) = xy′ + y = ex, so xy =

∫
ex dx = ex + C. Setting y(1) = 1 + e gives C = 1, so

xy = ex + 1 and y =
ex + 1

x
. The solution is valid for x > 0.

27. (a)
dy

dt
= ky2, y(0) = y0, k > 0. (b)

dy

dt
= −ky2, y(0) = y0, k > 0.

28. (a) Either y is always zero, or y is positive and increases at a rate proportional to the square root of y.

(b) Either y is always zero, or y is positive and decreases at a rate proportional to the cube of y, or y is negative
and increases at a rate proportional to the cube of y.

29. (a)
ds

dt
=

1

2
s. (b)

d2s

dt2
= 2

ds

dt
.

30. (a)
dv

dt
= −2v2. (b)

d2s

dt2
= −2

(
ds

dt

)2

.

31. (a) Since k > 0 and y > 0, equation (3) gives
dy

dt
= ky > 0, so y is increasing.

(b)
d2y

dt2
=

d

dt
(ky) = k

dy

dt
= k2y > 0, so y is concave upward.

32. (a) Both y = 0 and y = L satisfy equation (4).

(b) The rate of growth is
dy

dt
= k

(
1− y

L

)
y; we wish to find the value of y which maximizes this. Since

d

dy

[
k
(

1− y

L

)
y
]

=
k

L
(L − 2y), which is positive for y < L/2 and negative for y > L/2, the maximum growth

rate occurs for y = L/2.

33. (a) Both y = 0 and y = L satisfy equation (6).

(b) The rate of growth is
dy

dt
= ky(L−y); we wish to find the value of y which maximizes this. Since

d

dy
[ky(L−y)] =

k(L− 2y), which is positive for y < L/2 and negative for y > L/2, the maximum growth rate occurs for y = L/2.

34. If T is constant then
dT

dt
= 0, so equation (7) gives T = Te. Hence T = Te is the unique constant solution of (7).

35. If x = c1 cos

(√
k

m
t

)
+ c2 sin

(√
k

m
t

)
then

dx

dt
= c2

√
k

m
cos

(√
k

m
t

)
− c1

√
k

m
sin

(√
k

m
t

)
and

d2x

dt2
=

−c1
k

m
cos

(√
k

m
t

)
− c2

k

m
sin

(√
k

m
t

)
= − k

m
x. So m

d2x

dt2
= −kx; thus x satisfies the differential equation for

the vibrating string.
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36. (a) From Exercise 35 we have x = c1 cos

(√
k

m
t

)
+ c2 sin

(√
k

m
t

)
and

x′ = c2

√
k

m
cos

(√
k

m
t

)
− c1

√
k

m
sin

(√
k

m
t

)
. Setting x(0) = x0 and x′(0) = 0 gives c1 = x0 and c2

√
k

m
= 0,

so c2 = 0 and x = x0 cos

(√
k

m
t

)
.

(b) From the discussion before Example 2 in Section 0.3, the amplitude is |x0|, the period is
2π√
k/m

= 2π

√
m

k
,

and the frequency is

√
k/m

2π
. The amplitude is the maximum displacement of the mass from its rest position. The

period is the length of time the mass takes to move back and forth once. The frequency tells how often the mass
moves back and forth in one unit of time.

Exercise Set 8.2

1.
1

y
dy =

1

x
dx, ln |y| = ln |x|+ C1, ln

∣∣∣y
x

∣∣∣ = C1,
y

x
= ±eC1 = C, y = Cx, including C = 0 by inspection.

2.
dy

1 + y2
= 2x dx, tan−1 y = x2 + C, y = tan

(
x2 + C

)
.

3.
dy

1 + y
= − x√

1 + x2
dx, ln |1 + y| = −

√
1 + x2 +C1, 1 + y = ±e−

√
1+x2

eC1 = Ce−
√

1+x2
, y = Ce−

√
1+x2 − 1, C 6= 0.

4. y dy =
x3 dx

1 + x4
,
y2

2
=

1

4
ln(1 + x4) + C1, 2y

2 = ln(1 + x4) + C, y = ±
√

[ln(1 + x4) + C]/2.

5.
2(1 + y2)

y
dy = exdx, 2 ln |y|+ y2 = ex + C; by inspection, y = 0 is also a solution.

6.
dy

y
= −x dx, ln |y| = −x2/2 + C1, y = ±eC1e−x

2/2 = Ce−x
2/2, including C = 0 by inspection.

7. eydy =
sinx

cos2 x
dx = secx tanx dx, ey = secx+ C, y = ln(secx+ C).

8.
dy

1 + y2
= (1 + x) dx, tan−1 y = x+

x2

2
+ C, y = tan(x+ x2/2 + C).

9.
dy

y2 − y =
dx

sinx
,

∫ [
−1

y
+

1

y − 1

]
dy =

∫
cscx dx, ln

∣∣∣∣
y − 1

y

∣∣∣∣ = ln | cscx−cotx|+C1,
y − 1

y
= ±eC1(cscx−cotx) =

C(cscx− cotx), y =
1

1− C(cscx− cotx)
, C 6= 0; by inspection, y = 0 is also a solution, as is y = 1.

10.
1

y
dy = cosx dx, ln |y| = sinx+ C, y = C1e

sin x.

11. (2y + cos y) dy = 3x2 dx, y2 + sin y = x3 + C, π2 + sinπ = C,C = π2, y2 + sin y = x3 + π2.

12.
dy

dx
= (x+ 2)ey, e−ydy = (x+ 2)dx, −e−y =

1

2
x2 + 2x+C, −1 = C, −e−y =

1

2
x2 + 2x− 1, e−y = −1

2
x2 − 2x+ 1,

y = − ln

(
1− 2x− 1

2
x2

)
.
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13. 2(y − 1) dy = (2t+ 1) dt, y2 − 2y = t2 + t+ C, 1 + 2 = C,C = 3, y2 − 2y = t2 + t+ 3.

14.
dy

dx
cosh2 x = y cosh 2x, y−1 dy =

cosh 2x

cosh2 x
dx =

2 cosh2 x− 1

cosh2 x
dx = (2 − sech2 x) dx, ln y = 2x − tanhx + C,

y = eCe2x−tanh x, 3 = eCe2·0−tanh 0 = eC , y = 3e2x−tanh x.

15. (a)
dy

y
=
dx

2x
, ln |y| = 1

2
ln |x|+ C1, |y| = C2|x|1/2, y2 = Cx; by inspection y = 0 is also a solution.

–2 2

–2

2

x

yx = –0.5y2

x = –1.5y2
x = y2 x = 2y2

x = 2.5y2

y = 0x = –3y2

(b) 12 = C · 2, C = 1/2, y2 = x/2.

16. (a) y dy = −x dx, y
2

2
= −x

2

2
+ C1, y = ±

√
C2 − x2.

–3 3

–3

3

x

y
y = √9 – x2

y = –√6.25 – x2

y = –√4 – x2

y = –√1 – x2

y = √2.25 – x2

y = √0.25 – x2

(b) y =
√

25− x2.

17.
dy

y
= − x dx

x2 + 4
, ln |y| = −1

2
ln(x2 + 4) + C1, y =

C√
x2 + 4

.

1.5

–1

–2 2
C = –1

C = 1C = 0
C = 2

C = –2

18. cos y dy = cosx dx, sin y = sinx + C, y = 2nπ + sin−1(sinx + C) or y = (2n + 1)π − sin−1(sinx + C) for some
integer n. For C = 0, the integral curves are lines of the form y = 2nπ + x and y = (2n+ 1)π − x for integers n.
These divide the xy-plane into squares rotated 45◦ from the axes. For C 6= 0, −2 < C < 2, each integral curve
stays within either the top half or the bottom half of one of these squares. The figure shows 5 such curves in the
square x− 2π < y < x, π − x < y < 3π − x. From top to bottom, their equations are y = π − sin−1(sinx+ 0.5),
y = π − sin−1(sinx+ 1.5), y = sin−1(sinx+ 1.7), y = sin−1(sinx+ 1), and y = sin−1(sinx+ 0.3).
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x

y

! 2!

!

19. (1− y2) dy = x2 dx, y − y3

3
=
x3

3
+ C1, x

3 + y3 − 3y = C.

–2 2

–2

2

x

y

20.

(
1

y
+ y

)
dy = dx, ln |y|+ y2

2
= x+ C1, ye

y2/2 = ±eC1ex = Cex including C = 0.

–5 5

–3

3

x

y

21. True. The equation can be rewritten as
1

f(y)

dy

dx
= 1, which has the form (1).

22. False. The equation can be rewritten as
1

g(y)

dy

dx
=

1

h(x)
, which has the form (1).

23. True. After t minutes there will be 32 · (1/2)t grams left; when t = 5 there will be 32 · (1/2)5 = 1 gram.

24. True. The population will quadruple in twice the doubling time.

25. Of the solutions y =
1

2x2 − C , all pass through the point

(
0,− 1

C

)
and thus never through (0, 0). A solution

of the initial value problem with y(0) = 0 is (by inspection) y = 0. The method of Example 1 fails in this case
because it starts with a division by y2 = 0.

26. If y0 6= 0 then, proceeding as before, we get C = 2x2 − 1

y
, C = 2x2

0 −
1

y0
, and y =

1

2x2 − 2x2
0 + 1/y0

, which

is defined for all x provided 2x2 is never equal to 2x2
0 − 1/y0; this last condition will be satisfied if and only if

2x2
0 − 1/y0 < 0, or 0 < 2x2

0y0 < 1. If y0 = 0 then y = 0 is, by inspection, also a solution for all real x.

27.
dy

dx
= xe−y, ey dy = x dx, ey =

x2

2
+C, x = 2 when y = 0 so 1 = 2 +C,C = −1, ey = x2/2− 1, so y = ln(x2/2− 1).

28.
dy

dx
=

3x2

2y
, 2y dy = 3x2 dx, y2 = x3 + C, 1 = 1 + C,C = 0, y2 = x3, y = x3/2 passes through (1, 1).
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2

0
0 1.6

29. (a)
dy

dt
= 0.02y, y0 = 10,000. (b) y = 10,000et/50.

(c) T =
1

0.02
ln 2 ≈ 34.657 h. (d) 45,000 = 10,000et/50, t = 50 ln

45,000

10,000
≈ 75.20 h.

30. k =
1

T
ln 2 =

1

20
ln 2.

(a)
dy

dt
= ((ln 2)/20)y, y(0) = 1. (b) y(t) = et(ln 2)/20 = 2t/20.

(c) y(120) = 26 = 64. (d) 1,000,000 = 2t/20, t = 20
ln 106

ln 2
≈ 398.63 min.

31. (a)
dy

dt
= −ky, y(0) = 5.0× 107; 3.83 = T =

1

k
ln 2, so k =

ln 2

3.83
≈ 0.1810.

(b) y = 5.0× 107e−0.181t.

(c) y(30) = 5.0× 107e−0.1810(30) ≈ 219,000.

(d) y(t) = (0.1)y0 = y0e
−kt, −kt = ln 0.1, t = − ln 0.1

0.1810
= 12.72 days.

32. (a) k =
1

T
ln 2 =

1

140
ln 2 ≈ 0.0050, so

dy

dt
= −0.0050y, y0 = 10.

(b) y = 10e−0.0050t.

(c) 10 weeks = 70 days so y = 10e−0.35 ≈ 7 mg.

(d) 0.3y0 = y0e
−kt, t = − ln 0.3

0.0050
≈ 240.8 days.

33. 100e0.02t = 10,000, e0.02t = 100, t =
1

0.02
ln 100 ≈ 230 days.

34. y = 10,000ekt, but y = 12,000 when t = 5 so 10,000e5k = 12,000, k =
1

5
ln 1.2. y = 20,000 when 2 = ekt, t =

ln 2

k
= 5

ln 2

ln 1.2
≈ 19, in the year 2030.

35. y(t) = y0e
−kt = 10.0e−kt, 3.5 = 10.0e−k(5), k = −1

5
ln

3.5

10.0
≈ 0.2100, T =

1

k
ln 2 ≈ 3.30 days.

36. y = y0e
−kt, 0.7y0 = y0e

−5k, k = −1

5
ln 0.7 ≈ 0.071335.

(a) T =
ln 2

k
≈ 9.72 yr.
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(b) y(t) ≈ y0e
−0.0713t,

y

y0
≈ e−0.0713t, so e−0.0713t × 100 percent will remain.

38. (a) None; the half-life and doubling time are both independent of the initial amount.

(b) kT = ln 2, so T is inversely proportional to k.

39. (a) T =
ln 2

k
; and ln 2 ≈ 0.6931. If k is measured in percent, k′ = 100k, then T =

ln 2

k
≈ 69.31

k′
≈ 70

k′
.

(b) 70 yr (c) 20 yr (d) 7%

40. Let y = y0e
kt with y = y1 when t = t1 and y = 3y1 when t = t1 + T ; then y0e

kt1 = y1 (i) and y0e
k(t1+T ) = 3y1

(ii). Divide (ii) by (i) to get ekT = 3, T =
1

k
ln 3.

41. From (19), y(t) = y0e
−0.000121t. If 0.27 =

y(t)

y0
= e−0.000121t then t = − ln 0.27

0.000121
≈ 10,820 yr, and if 0.30 =

y(t)

y0

then t = − ln 0.30

0.000121
≈ 9950, or roughly between 9000 B.C. and 8000 B.C.

42. (a)

1

0
0 50000

(b) t = 1988 yields y/y0 = e−0.000121(1988) ≈ 79%.

43. (a) Let T1 = 5730 − 40 = 5690, k1 =
ln 2

T1
≈ 0.00012182; T2 = 5730 + 40 = 5770, k2 ≈ 0.00012013. With

y/y0 = 0.92, 0.93, t1 = − 1

k1
ln

y

y0
= 684.5, 595.7; t2 = − 1

k2
ln(y/y0) = 694.1, 604.1; in 1988 the shroud was at

most 695 years old, which places its creation in or after the year 1293.

(b) Suppose T is the true half-life of carbon-14 and T1 = T (1 + r/100) is the false half-life. Then with k =
ln 2

T
, k1 =

ln 2

T1
we have the formulae y(t) = y0e

−kt, y1(t) = y0e
−k1t. At a certain point in time a reading of the

carbon-14 is taken resulting in a certain value y, which in the case of the true formula is given by y = y(t) for some
t, and in the case of the false formula is given by y = y1(t1) for some t1. If the true formula is used then the time

t since the beginning is given by t = −1

k
ln

y

y0
. If the false formula is used we get a false value t1 = − 1

k1
ln

y

y0
;

note that in both cases the value y/y0 is the same. Thus t1/t = k/k1 = T1/T = 1 + r/100, so the percentage error
in the time to be measured is the same as the percentage error in the half-life.

44. If y = y0e
kt and y = y1 = y0e

kt1 then y1/y0 = ekt1 , k =
ln(y1/y0)

t1
; if y = y0e

−kt and y = y1 = y0e
−kt1 then

y1/y0 = e−kt1 , k = − ln(y1/y0)

t1
.

45. (a) If y = y0e
kt, then y1 = y0e

kt1 , y2 = y0e
kt2 , divide: y2/y1 = ek(t2−t1), k =

1

t2 − t1
ln(y2/y1), T =

ln 2

k
=

(t2 − t1) ln 2

ln(y2/y1)
. If y = y0e

−kt, then y1 = y0e
−kt1 , y2 = y0e

−kt2 , y2/y1 = e−k(t2−t1), k = − 1

t2 − t1
ln(y2/y1), T =

ln 2

k
= − (t2 − t1) ln 2

ln(y2/y1)
. In either case, T is positive, so T =

∣∣∣∣
(t2 − t1) ln 2

ln(y2/y1)

∣∣∣∣.
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(b) In part (a) assume t2 = t1 + 1 and y2 = 1.25y1. Then T =
ln 2

ln 1.25
≈ 3.1 h.

46. (a) In t years the interest will be compounded nt times at an interest rate of r/n each time. The value at the end
of 1 interval is P +(r/n)P = P (1+r/n), at the end of 2 intervals it is P (1+r/n)+(r/n)P (1+r/n) = P (1+r/n)2,
and continuing in this fashion the value at the end of nt intervals is P (1 + r/n)nt.

(b) Let x = r/n, then n = r/x and lim
n→+∞

P (1 + r/n)nt = lim
x→0+

P (1 + x)rt/x = lim
x→0+

P [(1 + x)1/x]rt = Pert.

(c) The rate of increase is dA/dt = rPert = rA.

47. (a) A = 1000e(0.08)(5) = 1000e0.4 ≈ $1, 491.82.

(b) Pe(0.08)(10) = 10, 000, Pe0.8 = 10, 000, P = 10, 000e−0.8 ≈ $4, 493.29.

(c) From (11), with k = r = 0.08, T = (ln 2)/0.08 ≈ 8.7 years.

48. Let r be the annual interest rate when compounded continuously and r1 the effective annual interest rate. Then an
amount P invested at the beginning of the year is worth Per = P (1 + r1) at the end of the year, and r1 = er − 1.

49. (a) Given
dy

dt
= k

(
1− y

L

)
y, separation of variables yields

(
1

y
+

1

L− y

)
dy = k dt so that ln

y

L− y = ln y −

ln(L − y) = kt + C. The initial condition gives C = ln
y0

L− y0
so ln

y

L− y = kt + ln
y0

L− y0
,

y

L− y = ekt
y0

L− y0
,

and y(t) =
y0L

y0 + (L− y0)e−kt
.

(b) If y0 > 0 then y0 + (L − y0)e−kt = Le−kt + y0(1 − e−kt) > 0 for all t ≥ 0, so y(t) exists for all such t.

Since lim
t→+∞

e−kt = 0, lim
t→+∞

y(t) =
y0L

y0 + (L− y0) · 0 = L. (Note that for y0 < 0 the solution “blows up” at

t = −1

k
ln
−y0

L− y0
, so lim

t→+∞
y(t) is undefined.)

50. The differential equation for the spread of disease can be rewritten as
dy

dt
= kL

(
1− y

L

)
y, which is the logis-

tic equation with k replaced by kL. Making this replacement in the solution from Exercise 49 gives y(t) =
y0L

y0 + (L− y0)e−kLt
.

51. (a) k = L = 1, y0 = 2.

2

0
0 2

(b) k = L = y0 = 1.

2

0
0 2

(c) k = y0 = 1, L = 2.

2

0
0 5

(d) k = 1, y0 = 0.5, L = 10.
0

0
10

10
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52. y0 ≈ 400, L ≈ 1000; since the curve y =
400,000

400 + 600e−kt
passes through the point (200, 600),

600 =
400,000

400 + 600e−200k
, 600e−200k =

800

3
, k =

1

200
ln 2.25 ≈ 0.00405.

53. y0 ≈ 2, L ≈ 8; since the curve y =
2 · 8

2 + 6e−kt
passes through the point (2, 4), 4 =

16

2 + 6e−2k
, 6e−2k = 2, k =

1

2
ln 3 ≈ 0.5493.

54. This is the logistic equation (Equation (4) of Section 8.1) with k = 0.98, L = 5, and y0 = 1. From Exercise 49,

the solution is given by y(t) =
5

1 + 4e−0.98t
.

5

0
0 12

55. (a) y0 = 5. (b) L = 12. (c) k = 1.

(d) L/2 = 6 =
60

5 + 7e−t
, 5 + 7e−t = 10, t = − ln(5/7) ≈ 0.3365.

(e)
dy

dt
=

1

12
y(12− y), y(0) = 5.

56. (a) y0 = 1. (b) L = 1000. (c) k = 0.9.

(d) 750 =
1000

1 + 999e−0.9t
, 3(1 + 999e−0.9t) = 4, t =

1

0.9
ln(3 · 999) ≈ 8.8949.

(e)
dy

dt
=

0.9

1000
y(1000− y), y(0) = 1.

57. (a) Assume that y(t) students have had the flu t days after the break. If the disease spreads as predicted

by equation (6) of Section 8.1 and if nobody is immune, then Exercise 50 gives y(t) =
y0L

y0 + (L− y0)e−kLt
,

where y0 = 20 and L = 1000. So y(t) =
20000

20 + 980e−1000kt
=

1000

1 + 49e−1000kt
. Using y(5) = 35 we find that

k = − ln(193/343)

5000
. Hence y =

1000

1 + 49(193/343)t/5
.

(b)
t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

y(t) 20 22 25 28 31 35 39 44 49 54 61 67 75 83 93
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(c) 3 6 9 12

25

50

75

100

t

y

58. If T0 < Ta then
dT

dt
= k(Ta − T ) where k > 0. If T0 > Ta then

dT

dt
= −k(T − Ta) where k > 0; Separating the

variables gives

∫
dT

T − Ta
=

∫
−kdt, which implies that ln |T − Ta| = −kt + C, then solving for T and matching

the initial condition in both cases yield T (t) = Ta + (T0 − Ta)e−kt with k > 0.

59. (a) From Exercise 58 with T0 = 95 and Ta = 21, we have T = 21 + 74e−kt for some k > 0.

(b) 85 = T (1) = 21 + 74e−k, k = − ln
64

74
= − ln

32

37
, T = 21 + 74et ln(32/37) = 21 + 74

(
32

37

)t
, T = 51 when

30

74
=

(
32

37

)t
, t =

ln(30/74)

ln(32/37)
≈ 6.22 min.

60.
dT

dt
= k(70 − T ), T (0) = 40; − ln(70 − T ) = kt + C, 70 − T = e−kte−C , T = 40 when t = 0, so 30 = e−C , T =

70− 30e−kt; 52 = T (1) = 70− 30e−k, k = − ln
70− 52

30
= ln

5

3
≈ 0.5, T ≈ 70− 30e−0.5t.

61. (a)
dv

dt
=

ck

m0 − kt
− g, v = −c ln(m0 − kt) − gt + C; v = 0 when t = 0 so 0 = −c lnm0 + C, C = c lnm0, v =

c lnm0 − c ln(m0 − kt)− gt = c ln
m0

m0 − kt
− gt.

(b) m0 − kt = 0.2m0 when t = 100, so v = 2500 ln
m0

0.2m0
− 9.8(100) = 2500 ln 5− 980 ≈ 3044 m/s.

62. (a) By the chain rule,
dv

dt
=
dv

dx

dx

dt
=
dv

dx
v so m

dv

dt
= mv

dv

dx
.

(b)
mv

kv2 +mg
dv = −dx, m

2k
ln(kv2+mg) = −x+C; v = v0 when x = 0, so C =

m

2k
ln(kv2

0+mg),
m

2k
ln(kv2+mg) =

−x+
m

2k
ln(kv2

0 +mg), x =
m

2k
ln
kv2

0 +mg

kv2 +mg
.

(c) x = xmax when v = 0, so xmax=
m

2k
ln
kv2

0 +mg

mg
=

3.56× 10−3

2(7.3× 10−6)
ln

(7.3× 10−6)(988)2 + (3.56× 10−3)(9.8)

(3.56× 10−3)(9.8)
≈

1298 m.

63. (a) A(h) = π(1)2 = π, π
dh

dt
= −0.025

√
h,

π√
h
dh = −0.025dt, 2π

√
h = −0.025t + C;h = 4 when t = 0, so

4π = C, 2π
√
h = −0.025t+ 4π,

√
h = 2− 0.025

2π
t, h ≈ (2− 0.003979 t)2.

(b) h = 0 when t ≈ 2/0.003979 ≈ 502.6 s ≈ 8.4 min.

64. (a) A(h) = 6
[
2
√

4− (h− 2)2
]

= 12
√

4h− h2, 12
√

4h− h2
dh

dt
= −0.025

√
h, 12

√
4− h dh = −0.025dt, −8(4 −

h)3/2 = −0.025t + C; h = 4 when t = 0 so C = 0, (4 − h)3/2 = (0.025/8)t, 4 − h = (0.025/8)2/3t2/3, h ≈
4− 0.021375t2/3 ft.
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h − 2
2

2√4 − (h − 2)2

h

(b) h = 0 when t =
8

0.025
(4− 0)3/2 = 2560 s ≈ 42.7 min.

65.
dv

dt
= − 1

32
v2,

1

v2
dv = − 1

32
dt,−1

v
= − 1

32
t+ C; v = 128 when t = 0 so − 1

128
= C, −1

v
= − 1

32
t− 1

128
, v =

128

4t+ 1

cm/s. But v =
dx

dt
so

dx

dt
=

128

4t+ 1
, x = 32 ln(4t+ 1) + C1; x = 0 when t = 0 so C1 = 0, x = 32 ln(4t+ 1) cm.

66.
dv

dt
= −0.02

√
v,

1√
v
dv = −0.02dt, 2

√
v = −0.02t + C; v = 9 when t = 0 so 6 = C, 2

√
v = −0.02t + 6, v =

(3 − 0.01t)2 cm/s. But v =
dx

dt
so

dx

dt
= (3 − 0.01t)2, x = −100

3
(3 − 0.01t)3 + C1; x = 0 when t = 0 so

C1 = 900, x = 900− 100

3
(3− 0.01t)3 cm.

67. Suppose that H(y) = G(x) + C. Then
dH

dy

dy

dx
= G′(x). But

dH

dy
= h(y) and

dG

dx
= g(x), hence y(x) is a solution

of (1).

68. Suppose that y(x) satisfies y(x0) = y0 and

∫ y(x)

y0

h(r) dr =

∫ x

x0

g(s) ds for all x in some interval containing x0.

Differentiate with respect to x; by the Fundamental Theorem of Calculus (Theorem 5.6.3) and the chain rule, we

have h(y(x))
dy

dx
= g(x).

69. If h(y) = 0 then (1) implies that g(x) = 0, so h(y) dy = 0 = g(x) dx. Otherwise the slope of L is
dy

dx
=
g(x)

h(y)
. Since

(x1, y1) and (x2, y2) lie on L, we have
y2 − y1

x2 − x1
=
g(x)

h(y)
. So h(y)(y2 − y1) = g(x)(x2 − x1); i.e. h(y) dy = g(x) dx.

70. It is true that the method may not give a formula for y as a function of x. But sometimes such a formula (in terms
of familiar functions) does not exist. In such cases the method at least gives a relationship between x and y, from
which we can find as good an approximation to y as we want.

71. Suppose that y = f(x) satisfies h(y)
dy

dx
= g(x). Integrating both sides of this with respect to x gives

∫
h(y)

dy

dx
dx =

∫
g(x) dx, so

∫
h(f(x))f ′(x) dx =

∫
g(x) dx. By equation (2) of Section 5.3 with f replaced by h, g replaced by

f , and F replaced by

∫
h(y) dy, the left side equals F (f(x)) = F (y). Thus

∫
h(y) dy =

∫
g(x) dx.



Exercise Set 8.3 425

Exercise Set 8.3

1.

x

y

-2 -1 1 2

-2

-1

1

2

2.

x

y

1 2 3 4

1

2

3

4

3.

5

–1

2

x

y

y(0) = 1

y(0) = 2

y(0) = –1

4.
dy

dx
= 1−y, separating the variables gives

∫
dy

1− y =

∫
dx, which implies that − ln(1−y) = x+C, and we obtain

y = 1 + Ce−x.

(a) −1 = 1 + C, C = −2, y = 1− 2e−x.

(b) 1 = 1 + C, C = 0, y = 1.

(c) 2 = 1 + C, C = 1, y = 1 + e−x.

5. lim
x→+∞

y = 1.

6. (a) IV, since the slope is positive for x > 0 and negative for x < 0.

(b) VI, since the slope is positive for y > 0 and negative for y < 0.

(c) V, since the slope is always positive.

(d) II, since the slope changes sign when crossing the lines y = ±1.

(e) I, since the slope can be positive or negative in each quadrant but is not periodic.

(f) III, since the slope is periodic in both x and y.

7. y0 = 1, yn+1 = yn +
1

2
y1/3
n .
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n 0 1 2 3 4 5 6 7 8
xn 0 0.5 1 1.5 2 2.5 3 3.5 4
yn 1 1.5 2.07 2.71 3.41 4.16 4.96 5.81 6.71

2 41 3

9

x

y

8. y0 = 1, yn+1 = yn + (xn − y2
n)/4.

n 0 1 2 3 4 5 6 7 8
xn 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
yn 1 0.75 0.67 0.68 0.75 0.86 0.99 1.12 1.24

0.5 1 1.5 2

0.5

1

1.5

2

x

y

9. y0 = 1, yn+1 = yn +
1

2
cos yn.

n 0 1 2 3 4
tn 0 0.5 1 1.5 2
yn 1 1.27 1.42 1.49 1.53

3

3

t

y

10. y0 = 0, yn+1 = yn + e−yn/10.

n 0 1 2 3 4 5 6 7 8 9 10
tn 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
yn 0 0.10 0.19 0.27 0.35 0.42 0.49 0.55 0.60 0.66 0.71

1

1

t

y

11. h = 1/5, y0 = 1, yn+1 = yn +
1

5
sin(πn/5).

n 0 1 2 3 4 5
tn 0 0.2 0.4 0.6 0.8 1.0
yn 0.00 0.00 0.12 0.31 0.50 0.62

12. False. This is only true if the slope at (x, y) does not depend on y.

13. True.
dy

dx
= exy > 0 for all x and y. So, for any integral curve, y is an increasing function of x.
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14. True.
d2y

dx2
=

d

dx
(ey) = ey

dy

dx
= e2y > 0 for all y.

15. True. Every cubic polynomial has at least one real root. If p(y0) = 0 then y = y0 is an integral curve that is a
horizontal line.

16. (a) By inspection,
dy

dx
= e−x

2

and y(0) = 0.

(b) yn+1 = yn + e−x
2
n/20 = yn + e−(n/20)2/20 and y20 = 0.7625. From a CAS, y(1) = 0.7468.

17. (b) y dy = −x dx, y2/2 = −x2/2 + C1, x
2 + y2 = C; if y(0) = 1 then C = 1 so y(1/2) =

√
3/2.

18. (a) Yes. (b) y = 0 is an integral curve of y′ = 2xy which is a horizontal line.

19. (b) The equation y′ = 1 − y is separable:
dy

1− y = dx, so

∫
dy

1− y =

∫
dx, − ln |1 − y| = x + C. Substituting

x = 0 and y = −1 gives C = − ln 2, so x = ln 2− ln |1− y| = ln

∣∣∣∣
2

1− y

∣∣∣∣. Since the integral curve stays below the

line y = 1, we can drop the absolute value signs: x = ln
2

1− y and y = 1 − 2e−x. Solving y = 0 shows that the

x-intercept is ln 2 ≈ 0.693.

20. (a) y0 = 1, yn+1 = yn + (
√
yn/2)∆x; ∆x = 0.2 : yn+1 = yn +

√
yn/10; y5 ≈ 1.5489, ∆x = 0.1 : yn+1 =

yn +
√
yn/20; y10 ≈ 1.5556, ∆x = 0.05 : yn+1 = yn +

√
yn/40; y20 ≈ 1.5590.

(b)
dy√
y

=
1

2
dx, 2

√
y = x/2 + C, 2 = C,

√
y = x/4 + 1, y = (x/4 + 1)2, y(1) = 25/16 = 1.5625.

21. (a) The slope field does not vary with x, hence along a given parallel line all values are equal since they only
depend on the height y.

(b) As in part (a), the slope field does not vary with x; it is independent of x.

(c) From G(y)− x = C we obtain
d

dx
(G(y)− x) =

1

f(y)

dy

dx
− 1 =

d

dx
C = 0, i.e.

dy

dx
= f(y).

22. (a) Separate variables:
dy√
y

= dx, 2
√
y = x + C, y = (x/2 + C1)2 is a parabola that opens up, and is therefore

concave up.

(b) A curve is concave up if its derivative is increasing, and y′ =
√
y is increasing, because y′′ =

d

dx
y′ =

d

dx

√
y =

1

2
√
y
y′ =

1

2
√
y

√
y =

1

2
> 0.

23. (a) By implicit differentiation, y3 + 3xy2 dy

dx
− 2xy − x2 dy

dx
= 0,

dy

dx
=

2xy − y3

3xy2 − x2
.

(b) If y(x) is an integral curve of the slope field in part (a), then
d

dx
{x[y(x)]3−x2y(x)} = [y(x)]3 +3xy(x)2y′(x)−

2xy(x)− x2y′(x) = 0, so the integral curve must be of the form x[y(x)]3 − x2y(x) = C.

(c) x[y(x)]3 − x2y(x) = 2.

24. (a) By implicit differentiation, ey + xey
dy

dx
+ ex

dy

dx
+ yex = 0,

dy

dx
= − e

y + yex

xey + ex
.
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(b) If y(x) is an integral curve of the slope field in part (a), then
d

dx
{xey(x) + y(x)ex} = ey(x) + xy′(x)ey(x) +

y′(x)ex + y(x)ex = 0 from part (a). Thus xey(x) + y(x)ex = C.

(c) Any integral curve y(x) of the slope field above satisfies xey(x) + y(x)ex = C; if it passes through (1, 1) then
e+ e = C, so xey(x) + y(x)ex = 2e defines the curve implicitly.

25. (a) For any n, yn is the value of the discrete approximation at the right endpoint, that, is an approximation of
y(1). By increasing the number of subdivisions of the interval [0, 1] one might expect more accuracy, and hence in
the limit y(1).

(b) For a fixed value of n we have, for k = 1, 2, . . . , n, yk = yk−1 + yk−1
1

n
=
n+ 1

n
yk−1. In particular yn =

n+ 1

n
yn−1 =

(
n+ 1

n

)2

yn−2 = . . . =

(
n+ 1

n

)n
y0 =

(
n+ 1

n

)n
. Consequently, lim

n→+∞
yn = lim

n→+∞

(
n+ 1

n

)n
=

e, which is the (correct) value y = ex
∣∣∣∣
x=1

.

26. Euler’s Method is repeated application of local linear approximation, each step dependent on the previous step.

27. Visual inspection of the slope field may show where the integral curves are increasing, decreasing, concave up, or
concave down. It may also help to identify asymptotes for the integral curves. For example, in Exercise 3 we see
that y = 1 is an integral curve that is an asymptote of all other integral curves. Those curves with y < 1 are
increasing and concave down; those with y > 1 are decreasing and concave up.

Exercise Set 8.4

1. µ = e
∫

4 dx = e4x, e4xy =

∫
ex dx = ex + C, y = e−3x + Ce−4x.

2. µ = e2
∫
x dx = ex

2

,
d

dx

[
yex

2
]

= xex
2

, yex
2

=
1

2
ex

2

+ C, y =
1

2
+ Ce−x

2

3. µ = e
∫
dx = ex, exy =

∫
ex cos(ex)dx = sin(ex) + C, y = e−x sin(ex) + Ce−x.

4.
dy

dx
+ 2y =

1

2
, µ = e

∫
2dx = e2x, e2xy =

∫
1

2
e2xdx =

1

4
e2x + C, y =

1

4
+ Ce−2x.

5.
dy

dx
+

x

x2 + 1
y = 0, µ = e

∫
(x/(x2+1))dx = e

1
2 ln(x2+1) =

√
x2 + 1,

d

dx

[
y
√
x2 + 1

]
= 0, y

√
x2 + 1 = C, y =

C√
x2 + 1

.

6.
dy

dx
+ y = − 1

1− ex , µ = e
∫
dx = ex, exy = −

∫
ex

1− ex dx = ln(1− ex) + C, y = e−x ln(1− ex) + Ce−x.

7.
dy

dx
+

1

x
y = 1, µ = e

∫
(1/x)dx = eln x = x,

d

dx
[xy] = x, xy =

1

2
x2 + C, y =

x

2
+
C

x
, 2 = y(1) =

1

2
+ C,C =

3

2
, y =

x

2
+

3

2x
.

8. Divide by x to put the differential equation in the form (3):
dy

dx
− x−1y = x. We have p(x) = − 1

x
and q(x) = x,

so

∫
p(x) dx = − ln |x|. So we may take e− ln |x| = |x−1| as an integrating factor. Since integrating factors are

only determined up to a constant factor, we may drop the absolute value signs and simply take µ = x−1. We

have
d

dx
(x−1y) = x−1 dy

dx
− x−2y = x−1

(
dy

dx
− x−1y

)
= 1, so x−1y = x+ C and y = x2 + Cx. Since y(1) = −1,

C = −2 and y = x2 − 2x.
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9. µ = e−2
∫
x dx = e−x

2

, e−x
2

y =

∫
2xe−x

2

dx = −e−x2

+ C, y = −1 + Cex
2

, 3 = −1 + C, C = 4, y = −1 + 4ex
2

.

10. µ = e
∫
dt = et, ety =

∫
2et dt = 2et + C, y = 2 + Ce−t, 1 = 2 + C, C = −1, y = 2− e−t.

11. False. If y1 and y2 both satisfy
dy

dx
+ p(x)y = q(x) then

d

dx
(y1 + y2) + p(x)(y1 + y2) = 2q(x). Unless q(x) = 0 for

all x, y1 + y2 is not a solution of the original differential equation.

12. True. If y = C is a solution, then dy/dx = 0, so p(x)C = q(x).

13. True. The concentration in the tank will approach the concentration in the solution flowing into the tank.

14. False. Although equation (18) implies that vτ =
mg

c
, where mg is the weight of the object, the model does not

specify exactly how c depends on the object.

15.

-2 2

–10

10

x

y

y(0) = –1

y(–1) = 0
y(1) = 1

16.
dy

dx
− 2y = −x, µ = e−2

∫
dx = e−2x,

d

dx

[
ye−2x

]
= −xe−2x, ye−2x =

1

4
(2x+ 1)e−2x + C, y =

1

4
(2x+ 1) + Ce2x.

(a) 1 = 3/4 + Ce2, C = 1/(4e2), y =
1

4
(2x+ 1) +

1

4
e2x−2.

(b) −1 = 1/4 + C,C = −5/4, y =
1

4
(2x+ 1)− 5

4
e2x.

(c) 0 = −1/4 + Ce−2, C = e2/4, y =
1

4
(2x+ 1) +

1

4
e2x+2.

17. It appears that lim
x→+∞

y =

{
+∞, if y0 ≥ 1/4;

−∞, if y0 < 1/4.
To confirm this, we solve the equation using the method of

integrating factors:
dy

dx
− 2y = −x, µ = e−2

∫
dx = e−2x,

d

dx

[
ye−2x

]
= −xe−2x, ye−2x =

1

4
(2x + 1)e−2x + C,

y =
1

4
(2x + 1) + Ce2x. Setting y(0) = y0 gives C = y0 −

1

4
, so y =

1

4
(2x + 1) +

(
y0 −

1

4

)
e2x. If y0 = 1/4,

then y =
1

4
(2x+ 1)→ +∞ as x→ +∞. Otherwise, we rewrite the solution as y = e2x

(
y0 −

1

4
+

2x+ 1

4e2x

)
; since

lim
x→+∞

2x+ 1

4e2x
= 0, we obtain the conjectured limit.

18. (a) y0 = 1, yn+1 = yn + (2yn − xn)(0.1) = (12yn − xn)/10.

n 0 1 2 3 4 5
xn 0 0.1 0.2 0.3 0.4 0.5
yn 1 1.2 1.43 1.696 2.0052 2.36624
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(b) Less. The integral curve appears to be concave up, so each yn is an underestimate of the actual value of
y(xn).

(c) From Exercise 16, we have y =
1

4
(2x + 1) + Ce2x for some constant C. Since y(0) = 1 we find C =

3

4
, so

y =
3e2x + 2x+ 1

4
and y

(
1

2

)
=

3e+ 2

4
≈ 2.53871.

19. (a) y0 = 1, yn+1 = yn + (xn + yn)(0.2) = (xn + 6yn)/5.

n 0 1 2 3 4 5
xn 0 0.2 0.4 0.6 0.8 1.0
yn 1 1.20 1.48 1.86 2.35 2.98

(b) y′ − y = x, µ = e−x,
d

dx

[
ye−x

]
= xe−x, ye−x = −(x+ 1)e−x + C, 1 = −1 + C, C = 2, y = −(x+ 1) + 2ex.

xn 0 0.2 0.4 0.6 0.8 1.0
y(xn) 1 1.24 1.58 2.04 2.65 3.44

abs. error 0 0.04 0.10 0.19 0.30 0.46
perc. error 0 3 6 9 11 13

(c)
0.2 0.4 0.6 0.8 1

3

x

y

20. h = 0.1, yn+1 = (xn + 11yn)/10.

n 0 1 2 3 4 5 6 7 8 9 10
xn 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
yn 1.00 1.10 1.22 1.36 1.53 1.72 1.94 2.20 2.49 2.82 3.19

With ∆x = 0.2, Euler’s method gives y(1) ≈ 2.98; with ∆x = 0.1, it gives y(1) ≈ 3.19. The true value is
y(1) = 2e− 2 ≈ 3.44; so the absolute errors are approximately 0.46 and 0.25, respectively.

21.
dy

dt
= rate in − rate out, where y is the amount of salt at time t,

dy

dt
= (4)(2)−

( y
50

)
(2) = 8− 1

25
y, so

dy

dt
+

1

25
y = 8

and y(0) = 25. µ = e
∫

(1/25)dt = et/25, et/25y =

∫
8et/25dt = 200et/25 + C, y = 200 + Ce−t/25, 25 = 200 + C,

C = −175,

(a) y = 200− 175e−t/25 oz. (b) when t = 25, y = 200− 175e−1 ≈ 136 oz.

22.
dy

dt
= (5)(20) − y

200
(20) = 100 − 1

10
y, so

dy

dt
+

1

10
y = 100 and y(0) = 0. µ = e

∫
(1/10)dt = et/10, et/10y =

∫
100et/10dt = 1000et/10 + C, y = 1000 + Ce−t/10, 0 = 1000 + C, C = −1000;

(a) y = 1000− 1000e−t/10 lb. (b) when t = 30, y = 1000− 1000e−3 ≈ 950 lb.

23. The volume V of the (polluted) water is V (t) = 500 + (20 − 10)t = 500 + 10t; if y(t) is the number of pounds of

particulate matter in the water, then y(0) = 50 and
dy

dt
= 0 − 10

y

V
= − y

50 + t
. Using the method of integrating
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factors, we have
dy

dt
+

1

50 + t
y = 0; µ = e

∫
dt

50+t = 50 + t;
d

dt
[(50 + t)y] = 0, (50 + t)y = C, 2500 = 50y(0) = C,

y(t) = 2500/(50 + t). (The differential equation may also be solved by separation of variables.) The tank reaches
the point of overflowing when V = 500 + 10t = 1000, t = 50 min, so y = 2500/(50 + 50) = 25 lb.

24. The volume of the lake (in gallons) is V = 264πr2h = 264π(15)23 = 178,200π gals. Let y(t) denote the number

of pounds of mercury salts at time t; then
dy

dt
= 0 − 103 y

V
= − y

178.2π
lb/h and y0 = 10−5V = 1.782π lb;

dy

y
= − dt

178.2π
, ln y = − t

178.2π
+C1, y = Ce−t/(178.2π), and C = y(0) = y0 = 1.782π, y = 1.782πe−t/(178.2π) lb of

mercury salts.

t 1 2 3 4 5 6 7 8 9 10 11 12

y(t) 5.588 5.578 5.568 5.558 5.549 5.539 5.529 5.519 5.509 5.499 5.489 5.480

We assumed that the mercury is always distributed uniformly throughout the lake, and doesn’t settle to the
bottom.

25. (a)
dv

dt
+
c

m
v = −g, µ = e(c/m)

∫
dt = ect/m,

d

dt

[
vect/m

]
= −gect/m, vect/m = −gm

c
ect/m+C, v = −gm

c
+Ce−ct/m,

but v0 = v(0) = −gm
c

+ C,C = v0 +
gm

c
, v = −gm

c
+
(
v0 +

gm

c

)
e−ct/m.

(b) Replace
mg

c
with vτ and −ct/m with −gt/vτ in (16).

(c) From part (b), s(t) = C − vτ t − (v0 + vτ )
vτ
g
e−gt/vτ ; s0 = s(0) = C − (v0 + vτ )

vτ
g

, C = s0 + (v0 + vτ )
vτ
g

,

s(t) = s0 − vτ t+
vτ
g

(v0 + vτ )
(

1− e−gt/vτ
)

.

26. (a) Let t denote time elapsed in seconds after the moment of the drop. From Exercise 25(b), while the
parachute is closed v(t) = e−gt/vτ (v0 + vτ ) − vτ = e−32t/120 (0 + 120) − 120 = 120

(
e−4t/15 − 1

)
and thus

v(25) = 120
(
e−20/3 − 1

)
≈ −119.85, so the skydiver is falling at a speed of 119.85 ft/s when the parachute opens.

From Exercise 25(c), s(t) = s0−120t+
120

32
120

(
1− e−4t/15

)
, s(25) = 10000−120·25+450

(
1− e−20/3

)
≈ 7449.43

ft.

(b) If t denotes time elapsed after the parachute opens, then, by Exercise 25(c), s(t) ≈ 7449.43−24t+
24

32
(−119.85+

24)(1 − e−32t/24). A calculating utility finds that s(t) = 0 for t ≈ 307.4 s, so the skydiver is in the air for about
25 + 307.4 = 332.4 s.

27.
dI

dt
+
R

L
I =

V (t)

L
, µ = e(R/L)

∫
dt = eRt/L,

d

dt
(eRt/LI) =

V (t)

L
eRt/L, IeRt/L = I(0) +

1

L

∫ t

0

V (u)eRu/Ldu, so

I(t) = I(0)e−Rt/L +
1

L
e−Rt/L

∫ t

0

V (u)eRu/Ldu.

(a) I(t) =
1

5
e−2t

∫ t

0

20e2udu = 2e−2te2u

]t

0

= 2
(
1− e−2t

)
A. (b) lim

t→+∞
I(t) = 2 A.

28. From Exercise 27 and Endpaper Table (42), I(t) = 15e−2t +
1

3
e−2t

∫ t

0

3e2u sinu du = 15e−2t + e−2t e
2u

5
(2 sinu −

cosu)

]t

0

= 15e−2t +
1

5
(2 sin t− cos t) +

1

5
e−2t.

29. (a) Let y =
1

µ
[H(x) + C] where µ = eP (x),

dP

dx
= p(x),

d

dx
H(x) = µq, and C is an arbitrary constant. Then
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dy

dx
+ p(x)y =

1

µ
H ′(x)− µ′

µ2
[H(x) + C] + p(x)y = q − p

µ
[H(x) + C] + p(x)y = q.

(b) Given the initial value problem, let C = µ(x0)y0 −H(x0). Then y =
1

µ
[H(x) + C] is a solution of the initial

value problem with y(x0) = y0. This shows that the initial value problem has a solution. To show uniqueness,
suppose u(x) also satisfies (3) together with u(x0) = y0. Following the arguments in the text we arrive at

u(x) =
1

µ
[H(x) + C] for some constant C. The initial condition requires C = µ(x0)y0 −H(x0), and thus u(x) is

identical with y(x).

30. (a) y = x and y = −x are both solutions of the given initial value problem.

(b)

∫
y dy = −

∫
x dx, y2 = −x2 + C; but y(0) = 0, so C = 0. Thus y2 = −x2, which is impossible.

Chapter 8 Review Exercises

1. (a) Linear. (b) Both. (c) Separable. (d) Neither.

2. (a) Separable. (b) Separable. (c) Not separable. (d) Separable.

3.
dy

1 + y2
= x2 dx, tan−1 y =

1

3
x3 + C, y = tan

(
1

3
x3 + C

)
.

4.
1

tan y
dy =

3

secx
dx,

cos y

sin y
dy = 3 cosx dx, ln | sin y| = 3 sinx+C1, sin y = ±e3 sin x+C1 = ±eC1e3 sin x = Ce3 sin x, C 6=

0, y = sin−1
(
Ce3 sin x

)
, as is y = 0 by inspection.

5.

(
1

y
+ y

)
dy = exdx, ln |y|+ y2/2 = ex + C; by inspection, y = 0 is also a solution.

6.
dy

y2 + 1
= dx, tan−1 y = x+ C, π/4 = C; y = tan(x+ π/4).

7.

(
1

y5
+

1

y

)
dy =

dx

x
, −1

4
y−4 + ln |y| = ln |x|+ C; −1

4
= C, y−4 + 4 ln(x/y) = 1.

8.
dy

y2
= 4 sec2 2x dx, −1

y
= 2 tan 2x+ C, −1 = 2 tan

(
2
π

8

)
+ C = 2 tan

π

4
+ C = 2 + C, C = −3, y =

1

3− 2 tan 2x
.

9.
dy

y2
= −2x dx, −1

y
= −x2 + C, −1 = C, y = 1/(x2 + 1).

–1 1

1

x

y

10. 2y dy = dx, y2 = x+ C; if y(0) = 1 then C = 1, y2 = x+ 1, y =
√
x+ 1; if y(0) = −1, then C = 1, y2 = x+ 1, y =

−
√
x+ 1.
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–1 1

–1

1

x

y

–1 1

–1

1

x

y

11.

x

y

1 2 3 4

1

2

3

4

12.
dy

y
=

1

8
x dx, ln |y| = 1

16
x2 + C, y = C1e

x2/16.

13. y0 = 1, yn+1 = yn +
√
yn/2.

n 0 1 2 3 4 5 6 7 8
xn 0 0.5 1 1.5 2 2.5 3 3.5 4
yn 1 1.50 2.11 2.84 3.68 4.64 5.72 6.91 8.23

2 41 3

9

x

y

14. y0 = 1, yn+1 = yn +
1

2
sin yn.

n 0 1 2 3 4
tn 0 0.5 1 1.5 2
yn 1 1.42 1.92 2.39 2.73

3

3

t

y

15. h = 1/5, y0 = 1, yn+1 = yn +
1

5
cos(2πn/5).
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n 0 1 2 3 4 5
tn 0 0.2 0.4 0.6 0.8 1.0
yn 1.00 1.20 1.26 1.10 0.94 1.00

16. From formula (19) of Section 8.2, y(t) = y0e
−0.000121t, so 0.785y0 = y0e

−0.000121t, t = − ln 0.785/0.000121 ≈ 2000.6
yr.

17. (a) k =
ln 2

5
≈ 0.1386; y ≈ 2e0.1386t. (b) y(t) = 5e0.015t.

(c) y = y0e
kt, 1 = y0e

k, 100 = y0e
10k. We obtain that 100 = e9k, k =

1

9
ln 100 ≈ 0.5117, y ≈ y0e

0.5117t; also

y(1) = 1, so y0 = e−0.5117 ≈ 0.5995, y ≈ 0.5995e0.5117t.

(d)
ln 2

T
≈ 0.1386, 1 = y(1) ≈ y0e

0.1386, y0 ≈ e−0.1386 ≈ 0.8706, y ≈ 0.8706e0.1386t.

18. (a)
d

dt
y(t) = 0.01y, y(0) = 5000. (b) y(t) = 5000e0.01t.

(c) 2 = e0.01t, t = 100 ln 2 ≈ 69.31 h. (d) 30,000 = 5000e0.01t, t = 100 ln 6 ≈ 179.18 h.

19. µ = e
∫

3 dx = e3x, e3xy =

∫
ex dx = ex + C, y = e−2x + Ce−3x.

20.
dy

dx
+ y =

1

1 + ex
, µ = e

∫
dx = ex, exy =

∫
ex

1 + ex
dx = ln(1 + ex) + C, y = e−x ln(1 + ex) + Ce−x.

21. µ = e−
∫
x dx = e−x

2/2, e−x
2/2y =

∫
xe−x

2/2dx = −e−x2/2 + C, y = −1 + Cex
2/2, 3 = −1 + C, C = 4,

y = −1 + 4ex
2/2.

22.
dy

dx
+

2

x
y = 4x, µ = e

∫
(2/x)dx = x2,

d

dx

[
yx2
]

= 4x3, yx2 = x4 +C, y = x2 +Cx−2, 2 = y(1) = 1 +C, C = 1, y =

x2 + 1/x2.

23. By inspection, the left side of the equation is
d

dx
(y coshx), so

d

dx
(y coshx) = cosh2 x =

1

2
(1 + cosh 2x) and

y coshx =
1

2
x +

1

4
sinh 2x + C =

1

2
(x + sinhx coshx) + C. When x = 0, y = 2 so 2 = C, and y = 2 sech x +

1

2
(x sech x+ sinhx).

24. (a) µ = e−
∫
dx = e−x,

d

dx

[
ye−x

]
= xe−x sin 3x, ye−x =

∫
xe−x sin 3x dx =

(
− 3

10
x− 3

50

)
e−x cos 3x +

(
− 1

10
x+

2

25

)
e−x sin 3x+C; 1 = y(0) = − 3

50
+C, C =

53

50
, y =

(
− 3

10
x− 3

50

)
cos 3x+

(
− 1

10
x+

2

25

)
sin 3x+

53

50
ex.
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(c)

–10 –2

–2

4

x

y

25. Assume the tank contains y(t) oz of salt at time t. Then y0 = 0 and for 0 < t < 15,
dy

dt
= 5 · 10− y

1000
10 = (50−

y/100) oz/min, with solution y = 5000+Ce−t/100. But y(0) = 0 so C = −5000, y = 5000(1−e−t/100) for 0 ≤ t ≤ 15,

and y(15) = 5000(1 − e−0.15). For 15 < t < 30,
dy

dt
= 0 − y

1000
5, y = C1e

−t/200, C1e
−0.075 = y(15) = 5000(1 −

e−0.15), C1 = 5000(e0.075−e−0.075), y = 5000(e0.075−e−0.075)e−t/200, y(30) = 5000(e0.075−e−0.075)e−0.15 ≈ 646.14
oz.

26. (a) Assume the air contains y(t) ft3 of carbon monoxide at time t. Then y0 = 0 and for t > 0,
dy

dt
= 0.04(0.1)−

y

1200
(0.1) = 1/250 − y/12000,

d

dt

[
yet/12000

]
=

1

250
et/12000, yet/12000 = 48et/12000 + C, y(0) = 0, C = −48; y =

48(1− e−t/12000). Thus the percentage of carbon monoxide is P =
y

1200
100 = 4(1− e−t/12000) percent.

(b) 0.012 = 4(1− e−t/12000), t = 36.05 min.

Chapter 8 Making Connections

1. (a) u(x) = q − p y(x) so
du

dx
= −pdy

dx
= −p(q − py(x)) = (−p)u(x). If p < 0 then −p > 0 so u(x) grows

exponentially. If p > 0 then −p < 0 so u(x) decays exponentially.

(b) From (a), u(x) = 4 − 2y(x) satisfies
du

dx
= −2u(x), so equation (14) of Section 8.2 gives u(x) = u0e

−2x for

some constant u0. Since u(0) = 4− 2y(0) = 6, we have u(x) = 6e−2x; hence y(x) = 2− 3e−2x.

2. (a)
du

dx
=

d

dx
(ax+ b y(x) + c) = a+ b

dy

dx
= a+ b f(ax+ by + c) = a+ b f(u), so

1

a+ b f(u)

du

dx
= 1.

(b) From (a) with a = b = 1, c = 0, f(t) = 1/t, we have
1

1 + 1/u

du

dx
= 1, where u = x + y. So

u

u+ 1
du = dx,

∫
u

u+ 1
du =

∫
dx, u− ln |u+ 1| = x+ C, x+ y − ln |x+ y + 1| = x+ C, and y − ln |x+ y + 1| = C.

3. (a)
du

dx
=

d

dx

(y
x

)
=
x
dy

dx
− y

x2
=
x f
(y
x

)
− y

x2
. Since y = ux,

du

dx
=
x f(u)− ux

x2
=
f(u)− u

x
and

1

f(u)− u
du

dx
=

1

x
.

(b)
dy

dx
=
x− y
x+ y

=
1− y/x
1 + y/x

has the form given in (a), with f(t) =
1− t
1 + t

. So
1

1− u
1 + u

− u
du

dx
=

1

x
,

1 + u

1− 2u− u2
du =

dx

x
,

∫
1 + u

1− 2u− u2
du =

∫
dx

x
, −1

2
ln |1−2u−u2| = ln |x|+C1, and |1−2u−u2| = e−2C1x−2. Hence 1−2u−u2 =

Cx−2 where C is either e−2C1 or −e−2C1 . Substituting u =
y

x
gives 1− 2y

x
− y2

x2
= Cx−2, and x2− 2xy− y2 = C.
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4. (a)
du

dx
= (1−n)y−n

dy

dx
= (1−n)y−n[q(x)yn−p(x)y] = (1−n)q(x)−(1−n)p(x)y1−n = (1−n)q(x)−(1−n)p(x)u.

Hence
du

dx
+ (1− n)p(x)u = (1− n)q(x).

(b)
dy

dx
− 1

x
y = −2y2, so this has the form given in (a) with p(x) = −1/x, q(x) = −2, and n = 2. So u = y−1

satisfies
du

dx
+

1

x
u = 2. An integrating factor is given by µ = e

∫
dx/x = eln x = x. So

d

dx
(xu) = x

du

dx
+ u = 2x,

xu = x2 + C, u = x+ Cx−1, and y = u−1 =
1

x+ Cx−1
=

x

x2 + C
. Since y(1) =

1

2
, C = 1 and y =

x

x2 + 1
.



Infinite Series

Exercise Set 9.1

1. (a)
1

3n−1
(b)

(−1)n−1

3n−1
(c)

2n− 1

2n
(d)

n2

π1/(n+1)

2. (a) (−r)n−1; (−r)n (b) −(−r)n; (−1)nrn+1

3. (a) 2, 0, 2, 0 (b) 1,−1, 1,−1 (c) 2(1 + (−1)n); 2 + 2 cosnπ

4. (a) (2n)! (b) (2n− 1)!

5. (a) No; f(n) oscillates between ±1 and 0. (b) −1,+1,−1,+1,−1 (c) No, it oscillates between +1 and −1.

6. If n is an integer then f(2n+ 1) = 0.

(a) 0, 0, 0, 0, 0 (b) bn = 0 for all n, so the sequence converges to 0. (c) No, it oscillates between ±1 and 0.

7. 1/3, 2/4, 3/5, 4/6, 5/7, . . .; lim
n→+∞

n

n+ 2
= 1, converges.

8. 1/3, 4/5, 9/7, 16/9, 25/11, . . .; lim
n→+∞

n2

2n+ 1
= +∞, diverges.

9. 2, 2, 2, 2, 2, . . .; lim
n→+∞

2 = 2, converges.

10. ln 1, ln
1

2
, ln

1

3
, ln

1

4
, ln

1

5
, . . .; lim

n→+∞
ln(1/n) = −∞, diverges.

11.
ln 1

1
,

ln 2

2
,

ln 3

3
,

ln 4

4
,

ln 5

5
, . . .; lim

n→+∞
lnn

n
= lim
n→+∞

1

n
= 0

(
apply L’Hôpital’s Rule to

lnx

x

)
, converges.

12. sinπ, 2 sin(π/2), 3 sin(π/3), 4 sin(π/4), 5 sin(π/5), . . .; lim
n→+∞

n sin(π/n) = lim
n→+∞

sin(π/n)

1/n
; but using L’Hospital’s

rule, lim
x→+∞

sin(π/x)

1/x
= lim
x→+∞

(−π/x2) cos(π/x)

−1/x2
= π, so the sequence also converges to π.

13. 0, 2, 0, 2, 0, . . .; diverges.

14. 1, −1/4, 1/9, −1/16, 1/25, . . .; lim
n→+∞

(−1)n+1

n2
= 0, converges.

15. −1, 16/9, −54/28, 128/65, −250/126, . . .; diverges because odd-numbered terms approach −2, even-numbered
terms approach 2.

437
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16. 1/2, 2/4, 3/8, 4/16, 5/32, . . .; using L’Hospital’s rule, lim
x→+∞

x

2x
= lim
x→+∞

1

2x ln 2
= 0, so the sequence also converges

to 0.

17. 6/2, 12/8, 20/18, 30/32, 42/50, . . .; lim
n→+∞

1

2
(1 + 1/n)(1 + 2/n) = 1/2, converges.

18. π/4, π2/42, π3/43, π4/44, π5/45, . . .; lim
n→+∞

(π/4)n = 0, converges.

19. e−1, 4e−2, 9e−3, 16e−4, 25e−5, . . .; using L’Hospital’s rule, lim
x→+∞

x2e−x = lim
x→+∞

x2

ex
= lim
x→+∞

2x

ex
= lim
x→+∞

2

ex
= 0,

so lim
n→+∞

n2e−n = 0, converges.

20. 1,
√

10−2,
√

18−3,
√

28−4,
√

40−5, . . .; lim
n→+∞

(
√
n2 + 3n−n) = lim

n→+∞
3n√

n2 + 3n+ n
= lim
n→+∞

3√
1 + 3/n+ 1

=

3

2
, converges.

21. 2, (5/3)2, (6/4)3, (7/5)4, (8/6)5, . . .; let y =

[
x+ 3

x+ 1

]x
, converges because lim

x→+∞
ln y = lim

x→+∞

ln
x+ 3

x+ 1
1/x

=

lim
x→+∞

2x2

(x+ 1)(x+ 3)
= 2, so lim

n→+∞

[
n+ 3

n+ 1

]n
= e2.

22. −1, 0, (1/3)3, (2/4)4, (3/5)5, . . .; let y = (1 − 2/x)x, converges because lim
x→+∞

ln y = lim
x→+∞

ln(1− 2/x)

1/x
=

lim
x→+∞

−2

1− 2/x
= −2, lim

n→+∞
(1− 2/n)n = lim

x→+∞
y = e−2.

23.

{
2n− 1

2n

}+∞

n=1

; lim
n→+∞

2n− 1

2n
= 1, converges.

24.

{
n− 1

n2

}+∞

n=1

; lim
n→+∞

n− 1

n2
= 0, converges.

25.

{
(−1)n−1 1

3n

}+∞

n=1

; lim
n→+∞

(−1)n−1

3n
= 0, converges.

26. {(−1)nn}+∞n=1; diverges because odd-numbered terms tend toward −∞, even-numbered terms tend toward +∞.

27.

{
(−1)n+1

(
1

n
− 1

n+ 1

)}+∞

n=1

; the sequence converges to 0.

28.
{

3/2n−1
}+∞
n=1

; lim
n→+∞

3/2n−1 = 0, converges.

29.
{√

n+ 1−
√
n+ 2

}+∞
n=1

; converges because lim
n→+∞

(
√
n+ 1−

√
n+ 2) = lim

n→+∞
(n+ 1)− (n+ 2)√
n+ 1 +

√
n+ 2

=

= lim
n→+∞

−1√
n+ 1 +

√
n+ 2

= 0.

30.
{

(−1)n+1/3n+4
}+∞
n=1

; lim
n→+∞

(−1)n+1/3n+4 = 0, converges.

31. True; a function whose domain is a set of integers.
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32. False, e.g. an = 1− n, bn = n− 1.

33. False, e.g. an = (−1)n.

34. True.

35. Let an = 0, bn =
sin2 n

n
, cn =

1

n
; then an ≤ bn ≤ cn, lim

n→+∞
an = lim

n→+∞
cn = 0, so lim

n→+∞
bn = 0.

36. Let an = 0, bn =

(
1 + n

2n

)n
, cn =

(
3

4

)n
; then (for n ≥ 2), an ≤ bn ≤

(
n/2 + n

2n

)n
= cn,

lim
n→+∞

an = lim
n→+∞

cn = 0, so lim
n→+∞

bn = 0.

37. an =

{
+1 k even

−1 k odd
oscillates; there is no limit point which attracts all of the an. bn = cosn; the terms lie all

over the interval [−1, 1] without any limit.

38. (a) No, because given N > 0, all values of f(x) are greater than N provided x is close enough to zero. But
certainly the terms 1/n will be arbitrarily close to zero, and when so then f(1/n) > N , so f(1/n) cannot converge.

(b) f(x) = sin(π/x). Then f = 0 when x = 1/n and f 6= 0 otherwise; indeed, the values of f are located all over
the interval [−1, 1].

39. (a) 1, 2, 1, 4, 1, 6 (b) an =

{
n, n odd
1/2n, n even

(c) an =

{
1/n, n odd
1/(n+ 1), n even

(d) In part (a) the sequence diverges, since the even terms diverge to +∞ and the odd terms equal 1; in part (b)
the sequence diverges, since the odd terms diverge to +∞ and the even terms tend to zero; in part (c) lim

n→+∞
an = 0.

40. The even terms are zero, so the odd terms must converge to zero, and this is true if and only if lim
n→+∞

bn = 0, or

0 < b < 1 (b is required to be positive).

41. lim
n→+∞

xn+1 =
1

2
lim

n→+∞

(
xn +

a

xn

)
or L =

1

2

(
L+

a

L

)
, 2L2−L2−a = 0, L =

√
a (we reject −√a because xn > 0,

thus L ≥ 0).

42. (a) an+1 =
√

6 + an.

(b) lim
n→+∞

an+1 = lim
n→+∞

√
6 + an, L =

√
6 + L, L2 − L− 6 = 0, (L− 3)(L+ 2) = 0, L = −2 (reject, because the

terms in the sequence are positive) or L = 3; lim
n→+∞

an = 3.

43. (a) a1 = (0.5)2, a2 = a2
1 = (0.5)4, . . . , an = (0.5)2n .

(c) lim
n→+∞

an = lim
n→+∞

e2n ln(0.5) = 0, since ln(0.5) < 0.

(d) Replace 0.5 in part (a) with a0; then the sequence converges for −1 ≤ a0 ≤ 1, because if a0 = ±1, then an = 1

for n ≥ 1; if a0 = 0 then an = 0 for n ≥ 1; and if 0 < |a0| < 1 then a1 = a2
0 > 0 and lim

n→+∞
an = lim

n→+∞
e2n−1 ln a1 = 0

since 0 < a1 < 1. This same argument proves divergence to +∞ for |a| > 1 since then ln a1 > 0.

44. f(0.2) = 0.4, f(0.4) = 0.8, f(0.8) = 0.6, f(0.6) = 0.2 and then the cycle repeats, so the sequence does not
converge.



440 Chapter 9

45. (a)

30

0
0 5

(b) Let y = (2x + 3x)1/x, lim
x→+∞

ln y = lim
x→+∞

ln(2x + 3x)

x
= lim

x→+∞
2x ln 2 + 3x ln 3

2x + 3x
= lim

x→+∞
(2/3)x ln 2 + ln 3

(2/3)x + 1
=

ln 3, so lim
n→+∞

(2n + 3n)1/n = eln 3 = 3. Alternate proof: 3 = (3n)1/n < (2n + 3n)1/n < (2 · 3n)1/n = 3 · 21/n. Then

apply the Squeezing Theorem.

46. Let f(x) = 1/(1 + x), 0 ≤ x ≤ 1. Take ∆xk = 1/n and x∗k = k/n then an =
n∑

k=1

1

1 + (k/n)
(1/n) =

n∑

k=1

1

1 + x∗k
∆xk

so lim
n→+∞

an =

∫ 1

0

1

1 + x
dx = ln(1 + x)

]1

0

= ln 2.

47. (a) If n ≥ 1, then an+2 = an+1 + an, so
an+2

an+1
= 1 +

an
an+1

.

(c) With L = lim
n→+∞

(an+2/an+1) = lim
n→+∞

(an+1/an), L = 1 + 1/L, L2 − L − 1 = 0, L = (1 ±
√

5)/2, so

L = (1 +
√

5)/2 because the limit cannot be negative.

48.

∣∣∣∣
1

n
− 0

∣∣∣∣ =
1

n
< ε if n > 1/ε;

(a) 1/ε = 1/0.5 = 2, N = 3. (b) 1/ε = 1/0.1 = 10, N = 11. (c) 1/ε = 1/0.001 = 1000, N = 1001.

49.

∣∣∣∣
n

n+ 1
− 1

∣∣∣∣ =
1

n+ 1
< ε if n+ 1 > 1/ε, n > 1/ε− 1;

(a) 1/ε− 1 = 1/0.25− 1 = 3, N = 4. (b) 1/ε− 1 = 1/0.1− 1 = 9, N = 10. (c) 1/ε− 1 = 1/0.001− 1 = 999,
N = 1000.

50. (a)

∣∣∣∣
1

n
− 0

∣∣∣∣ =
1

n
< ε if n > 1/ε, choose any N > 1/ε.

(b)

∣∣∣∣
n

n+ 1
− 1

∣∣∣∣ =
1

n+ 1
< ε if n > 1/ε− 1, choose any N > 1/ε− 1.

Exercise Set 9.2

1. an+1 − an =
1

n+ 1
− 1

n
= − 1

n(n+ 1)
< 0 for n ≥ 1, so strictly decreasing.

2. an+1 − an =

(
1− 1

n+ 1

)
−
(

1− 1

n

)
=

1

n(n+ 1)
> 0 for n ≥ 1, so strictly increasing.

3. an+1 − an =
n+ 1

2n+ 3
− n

2n+ 1
=

1

(2n+ 1)(2n+ 3)
> 0 for n ≥ 1, so strictly increasing.

4. an+1 − an =
n+ 1

4n+ 3
− n

4n− 1
= − 1

(4n− 1)(4n+ 3)
< 0 for n ≥ 1, so strictly decreasing.
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5. an+1 − an = (n+ 1− 2n+1)− (n− 2n) = 1− 2n < 0 for n ≥ 1, so strictly decreasing.

6. an+1 − an = [(n+ 1)− (n+ 1)2]− (n− n2) = −2n < 0 for n ≥ 1, so strictly decreasing.

7.
an+1

an
=

(n+ 1)/(2n+ 3)

n/(2n+ 1)
=

(n+ 1)(2n+ 1)

n(2n+ 3)
=

2n2 + 3n+ 1

2n2 + 3n
> 1 for n ≥ 1, so strictly increasing.

8.
an+1

an
=

2n+1

1 + 2n+1
· 1 + 2n

2n
=

2 + 2n+1

1 + 2n+1
= 1 +

1

1 + 2n+1
> 1 for n ≥ 1, so strictly increasing.

9.
an+1

an
=

(n+ 1)e−(n+1)

ne−n
= (1 + 1/n)e−1 < 1 for n ≥ 1, so strictly decreasing.

10.
an+1

an
=

10n+1

(2n+ 2)!
· (2n)!

10n
=

10

(2n+ 2)(2n+ 1)
< 1 for n ≥ 1, so strictly decreasing.

11.
an+1

an
=

(n+ 1)n+1

(n+ 1)!
· n!

nn
=

(n+ 1)n

nn
= (1 + 1/n)n > 1 for n ≥ 1, so strictly increasing.

12.
an+1

an
=

5n+1

2(n+1)2
· 2n

2

5n
=

5

22n+1
< 1 for n ≥ 1, so strictly decreasing.

13. True by definition.

14. False; either an+1 ≤ an always or else an+1 ≥ an always.

15. False, e.g. an = (−1)n.

16. False; such a sequence could decrease until a300, e.g.

17. f(x) = x/(2x+ 1), f ′(x) = 1/(2x+ 1)2 > 0 for x ≥ 1, so strictly increasing.

18. f(x) =
ln(x+ 2)

x+ 2
, f ′(x) =

1− ln(x+ 2)

(x+ 2)2
< 0 for x ≥ 1, so strictly decreasing.

19. f(x) = tan−1 x, f ′(x) = 1/(1 + x2) > 0 for x ≥ 1, so strictly increasing.

20. f(x) = xe−2x, f ′(x) = (1− 2x)e−2x < 0 for x ≥ 1, so strictly decreasing.

21. f(x) = 2x2 − 7x, f ′(x) = 4x− 7 > 0 for x ≥ 2, so eventually strictly increasing.

22. f(x) =
x

x2 + 10
, f ′(x) =

10− x2

(x2 + 10)2
< 0 for x ≥ 4, so eventually strictly decreasing.

23.
an+1

an
=

(n+ 1)!

3n+1
· 3n

n!
=
n+ 1

3
> 1 for n ≥ 3, so eventually strictly increasing.

24. f(x) = x5e−x, f ′(x) = x4(5− x)e−x < 0 for x ≥ 6, so eventually strictly decreasing.

25. Yes: a monotone sequence is increasing or decreasing; if it is increasing, then it is increasing and bounded above,
so by Theorem 9.2.3 it converges; if decreasing, then use Theorem 9.2.4. The limit lies in the interval [1, 2].

26. Such a sequence may converge, in which case, by the argument in part (a), its limit is ≤ 2. If the sequence is also
increasing then it will converge. But convergence may not happen: for example, the sequence {−n}+∞n=1 diverges.
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27. (a)
√

2,

√
2 +
√

2,

√
2 +

√
2 +
√

2.

(b) a1 =
√

2 < 2 so a2 =
√

2 + a1 <
√

2 + 2 = 2, a3 =
√

2 + a2 <
√

2 + 2 = 2, and so on indefinitely.

(c) a2
n+1 − a2

n = (2 + an)− a2
n = 2 + an − a2

n = (2− an)(1 + an).

(d) an > 0 and, from part (b), an < 2 so 2 − an > 0 and 1 + an > 0 thus, from part (c), a2
n+1 − a2

n > 0,
an+1 − an > 0, an+1 > an; {an} is a strictly increasing sequence.

(e) The sequence is increasing and has 2 as an upper bound so it must converge to a limit L, lim
n→+∞

an+1 =

lim
n→+∞

√
2 + an, L =

√
2 + L, L2 − L− 2 = 0, (L− 2)(L+ 1) = 0, thus lim

n→+∞
an = 2.

28. (a) If f(x) =
1

2
(x+ 3/x), then f ′(x) = (x2 − 3)/(2x2) and f ′(x) = 0 for x =

√
3; the minimum value of f(x) for

x > 0 is f(
√

3) =
√

3. Thus f(x) ≥
√

3 for x > 0 and hence an ≥
√

3 for n ≥ 2.

(b) an+1 − an = (3− a2
n)/(2an) ≤ 0 for n ≥ 2 since an ≥

√
3 for n ≥ 2; {an} is eventually decreasing.

(c)
√

3 is a lower bound for an so {an} converges; lim
n→+∞

an+1 = lim
n→+∞

1

2
(an+3/an), L =

1

2
(L+3/L), L2−3 = 0,

L =
√

3.

29. (a) x1 = 60, x2 =
1500

7
≈ 214.3, x3 =

3750

13
≈ 288.5, x4 =

75000

251
≈ 298.8.

(b) We can see that xn+1 =
RK

K/xn + (R− 1)
=

10 · 300

300/xn + 9
; if 0 < xn then clearly 0 < xn+1. Also, if xn < 300,

then xn+1 =
10 · 300

300/xn + 9
<

10 · 300

300/300 + 9
= 300, so the conclusion is valid.

(c)
xn+1

xn
=

RK

K + (R− 1)xn
=

10 · 300

300 + 9xn
>

10 · 300

300 + 9 · 300
= 1, because xn < 300. So xn is increasing.

(d) xn is increasing and bounded above, so it is convergent. The limit can be found by letting L =
RKL

K + (R− 1)L
,

this gives us L = K = 300. (The other root, L = 0 can be ruled out by the increasing property of the sequence.)

30. (a) Again, xn+1 =
RK

K/xn + (R− 1)
, so if xn > K, then xn+1 =

RK

K/xn + (R− 1)
>

RK

K/K + (R− 1)
= K, so the

conclusion is valid (we only used R > 1 and K > 0).

(b)
xn+1

xn
=

RK

K + (R− 1)xn
<

RK

K + (R− 1)K
= 1, because xn > K. So xn is decreasing.

(c) xn is decreasing and bounded below, so it is convergent. The limit can be found by letting L =
RKL

K + (R− 1)L
,

this gives us L = K. (The other root, L = 0 can be ruled out by the fact that xn > K.)

31. (a) an+1 =
|x|n+1

(n+ 1)!
=
|x|
n+ 1

|x|n
n!

=
|x|
n+ 1

an.

(b) an+1/an = |x|/(n+ 1) < 1 if n > |x| − 1.

(c) From part (b) the sequence is eventually decreasing, and it is bounded below by 0, so by Theorem 9.2.4 it
converges.
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32. (a) The altitudes of the rectangles are ln k for k = 2 to n, and their bases all have length 1 so the sum of
their areas is ln 2 + ln 3 + . . . + lnn = ln(2 · 3 · . . . · n) = lnn!. The area under the curve y = lnx for x in

the interval [1, n] is

∫ n

1

lnx dx, and

∫ n+1

1

lnx dx is the area for x in the interval [1, n + 1] so, from the figure,
∫ n

1

lnx dx < lnn! <

∫ n+1

1

lnx dx.

(b)

∫ n

1

lnx dx = (x lnx − x)

]n

1

= n lnn − n + 1 and

∫ n+1

1

lnx dx = (n + 1) ln(n + 1) − n, so from part (a),

n lnn−n+1 < lnn! < (n+1) ln(n+1)−n, en lnn−n+1 < n! < e(n+1) ln(n+1)−n, en lnne1−n < n! < e(n+1) ln(n+1)e−n,
nn

en−1
< n! <

(n+ 1)n+1

en
.

(c) From part (b),

[
nn

en−1

]1/n

<
n
√
n! <

[
(n+ 1)n+1

en

]1/n

,
n

e1−1/n
<

n
√
n! <

(n+ 1)1+1/n

e
,

1

e1−1/n
<

n
√
n!

n
<

(1 + 1/n)(n+ 1)1/n

e
, but

1

e1−1/n
→ 1

e
and

(1 + 1/n)(n+ 1)1/n

e
→ 1

e
as n→ +∞ (why?), so lim

n→+∞

n
√
n!

n
=

1

e
.

33. n! >
nn

en−1
,
n
√
n! >

n

e1−1/n
, lim
n→+∞

n

e1−1/n
= +∞, so lim

n→+∞
n
√
n! = +∞.

Exercise Set 9.3

1. (a) s1 = 2, s2 = 12/5, s3 =
62

25
, s4 =

312

125
sn =

2− 2(1/5)n

1− 1/5
=

5

2
− 5

2
(1/5)n, lim

n→+∞
sn =

5

2
, converges.

(b) s1 =
1

4
, s2 =

3

4
, s3 =

7

4
, s4 =

15

4
sn =

(1/4)− (1/4)2n

1− 2
= −1

4
+

1

4
(2n), lim

n→+∞
sn = +∞, diverges.

(c)
1

(k + 1)(k + 2)
=

1

k + 1
− 1

k + 2
, s1 =

1

6
, s2 =

1

4
, s3 =

3

10
, s4 =

1

3
; sn =

1

2
− 1

n+ 2
, lim
n→+∞

sn =
1

2
, converges.

2. (a) s1 = 1/4, s2 = 5/16, s3 = 21/64, s4 = 85/256, sn =
1

4

(
1 +

1

4
+ . . .+

(
1

4

)n−1
)

=
1

4

1− (1/4)n

1− 1/4
=

1

3

(
1−

(
1

4

)n)
; lim
n→+∞

sn =
1

3
.

(b) s1 = 1, s2 = 5, s3 = 21, s4 = 85; sn =
4n − 1

3
, diverges.

(c) s1 = 1/20, s2 = 1/12, s3 = 3/28, s4 = 1/8; sn =
n∑

k=1

(
1

k + 3
− 1

k + 4

)
=

1

4
− 1

n+ 4
, lim
n→+∞

sn = 1/4.

3. Geometric, a = 1, r = −3/4, |r| = 3/4 < 1, series converges, sum =
1

1− (−3/4)
= 4/7.

4. Geometric, a = (2/3)3, r = 2/3, |r| = 2/3 < 1, series converges, sum =
(2/3)3

1− 2/3
= 8/9.

5. Geometric, a = 7, r = −1/6, |r| = 1/6 < 1, series converges, sum =
7

1 + 1/6
= 6.

6. Geometric, r = −3/2, |r| = 3/2 ≥ 1, diverges.
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7. sn =
n∑

k=1

(
1

k + 2
− 1

k + 3

)
=

1

3
− 1

n+ 3
, lim
n→+∞

sn = 1/3, series converges by definition, sum = 1/3.

8. sn =
n∑

k=1

(
1

2k
− 1

2k+1

)
=

1

2
− 1

2n+1
, lim
n→+∞

sn = 1/2, series converges by definition, sum = 1/2.

9. sn =
n∑

k=1

(
1/3

3k − 1
− 1/3

3k + 2

)
=

1

6
− 1/3

3n+ 2
, lim
n→+∞

sn = 1/6, series converges by definition, sum = 1/6.

10. sn =
n+1∑

k=2

[
1/2

k − 1
− 1/2

k + 1

]
=

1

2

[
n+1∑

k=2

1

k − 1
−
n+1∑

k=2

1

k + 1

]
=

1

2

[
n+1∑

k=2

1

k − 1
−
n+3∑

k=4

1

k − 1

]
=

=
1

2

[
1 +

1

2
− 1

n+ 1
− 1

n+ 2

]
; lim
n→+∞

sn =
3

4
, series converges by definition, sum = 3/4.

11.

∞∑

k=3

1

k − 2
=

∞∑

k=1

1/k, the harmonic series, so the series diverges.

12. Geometric, a = (e/π)4, r = e/π, |r| = e/π < 1, series converges, sum =
(e/π)4

1− e/π =
e4

π3(π − e) .

13.
∞∑

k=1

4k+2

7k−1
=
∞∑

k=1

64

(
4

7

)k−1

; geometric, a = 64, r = 4/7, |r| = 4/7 < 1, series converges, sum =
64

1− 4/7
= 448/3.

14. Geometric, a = 125, r = 125/7, |r| = 125/7 ≥ 1, diverges.

15. (a) Exercise 5 (b) Exercise 3 (c) Exercise 7 (d) Exercise 9

16. (a) Exercise 10 (b) Exercise 6 (c) Exercise 4 (d) Exercise 8

17. False; e.g. an = 1/n.

18. True, Theorem 9.3.3.

19. True.

20. True.

21. 0.9999 . . . = 0.9 + 0.09 + 0.009 + . . . =
0.9

1− 0.1
= 1.

22. 0.4444 . . . = 0.4 + 0.04 + 0.004 + . . . =
0.4

1− 0.1
= 4/9.

23. 5.373737 . . . = 5 + 0.37 + 0.0037 + 0.000037 + . . . = 5 +
0.37

1− 0.01
= 5 + 37/99 = 532/99.

24. 0.451141414 . . . = 0.451 + 0.00014 + 0.0000014 + 0.000000014 + . . . = 0.451 +
0.00014

1− 0.01
=

44663

99000
.

25. 0.a1a2 . . . an9999 . . . = 0.a1a2 . . . an + 0.9 (10−n) + 0.09 (10−n) + . . . = 0.a1a2 . . . an +
0.9 (10−n)

1− 0.1
= 0.a1a2 . . . an +

10−n = 0.a1a2 . . . (an + 1) = 0.a1a2 . . . (an + 1) 0000 . . .
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26. The series converges to 1/(1− x) only if −1 < x < 1.

27. d = 10+2·3
4
·10+2·3

4
·3
4
·10+2·3

4
·3
4
·3
4
·10+. . . = 10+20

(
3

4

)
+20

(
3

4

)2

+20

(
3

4

)3

+. . . = 10+
20(3/4)

1− 3/4
= 10+60 = 70

meters.

28. Volume = 13 +

(
1

2

)3

+

(
1

4

)3

+ . . .+

(
1

2n

)3

+ . . . = 1 +
1

8
+

(
1

8

)2

+ . . .+

(
1

8

)n
+ . . . =

1

1− (1/8)
= 8/7.

29. (a) sn = ln
1

2
+ ln

2

3
+ ln

3

4
+ . . .+ ln

n

n+ 1
= ln

(
1

2
· 2

3
· 3

4
. . .

n

n+ 1

)
= ln

1

n+ 1
= − ln(n+ 1), lim

n→+∞
sn = −∞,

series diverges.

(b) ln(1− 1/k2) = ln
k2 − 1

k2
= ln

(k − 1)(k + 1)

k2
= ln

k − 1

k
+ ln

k + 1

k
= ln

k − 1

k
− ln

k

k + 1
, so

sn =
n+1∑

k=2

[
ln
k − 1

k
− ln

k

k + 1

]
=

(
ln

1

2
− ln

2

3

)
+

(
ln

2

3
− ln

3

4

)
+

(
ln

3

4
− ln

4

5

)
+ . . .+

(
ln

n

n+ 1
− ln

n+ 1

n+ 2

)
=

ln
1

2
− ln

n+ 1

n+ 2
, and then lim

n→+∞
sn = ln

1

2
= − ln 2.

30. (a)

∞∑

k=0

(−1)kxk = 1− x+ x2 − x3 + . . . =
1

1− (−x)
=

1

1 + x
if | − x| < 1, |x| < 1, −1 < x < 1.

(b)
∞∑

k=0

(x− 3)k = 1 + (x− 3) + (x− 3)2 + . . . =
1

1− (x− 3)
=

1

4− x if |x− 3| < 1, 2 < x < 4.

(c)
∞∑

k=0

(−1)kx2k = 1− x2 + x4 − x6 + . . . =
1

1− (−x2)
=

1

1 + x2
if | − x2| < 1, |x| < 1, −1 < x < 1.

31. (a) Geometric series, a = x, r = −x2. Converges for | − x2| < 1, |x| < 1; S =
x

1− (−x2)
=

x

1 + x2
.

(b) Geometric series, a = 1/x2, r = 2/x. Converges for |2/x| < 1, |x| > 2; S =
1/x2

1− 2/x
=

1

x2 − 2x
.

(c) Geometric series, a = e−x, r = e−x. Converges for |e−x| < 1, e−x < 1, ex > 1, x > 0; S =
e−x

1− e−x =
1

ex − 1
.

32. Geometric series, a = sin x, r = −1

2
sinx. Converges for | − 1

2
sinx| < 1, | sinx| < 2, so converges for all values of

x. S =
sinx

1 +
1

2
sinx

=
2 sinx

2 + sinx
.

33. a2 =
1

2
a1 +

1

2
, a3 =

1

2
a2 +

1

2
=

1

22
a1 +

1

22
+

1

2
, a4 =

1

2
a3 +

1

2
=

1

23
a1 +

1

23
+

1

22
+

1

2
, a5 =

1

2
a4 +

1

2
=

1

24
a1 +

1

24
+

1

23
+

1

22
+

1

2
, . . . , an =

1

2n−1
a1 +

1

2n−1
+

1

2n−2
+ . . .+

1

2
, lim
n→+∞

an = lim
n→+∞

a1

2n−1
+
∞∑

n=1

(
1

2

)n
= 0 +

1/2

1− 1/2
= 1.

34.

√
k + 1−

√
k√

k2 + k
=

√
k + 1−

√
k√

k
√
k + 1

=
1√
k
− 1√

k + 1
, sn =

n∑

k=1

(
1√
k
− 1√

k + 1

)
=

(
1√
1
− 1√

2

)
+

(
1√
2
− 1√

3

)
+

(
1√
3
− 1√

4

)
+ . . .+

(
1√
n
− 1√

n+ 1

)
= 1− 1√

n+ 1
; lim
n→+∞

sn = 1.
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35. sn = (1− 1/3) + (1/2− 1/4) + (1/3− 1/5) + (1/4− 1/6) + . . .+ [1/n− 1/(n+ 2)] = (1 + 1/2 + 1/3 + . . .+ 1/n)−
(1/3 + 1/4 + 1/5 + . . .+ 1/(n+ 2)) = 3/2− 1/(n+ 1)− 1/(n+ 2), lim

n→+∞
sn = 3/2.

36. sn =
n∑

k=1

1

k(k + 2)
=

n∑

k=1

[
1/2

k
− 1/2

k + 2

]
=

1

2

[
n∑

k=1

1

k
−

n∑

k=1

1

k + 2

]
=

1

2

[
n∑

k=1

1

k
−
n+2∑

k=3

1

k

]
=

=
1

2

[
1 +

1

2
− 1

n+ 1
− 1

n+ 2

]
; lim
n→+∞

sn =
3

4
.

37. sn =
n∑

k=1

1

(2k − 1)(2k + 1)
=

n∑

k=1

[
1/2

2k − 1
− 1/2

2k + 1

]
=

1

2

[
n∑

k=1

1

2k − 1
−

n∑

k=1

1

2k + 1

]
=

=
1

2

[
n∑

k=1

1

2k − 1
−
n+1∑

k=2

1

2k − 1

]
=

1

2

[
1− 1

2n+ 1

]
; lim
n→+∞

sn =
1

2
.

38. A1 +A2 +A3 + . . . = 1 + 1/2 + 1/4 + . . . =
1

1− (1/2)
= 2.

39. By inspection,
θ

2
− θ

4
+
θ

8
− θ

16
+ . . . =

θ/2

1− (−1/2)
= θ/3.

40. (a) Geometric; 18/5. (b) Geometric; diverges. (c)
∞∑

k=1

1

2

(
1

2k − 1
− 1

2k + 1

)
= 1/2.

Exercise Set 9.4

1. (a)
∞∑

k=1

1

2k
=

1/2

1− 1/2
= 1;

∞∑

k=1

1

4k
=

1/4

1− 1/4
= 1/3;

∞∑

k=1

(
1

2k
+

1

4k

)
= 1 + 1/3 = 4/3.

(b)
∞∑

k=1

1

5k
=

1/5

1− 1/5
= 1/4;

∞∑

k=1

1

k(k + 1)
= 1, (Ex. 5, Section 9.3);

∞∑

k=1

[
1

5k
− 1

k(k + 1)

]
= 1/4− 1 = −3/4.

2. (a)
∞∑

k=2

1

k2 − 1
= 3/4 (Ex. 10, Section 9.3);

∞∑

k=2

7

10k−1
=

7/10

1− 1/10
= 7/9; so

∞∑

k=2

[
1

k2 − 1
− 7

10k−1

]
= 3/4−7/9 =

−1/36.

(b) With a = 9/7, r = 3/7, geometric,
∞∑

k=1

7−k3k+1 =
9/7

1− (3/7)
= 9/4; with a = 4/5, r = 2/5, geometric,

∞∑

k=1

2k+1

5k
=

4/5

1− (2/5)
= 4/3;

∞∑

k=1

[
7−k3k+1 − 2k+1

5k

]
= 9/4− 4/3 = 11/12.

3. (a) p=3 > 1, converges. (b) p=1/2 ≤ 1, diverges. (c) p=1 ≤ 1, diverges. (d) p=2/3 ≤ 1, diverges.

4. (a) p=4/3 > 1, converges. (b) p=1/4 ≤ 1, diverges. (c) p=5/3 > 1, converges. (d) p=π > 1, converges.

5. (a) lim
k→+∞

k2 + k + 3

2k2 + 1
=

1

2
6= 0; the series diverges. (b) lim

k→+∞

(
1 +

1

k

)k
= e 6= 0; the series diverges.

(c) lim
k→+∞

cos kπ does not exist; the series diverges. (d) lim
k→+∞

1

k!
= 0; no information.
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6. (a) lim
k→+∞

k

ek
= 0; no information. (b) lim

k→+∞
ln k = +∞ 6= 0; the series diverges.

(c) lim
k→+∞

1√
k

= 0; no information. (d) lim
k→+∞

√
k√

k + 3
= 1 6= 0; the series diverges.

7. (a)

∫ +∞

1

1

5x+ 2
= lim
`→+∞

1

5
ln(5x+ 2)

]`

1

= +∞, the series diverges by the Integral Test (which can be applied,

because the series has positive terms, and f is decreasing and continuous).

(b)

∫ +∞

1

1

1 + 9x2
dx = lim

`→+∞
1

3
tan−1 3x

]`

1

=
1

3

(
π/2− tan−1 3

)
, the series converges by the Integral Test (which

can be applied, because the series has positive terms, and f is decreasing and continuous).

8. (a)

∫ +∞

1

x

1 + x2
dx = lim

`→+∞
1

2
ln(1 + x2)

]`

1

= +∞, the series diverges by the Integral Test (which can be applied,

because the series has positive terms, and f is decreasing and continuous).

(b)

∫ +∞

1

(4 + 2x)−3/2dx = lim
`→+∞

−1/
√

4 + 2x

]`

1

= 1/
√

6, the series converges by the Integral Test (which can

be applied, because the series has positive terms, and f is decreasing and continuous).

9.
∞∑

k=1

1

k + 6
=
∞∑

k=7

1

k
, diverges because the harmonic series diverges.

10.
∞∑

k=1

3

5k
=
∞∑

k=1

3

5

(
1

k

)
, diverges because the harmonic series diverges.

11.

∞∑

k=1

1√
k + 5

=

∞∑

k=6

1√
k

, diverges because the p-series with p = 1/2 ≤ 1 diverges.

12. lim
k→+∞

1

e1/k
= 1, the series diverges by the Divergence Test, because lim

k→+∞
uk = 1 6= 0.

13.

∫ +∞

1

(2x− 1)−1/3dx = lim
`→+∞

3

4
(2x− 1)2/3

]`

1

= +∞, the series diverges by the Integral Test (which can be applied,

because the series has positive terms, and f is decreasing and continuous).

14.
lnx

x
is decreasing for x ≥ e, and

∫ +∞

3

lnx

x
= lim
`→+∞

1

2
(lnx)2

]`

3

= +∞, so the series diverges by the Integral Test

(which can be applied, because the series has positive terms, and f is decreasing and continuous).

15. lim
k→+∞

k

ln(k + 1)
= lim
k→+∞

1

1/(k + 1)
= +∞, the series diverges by the Divergence Test, because lim

k→+∞
uk 6= 0.

16.

∫ +∞

1

xe−x
2

dx = lim
`→+∞

−1

2
e−x

2

]`

1

= e−1/2, the series converges by the Integral Test (which can be applied,

because the series has positive terms, and f is decreasing and continuous).

17. lim
k→+∞

(1 + 1/k)−k = 1/e 6= 0, the series diverges by the Divergence Test.
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18. lim
k→+∞

k2 + 1

k2 + 3
= 1 6= 0, the series diverges by the Divergence Test.

19.

∫ +∞

1

tan−1 x

1 + x2
dx = lim

`→+∞
1

2

(
tan−1 x

)2
]`

1

= 3π2/32, the series converges by the Integral Test (which can be applied,

because the series has positive terms, and f is decreasing and continuous), since
d

dx

tan−1 x

1 + x2
=

1− 2x tan−1 x

(1 + x2)2
< 0

for x ≥ 1.

20.

∫ +∞

1

1√
x2 + 1

dx = lim
`→+∞

sinh−1 x

]`

1

= +∞, the series diverges by the Integral Test (which can be applied,

because the series has positive terms, and f is decreasing and continuous).

21. lim
k→+∞

k2 sin2(1/k) = 1 6= 0, the series diverges by the Divergence Test.

22.

∫ +∞

1

x2e−x
3

dx = lim
`→+∞

−1

3
e−x

3

]`

1

= e−1/3, the series converges by the Integral Test (which can be applied,

because x2e−x
3

is decreasing for x ≥ 1, it is continuous and the series has positive terms).

23. 7
∞∑

k=5

k−1.01, p-series with p = 1.01 > 1, converges.

24.

∫ +∞

1

sech2x dx = lim
`→+∞

tanhx

]`

1

= 1− tanh(1), the series converges by the Integral Test (which can be applied,

because the series has positive terms, and f is decreasing and continuous).

25.
1

x(lnx)p
is decreasing for x ≥ e−p, so use the Integral Test (which can be applied, because f is continuous

and the series has positive terms) with a = eα, i.e.

∫ +∞

eα

dx

x(lnx)p
to get lim

`→+∞
ln(lnx)

]`

eα
= +∞ if p = 1,

lim
`→+∞

(lnx)1−p

1− p

]`

eα
=





+∞ if p < 1

α1−p

p− 1
if p > 1

. Thus the series converges for p > 1.

26. If p > 0 set g(x) = x(lnx)[ln(lnx)]p, g′(x) = (ln(lnx))p−1 [(1 + lnx) ln(lnx) + p], and, for x > ee, g′(x) > 0, thus

1/g(x) is decreasing for x > ee; use the Integral Test with

∫ +∞

ee

dx

x(lnx)[ln(lnx)]p
to get lim

`→+∞
ln[ln(lnx)]

]`

ee
= +∞

if p = 1, lim
`→+∞

[ln(lnx)]1−p

1− p

]`

ee
=





+∞ if p < 1,

1

p− 1
if p > 1

. Thus the series converges for p > 1 and diverges for

0 < p ≤ 1. If p ≤ 0 then
[ln(lnx)]−p

x lnx
≥ 1

x lnx
for x > ee so the series diverges, since

∫
1

x lnx
dx is divergent by

Exercise 25. (The Integral Test can be applied, because f is continuous and the series has positive terms).

27. Suppose
∑

(uk + vk) converges; then so does
∑

[(uk + vk)− uk], but
∑

[(uk + vk)− uk] =
∑
vk, so

∑
vk converges

which contradicts the assumption that
∑
vk diverges. Suppose

∑
(uk − vk) converges; then so does

∑
[uk − (uk −

vk)] =
∑
vk which leads to the same contradiction as before.

28. Let uk = 2/k and vk = 1/k; then both
∑

(uk + vk) and
∑

(uk − vk) diverge; let uk = 1/k and vk = −1/k then∑
(uk + vk) converges; let uk = vk = 1/k then

∑
(uk − vk) converges.
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29. (a) Diverges because
∞∑

k=1

(2/3)k−1 converges (geometric series, r = 2/3, |r| < 1) and
∞∑

k=1

1/k diverges (the harmonic

series).

(b) Diverges because
∞∑

k=1

1/(3k + 2) diverges (Integral Test) and
∞∑

k=1

1/k3/2 converges (p-series, p = 3/2 > 1).

30. (a) Converges because both
∞∑

k=2

1

k(ln k)2
(Exercise 25) and

∞∑

k=2

1

k2
converge (p-series, p = 2 > 1).

(b) Diverges, because
+∞∑

k=2

ke−k
2

converges (Integral Test), and, by Exercise 25,
+∞∑

k=2

1

k ln k
diverges.

31. False; if
∑
uk converges then limuk = 0, so lim

1

uk
diverges, so

∑ 1

uk
cannot converge.

32. True; if
∑
cuk diverges then c 6= 0 so

∑
uk diverges.

33. True, see Theorem 9.4.4.

34. False,
∞∑

k=1

1

kp
is a p-series.

35. (a) 3
∞∑

k=1

1

k2
−
∞∑

k=1

1

k4
= π2/2− π4/90. (b)

∞∑

k=1

1

k2
− 1− 1

22
= π2/6− 5/4. (c)

∞∑

k=2

1

(k − 1)4
=
∞∑

k=1

1

k4
= π4/90.

36. (a) If S =
∞∑

k=1

uk and sn =
n∑

k=1

uk, then S − sn =
∞∑

k=n+1

uk. Interpret uk, k = n + 1, n + 2, . . ., as the areas of

inscribed or circumscribed rectangles with height uk and base of length one for the curve y = f(x) to obtain the
result.

(b) Add sn =
n∑

k=1

uk to each term in the conclusion of part (a) to get the desired result: sn +

∫ +∞

n+1

f(x) dx <

+∞∑

k=1

uk < sn +

∫ +∞

n

f(x) dx.

37. (a) In Exercise 36 above let f(x) =
1

x2
. Then

∫ +∞

n

f(x) dx = − 1

x

]+∞

n

=
1

n
; use this result and the same result

with n+ 1 replacing n to obtain the desired result.

(b) s3 = 1 + 1/4 + 1/9 = 49/36; 58/36 = s3 +
1

4
<

1

6
π2 < s3 +

1

3
= 61/36.

(d) 1/11 <
1

6
π2 − s10 < 1/10.

38. Apply Exercise 36 in each case:

(a) f(x) =
1

(2x+ 1)2
,

∫ +∞

n

f(x) dx =
1

2(2n+ 1)
, so

1

46
<
∞∑

k=1

1

(2k + 1)2
− s10 <

1

42
.
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(b) f(x) =
1

k2 + 1
,

∫ +∞

n

f(x) dx =
π

2
− tan−1(n), so π/2− tan−1(11) <

∞∑

k=1

1

k2 + 1
− s10 < π/2− tan−1(10).

(c) f(x) =
x

ex
,

∫ +∞

n

f(x) dx = (n+ 1)e−n, so 12e−11 <
∞∑

k=1

k

ek
− s10 < 11e−10.

39. (a) Let Sn =
n∑

k=1

1

k4
By Exercise 36(a), with f(x) =

1

x4
, the result follows.

(b) h(x) =
1

3x3
− 1

3(x+ 1)3
is a decreasing function, and the smallest n such that

∣∣∣∣
1

3n3
− 1

3(n+ 1)3

∣∣∣∣ ≤ 0.001 is

n = 6.

(c) The midpoint of the interval indicated in Part c is S6 +

1

3 · 63
+

1

3 · 73

2
≈ 1.082381. A calculator gives

π4/90 ≈ 1.08232.

40. (a) Let F (x) =
1

x
, then

∫ n

1

1

x
dx = lnn and

∫ n+1

1

1

x
dx = ln(n+ 1), u1 = 1, so ln(n+ 1) < sn < 1 + lnn.

(b) ln(1, 000, 001) < s1,000,000 < 1 + ln(1, 000, 000), 13 < s1,000,000 < 15.

(c) s109 < 1 + ln 109 = 1 + 9 ln 10 < 22.

(d) sn > ln(n+ 1) ≥ 100, n ≥ e100 − 1 ≈ 2.688× 1043; n = 2.69× 1043.

41. x2e−x is continuous, decreasing and positive for x > 2 so the Integral Test applies:

∫ ∞

1

x2e−x dx = −(x2 + 2x+

2)e−x
]∞

1

= 5e−1 so the series converges.

42. (a) f(x) = 1/(x3 + 1) is continuous, decreasing and positive on the interval [1,+∞], so the Integral Test applies.

(c)

n 10 20 30 40 50 60 70 80 90 100

sn 0.681980 0.685314 0.685966 0.686199 0.686307 0.686367 0.686403 0.686426 0.686442 0.686454

(e) Set g(n) =

∫ +∞

n

1

x3 + 1
dx =

√
3

6
π +

1

6
ln

n3 + 1

(n+ 1)3
−
√

3

3
tan−1

(
2n− 1√

3

)
; for n ≥ 13, g(n) − g(n + 1) ≤

0.0005; s13 + (g(13) + g(14))/2 ≈ 0.6865, so the sum ≈ 0.6865 to three decimal places.

Exercise Set 9.5

All convergence tests in this section require that the series have positive terms - this requirement is met in all these
exercises.

1. (a)
1

5k2 − k ≤
1

5k2 − k2
=

1

4k2
,
∞∑

k=1

1

4k2
converges, so the original series also converges.

(b)
3

k − 1/4
>

3

k
,
∞∑

k=1

3

k
diverges, so the original series also diverges.
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2. (a)
k + 1

k2 − k >
k

k2
=

1

k
,
∞∑

k=2

1

k
diverges, so the original series also diverges.

(b)
2

k4 + k
<

2

k4
,
∞∑

k=1

2

k4
converges, so the original series also converges.

3. (a)
1

3k + 5
<

1

3k
,
∞∑

k=1

1

3k
converges, so the original series also converges.

(b)
5 sin2 k

k!
<

5

k!
,
∞∑

k=1

5

k!
converges, so the original series also converges.

4. (a)
ln k

k
>

1

k
for k ≥ 3,

∞∑

k=1

1

k
diverges, so the original series also diverges.

(b)
k

k3/2 − 1/2
>

k

k3/2
=

1√
k
,
∞∑

k=1

1√
k

diverges, so the original series also diverges.

5. Compare with the convergent series
∞∑

k=1

1

k5
, ρ = lim

k→+∞
4k7 − 2k6 + 6k5

8k7 + k − 8
= 1/2, which is finite and positive,

therefore the original series converges.

6. Compare with the divergent series
∞∑

k=1

1

k
, ρ = lim

k→+∞
k

9k + 6
= 1/9, which is finite and positive, therefore the

original series diverges.

7. Compare with the convergent series

∞∑

k=1

5

3k
, ρ = lim

k→+∞
3k

3k + 1
= 1, which is finite and positive, therefore the

original series converges.

8. Compare with the divergent series

∞∑

k=1

1

k
, ρ = lim

k→+∞
k2(k + 3)

(k + 1)(k + 2)(k + 5)
= 1, which is finite and positive,

therefore the original series diverges.

9. Compare with the divergent series
∞∑

k=1

1

k2/3
, ρ = lim

k→+∞
k2/3

(8k2 − 3k)1/3
= lim
k→+∞

1

(8− 3/k)1/3
= 1/2, which is finite

and positive, therefore the original series diverges.

10. Compare with the convergent series
∞∑

k=1

1

k17
, ρ = lim

k→+∞
k17

(2k + 3)17
= lim

k→+∞
1

(2 + 3/k)17
= 1/217, which is finite

and positive, therefore the original series converges.

11. ρ = lim
k→+∞

3k+1/(k + 1)!

3k/k!
= lim
k→+∞

3

k + 1
= 0 < 1, the series converges.

12. ρ = lim
k→+∞

4k+1/(k + 1)2

4k/k2
= lim
k→+∞

4k2

(k + 1)2
= 4 > 1, the series diverges.

13. ρ = lim
k→+∞

k

k + 1
= 1, the result is inconclusive.



452 Chapter 9

14. ρ = lim
k→+∞

(k + 1)(1/2)k+1

k(1/2)k
= lim
k→+∞

k + 1

2k
= 1/2 < 1, the series converges.

15. ρ = lim
k→+∞

(k + 1)!/(k + 1)3

k!/k3
= lim
k→+∞

k3

(k + 1)2
= +∞, the series diverges.

16. ρ = lim
k→+∞

(k + 1)/[(k + 1)2 + 1]

k/(k2 + 1)
= lim
k→+∞

(k + 1)(k2 + 1)

k(k2 + 2k + 2)
= 1, the result is inconclusive.

17. ρ = lim
k→+∞

3k + 2

2k − 1
= 3/2 > 1, the series diverges.

18. ρ = lim
k→+∞

k/100 = +∞, the series diverges.

19. ρ = lim
k→+∞

k1/k

5
= 1/5 < 1, the series converges.

20. ρ = lim
k→+∞

(1− e−k) = 1, the result is inconclusive.

21. False; it uses terms from two different sequences.

22. True, Ratio Test.

23. True, Limit Comparison Test with vk = 1/k2.

24. False; it decides convergence based on a limit of k-th roots of the terms of the series.

25. Ratio Test, ρ = lim
k→+∞

7/(k + 1) = 0, converges.

26. Limit Comparison Test, compare with the divergent series
∞∑

k=1

1/k, ρ = lim
k→+∞

k

2k + 1
= 1/2, which is finite and

positive, therefore the original series diverges.

27. Ratio Test, ρ = lim
k→+∞

(k + 1)2

5k2
= 1/5 < 1, converges.

28. Ratio Test, ρ = lim
k→+∞

(10/3)(k + 1) = +∞, diverges.

29. Ratio Test, ρ = lim
k→+∞

e−1(k + 1)50/k50 = e−1 < 1, converges.

30. Limit Comparison Test, compare with the divergent series
∞∑

k=1

1/k.

31. Limit Comparison Test, compare with the convergent series

∞∑

k=1

1/k5/2, ρ = lim
k→+∞

k3

k3 + 1
= 1, converges.

32.
4

2 + 3kk
<

4

3kk
,

∞∑

k=1

4

3kk
converges (Ratio Test) so

∞∑

k=1

4

2 + k3k
converges by the Comparison Test.

33. Limit Comparison Test, compare with the divergent series
∞∑

k=1

1/k, ρ = lim
k→+∞

k√
k2 + k

= 1, diverges.
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34.
2 + (−1)k

5k
≤ 3

5k
,
∞∑

k=1

3/5k converges so
∞∑

k=1

2 + (−1)k

5k
converges by the Comparison Test.

35. Limit Comparison Test, compare with the convergent series
∞∑

k=1

1

k5/2
, ρ = lim

k→+∞
k3 + 2k5/2

k3 + 3k2 + 3k
= 1, converges.

36.
4 + | cos x|

k3
<

5

k3
,
∞∑

k=1

5/k3 converges so
∞∑

k=1

4 + | cosx|
k3

converges.

37. Limit Comparison Test, compare with the divergent series
∞∑

k=1

1/
√
k.

38. Ratio Test, ρ = lim
k→+∞

(1 + 1/k)−k = 1/e < 1, converges.

39. Ratio Test, ρ = lim
k→+∞

ln(k + 1)

e ln k
= lim
k→+∞

k

e(k + 1)
= 1/e < 1, converges.

40. Ratio Test, ρ = lim
k→+∞

k + 1

e2k+1
= lim
k→+∞

1

2e2k+1
= 0, converges.

41. Ratio Test, ρ = lim
k→+∞

k + 5

4(k + 1)
= 1/4, converges.

42. Root Test, ρ = lim
k→+∞

(
k

k + 1

)k
= lim
k→+∞

1

(1 + 1/k)k
= 1/e, converges.

43. Diverges by the Divergence Test, because lim
k→+∞

1

4 + 2−k
= 1/4 6= 0.

44.
∞∑

k=1

√
k ln k

k3 + 1
=
∞∑

k=2

√
k ln k

k3 + 1
because ln 1 = 0,

√
k ln k

k3 + 1
<

k ln k

k3
=

ln k

k2
,

∫ +∞

2

lnx

x2
dx = lim

`→+∞

(
− lnx

x
− 1

x

)]`

2

=

1

2
(ln 2 + 1), so

∞∑

k=2

ln k

k2
converges and so does

∞∑

k=1

√
k ln k

k3 + 1
.

45.
tan−1 k

k2
<
π/2

k2
,
∞∑

k=1

π/2

k2
converges so

∞∑

k=1

tan−1 k

k2
converges.

46.
5k + k

k! + 3
<

5k + 5k

k!
=

2
(
5k
)

k!
,
∞∑

k=1

2

(
5k

k!

)
converges (Ratio Test), so

∞∑

k=1

5k + k

k! + 3
converges.

47. Ratio Test, ρ = lim
k→+∞

(k + 1)2

(2k + 2)(2k + 1)
= 1/4, converges.

48. Root Test: ρ = lim
k→+∞

π(k + 1)

k1+1/k
= lim
k→+∞

π
k + 1

k
= π, diverges.

49. ak =
ln k

3k
,
ak+1

ak
=

ln(k + 1)

ln k

3k

3k+1
→ 1

3
, converges.

50. ak =
αk

kα
,
ak+1

ak
= α

(
k + 1

k

)α
→ α, converges if and only if α < 1. (α = 1: harmonic series)
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51. uk =
k!

1 · 3 · 5 · . . . · (2k − 1)
, by the Ratio Test ρ = lim

k→+∞
k + 1

2k + 1
= 1/2; converges.

52. uk =
1 · 3 · 5 · . . . · (2k − 1)

(2k − 1)!
, by the Ratio Test ρ = lim

k→+∞
1

2k
= 0; converges.

53. Set g(x) =
√
x− lnx;

d

dx
g(x) =

1

2
√
x
− 1

x
= 0 only at x = 4. Since lim

x→0+
g(x) = lim

x→+∞
g(x) = +∞ it follows that

g(x) has its absolute minimum at x = 4, g(4) =
√

4− ln 4 > 0, and thus
√
x− lnx > 0 for x > 0.

(a)
ln k

k2
<

√
k

k2
=

1

k3/2
,
∞∑

k=1

1

k3/2
converges so

∞∑

k=1

ln k

k2
converges.

(b)
1

(ln k)2
>

1

k
,
∞∑

k=2

1

k
diverges so

∞∑

k=2

1

(ln k)2
diverges.

54. (b) ρ = lim
k→+∞

sin(π/k)

π/k
= 1 and

∞∑

k=1

π/k diverges, so the original series also diverges.

55. (a) cosx ≈ 1− x2/2, 1− cos

(
1

k

)
≈ 1

2k2
. (b) ρ = lim

k→+∞
1− cos(1/k)

1/k2
= 1/2, converges.

56. (a) If lim
k→+∞

(ak/bk) = 0 then for k ≥ K, ak/bk < 1, ak < bk so
∑
ak converges by the Comparison Test.

(b) If lim
k→+∞

(ak/bk) = +∞ then for k ≥ K, ak/bk > 1, ak > bk so
∑
ak diverges by the Comparison Test.

57. (a) If
∑
bk converges, then set M =

∑
bk. Then a1 +a2 + . . .+an ≤ b1 + b2 + . . .+ bn ≤M ; apply Theorem 9.4.6

to get convergence of
∑
ak.

(b) Assume the contrary, that
∑
bk converges; then use part (a) of the Theorem to show that

∑
ak converges, a

contradiction.

Exercise Set 9.6

1. For ak =
1

2k + 1
, ak+1 < ak, lim

k→+∞
ak = 0, ak > 0.

2. ak > 0,
ak+1

ak
=
k + 1

3k
≤ 2k

3k
=

2

3
for k ≥ 1, so {ak} is decreasing and tends to zero.

3. Diverges by the Divergence Test, because lim
k→+∞

ak = lim
k→+∞

k + 1

3k + 1
= 1/3 6= 0.

4. Diverges by the Divergence Test, because lim
k→+∞

ak = lim
k→+∞

k + 1√
k + 1

= +∞ 6= 0.

5. e−k > 0, {e−k} is decreasing and lim
k→+∞

e−k = 0, converges.

6.
ln k

k
> 0 (k ≥ 3),

{
ln k

k

}
is decreasing and lim

k→+∞
ln k

k
= 0, converges.

7. ρ = lim
k→+∞

(3/5)k+1

(3/5)k
= 3/5 < 1, converges absolutely.
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8. ρ = lim
k→+∞

2

k + 1
= 0 < 1, converges absolutely.

9. ρ = lim
k→+∞

3k2

(k + 1)2
= 3 > 1, diverges.

10. ρ = lim
k→+∞

k + 1

5k
= 1/5 < 1, converges absolutely.

11. ρ = lim
k→+∞

(k + 1)3

ek3
= 1/e < 1, converges absolutely.

12. ρ = lim
k→+∞

(k + 1)k+1k!

(k + 1)!kk
= lim
k→+∞

(1 + 1/k)k = e > 1, diverges.

13. Conditionally convergent:
∞∑

k=1

(−1)k+1

3k
converges by the Alternating Series Test, but

∞∑

k=1

1

3k
diverges (Limit

Comparison Test with the harmonic series).

14. Absolutely convergent:

∞∑

k=1

1

k4/3
converges (p-series, p = 4/3 > 1).

15. Divergent by the Divergence Test, lim
k→+∞

ak 6= 0.

16. Absolutely convergent, use the Ratio Test for absolute convergence.

17.
∞∑

k=1

cos kπ

k
=

∞∑

k=1

(−1)k

k
is conditionally convergent:

∞∑

k=1

(−1)k

k
converges by the Alternating Series Test, but

∞∑

k=1

1/k diverges (harmonic series).

18. Conditionally convergent:
∞∑

k=3

(−1)k ln k

k
converges by the Alternating Series Test, but

∞∑

k=3

ln k

k
diverges (Compar-

ison Test with
∑

1/k).

19. Conditionally convergent:
∞∑

k=1

(−1)k+1 k + 2

k(k + 3)
converges by the Alternating Series Test, but

∞∑

k=1

k + 2

k(k + 3)
diverges

(Limit Comparison Test with
∑

1/k).

20. Conditionally convergent:
∞∑

k=1

(−1)k+1k2

k3 + 1
converges by the Alternating Series Test, but

∞∑

k=1

k2

k3 + 1
diverges (Limit

Comparison Test with
∑

1/k).

21.
∞∑

k=1

sin(kπ/2) = 1 + 0 − 1 + 0 + 1 + 0 − 1 + 0 + . . ., divergent by the Divergence Test ( lim
k→+∞

sin(kπ/2) does not

exist).

22. Absolutely convergent:
∞∑

k=1

| sin k|
k3

converges (Comparison Test with the convergent p-series
∑

1/k3).
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23. Conditionally convergent:
∞∑

k=2

(−1)k

k ln k
converges by the Alternating Series Test, but

∞∑

k=2

1

k ln k
diverges (Integral

Test).

24. Conditionally convergent:
∞∑

k=1

(−1)k√
k(k + 1)

converges by the Alternating Series Test, but
∞∑

k=1

1√
k(k + 1)

diverges

(Limit Comparison Test with the harmonic series
∑

1/k).

25. Absolutely convergent:
∞∑

k=2

(1/ ln k)k converges by the Root Test.

26.
∞∑

k=1

k cos kπ

k2 + 1
=
∞∑

k=1

(−1)kk

k2 + 1
is conditionally convergent:

∞∑

k=1

(−1)kk

k2 + 1
converges by the Alternating Series Test, but

∞∑

k=1

k

k2 + 1
diverges (Limit Comparison Test with the harmonic series

∑
1/k).

27. Absolutely convergent by the Ratio Test, ρ = lim
k→+∞

k + 1

(2k + 1)(2k)
= 0 < 1.

28. Divergent by the Divergence Test, lim
k→+∞

ak = +∞.

29. False; terms alternate by sign.

30. True.

31. True.

32. False, e.g. uk = 1/k.

33. |error| < a8 = 1/8 = 0.125.

34. |error| < a6 = 1/6! < 0.0014.

35. |error| < a100 = 1/
√

100 = 0.1.

36. |error| < a4 = 1/(5 ln 5) < 0.125.

37. |error| < 0.0001 if an+1 ≤ 0.0001, 1/(n+ 1) ≤ 0.0001, n+ 1 ≥ 10, 000, n ≥ 9, 999, n = 9, 999.

38. |error| < 0.00001 if an+1 ≤ 0.00001, 1/(n+ 1)! ≤ 0.00001, (n+ 1)! ≥ 100, 000. But 8! = 40, 320, 9! = 362, 880 so
(n+ 1)! ≥ 100, 000 if n+ 1 ≥ 9, n ≥ 8, n = 8.

39. |error| < 0.005 if an+1 ≤ 0.005, 1/
√
n+ 1 ≤ 0.005,

√
n+ 1 ≥ 200, n+ 1 ≥ 40, 000, n ≥ 39, 999, n = 39, 999.

40. |error| < 0.05 if an+1 ≤ 0.05, 1/[(n+2) ln(n+2)] ≤ 0.05, (n+2) ln(n+2) ≥ 20. But 9 ln 9 ≈ 19.8 and 10 ln 10 ≈ 23.0
so (n+ 2) ln(n+ 2) ≥ 20 if n+ 2 ≥ 10, n ≥ 8, n = 8.

41. ak =
3

2k+1
, |error| < a11 =

3

212
< 0.00074; s10 ≈ 0.4995; S =

3/4

1− (−1/2)
= 0.5.

42. ak =

(
2

3

)k−1

, |error| < a11 =

(
2

3

)10

< 0.01735; s10 ≈ 0.5896; S =
1

1− (−2/3)
= 0.6.
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43. ak =
1

(2k − 1)!
, an+1 =

1

(2n+ 1)!
≤ 0.005, (2n+1)! ≥ 200, 2n+1 ≥ 6, n ≥ 2.5; n = 3, s3 = 1−1/6+1/120 ≈ 0.84.

44. ak =
1

(2k − 2)!
, an+1 =

1

(2n)!
≤ 0.005, (2n)! ≥ 200, 2n ≥ 6, n ≥ 3; n = 3, s3 ≈ 0.54.

45. ak =
1

k2k
, an+1 =

1

(n+ 1)2n+1
≤ 0.005, (n+ 1)2n+1 ≥ 200, n+ 1 ≥ 6, n ≥ 5; n = 5, s5 ≈ 0.41.

46. ak =
1

(2k − 1)5 + 4(2k − 1)
, an+1 =

1

(2n+ 1)5 + 4(2n+ 1)
≤ 0.005, (2n+1)5 +4(2n+1) ≥ 200, 2n+1 ≥ 3, n ≥ 1;

n = 1, s1 = 0.20.

47. (c) ak =
1

2k − 1
, an+1 =

1

2n+ 1
≤ 10−2, 2n+ 1 ≥ 100, n ≥ 49.5; n = 50.

48. Suppose
∑ |ak| converges, then lim

k→+∞
|ak| = 0 so |ak| < 1 for k ≥ K and thus |ak|2 < |ak|, a2

k < |ak| hence
∑
a2
k

converges by the Comparison Test.

49. (a)
∑ (−1)k√

k
converges but

∑ 1

k
diverges;

∑ (−1)k

k
converges and

∑ 1

k2
converges.

(b) Let ak =
(−1)k

k
, then

∑
a2
k converges but

∑ |ak| diverges,
∑
ak converges.

50. Note that, for all k, i) pk ≤ uk, qk ≤ |uk|, and ii) uk = pk − qk, |uk| = pk + qk.

(a) From inequalities i), if
∑ |uk| converges, then so do

∑
pk and

∑
qk. Conversely if they both converge then

so does
∑ |uk|.

(b) From equations ii) it is not possible for exactly two of
∑
uk,
∑
pk,
∑
qk to converge. Therefore if

∑
pk or∑

qk converges (exclusive ’or’), then in both cases
∑
uk must diverge.

(c) If
∑
uk converges and

∑ |uk| diverges, then from the second equality of ii) it follows that
∑
pk or

∑
qk (or

both) is divergent, and from the first equality of ii) it follows that both must diverge.

51. Every positive integer can be written in exactly one of the three forms 2k− 1 or 4k− 2 or 4k, so a rearrangement
is(

1− 1

2
− 1

4

)
+

(
1

3
− 1

6
− 1

8

)
+

(
1

5
− 1

10
− 1

12

)
+ . . .+

(
1

2k − 1
− 1

4k − 2
− 1

4k

)
+ . . . =

(
1

2
− 1

4

)
+

(
1

6
− 1

8

)
+

(
1

10
− 1

12

)
+ . . .+

(
1

4k − 2
− 1

4k

)
+ . . . =

1

2
ln 2.

52. 1+
1

32
+

1

52
+. . . =

[
1 +

1

22
+

1

32
+ . . .

]
−
[

1

22
+

1

42
+

1

62
+ . . .

]
=
π2

6
− 1

22

[
1 +

1

22
+

1

32
+ . . .

]
=
π2

6
− 1

4

π2

6
=
π2

8
.

53. Let A = 1 − 1

22
+

1

32
− 1

42
+ . . . ; since the series all converge absolutely,

π2

6
− A = 2

1

22
+ 2

1

42
+ 2

1

62
+ . . . =

1

2

(
1 +

1

22
+

1

32
+ . . .

)
=

1

2

π2

6
, so A =

1

2

π2

6
=
π2

12
.

54. 1+
1

34
+

1

54
+. . . =

[
1 +

1

24
+

1

34
+ . . .

]
−
[

1

24
+

1

44
+

1

64
+ . . .

]
=
π4

90
− 1

24

[
1 +

1

24
+

1

34
+ . . .

]
=
π4

90
− 1

16

π4

90
=
π4

96
.
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Exercise Set 9.7

1. (a) f (k)(x) = (−1)ke−x, f (k)(0) = (−1)k; e−x ≈ 1− x+ x2/2 (quadratic), e−x ≈ 1− x (linear).

(b) f ′(x) = − sinx, f ′′(x) = − cosx, f(0) = 1, f ′(0) = 0, f ′′(0) = −1, cosx ≈ 1 − x2/2 (quadratic), cosx ≈ 1
(linear).

2. (a) f ′(x) = cosx, f ′′(x) = − sinx, f(π/2) = 1, f ′(π/2) = 0, f ′′(π/2) = −1, sinx ≈ 1− (x− π/2)2/2 (quadratic),
sinx ≈ 1 (linear).

(b) f(1) = 1, f ′(1) = 1/2, f ′′(1) = −1/4;
√
x = 1 +

1

2
(x− 1)− 1

8
(x− 1)2 (quadratic),

√
x ≈ 1 +

1

2
(x− 1) (linear).

3. (a) f ′(x) =
1

2
x−1/2, f ′′(x) = −1

4
x−3/2; f(1) = 1, f ′(1) =

1

2
, f ′′(1) = −1

4
;
√
x ≈ 1 +

1

2
(x− 1)− 1

8
(x− 1)2.

(b) x = 1.1, x0 = 1,
√

1.1 ≈ 1 +
1

2
(0.1)− 1

8
(0.1)2 = 1.04875, calculator value ≈ 1.0488088.

4. (a) cosx ≈ 1− x2/2.

(b) 2◦ = π/90 rad, cos 2◦ = cos(π/90) ≈ 1− π2

2 · 902
≈ 0.99939077, calculator value ≈ 0.99939083.

5. f(x) = tanx, 61◦ = π/3 + π/180 rad; x0 = π/3, f ′(x) = sec2 x, f ′′(x) = 2 sec2 x tanx; f(π/3) =
√

3, f ′(π/3) =

4, f ′′(x) = 8
√

3; tanx ≈
√

3 + 4(x − π/3) + 4
√

3(x − π/3)2, tan 61◦ = tan(π/3 + π/180) ≈
√

3 + 4π/180 +

4
√

3(π/180)2 ≈ 1.80397443, calculator value ≈ 1.80404776.

6. f(x) =
√
x, x0 = 36, f ′(x) =

1

2
x−1/2, f ′′(x) = −1

4
x−3/2; f(36) = 6, f ′(36) =

1

12
, f ′′(36) = − 1

864
;
√
x ≈

6 +
1

12
(x− 36)− 1

1728
(x− 36)2;

√
36.03 ≈ 6 +

0.03

12
− (0.03)2

1728
≈ 6.00249947917, calculator value ≈ 6.00249947938.

7. f (k)(x) = (−1)ke−x, f (k)(0) = (−1)k; p0(x) = 1, p1(x) = 1 − x, p2(x) = 1 − x +
1

2
x2, p3(x) = 1 − x +

1

2
x2 −

1

3!
x3, p4(x) = 1− x+

1

2
x2 − 1

3!
x3 +

1

4!
x4;

n∑

k=0

(−1)k

k!
xk.

8. f (k)(x) = akeax, f (k)(0) = ak; p0(x) = 1, p1(x) = 1 + ax, p2(x) = 1 + ax +
a2

2
x2, p3(x) = 1 + ax +

a2

2
x2 +

a3

3!
x3, p4(x) = 1 + ax+

a2

2
x2 +

a3

3!
x3 +

a4

4!
x4;

n∑

k=0

ak

k!
xk.

9. f (k)(0) = 0 if k is odd, f (k)(0) is alternately πk and −πk if k is even; p0(x) = 1, p1(x) = 1, p2(x) = 1 −
π2

2!
x2; p3(x) = 1− π2

2!
x2, p4(x) = 1− π2

2!
x2 +

π4

4!
x4;

[n2 ]∑

k=0

(−1)kπ2k

(2k)!
x2k.

NB: The function [x] defined for real x indicates the greatest integer which is ≤ x.

10. f (k)(0) = 0 if k is even, f (k)(0) is alternately πk and −πk if k is odd; p0(x) = 0, p1(x) = πx, p2(x) = πx; p3(x) =

πx− π3

3!
x3, p4(x) = πx− π3

3!
x3;

[n−1
2 ]∑

k=0

(−1)kπ2k+1

(2k + 1)!
x2k+1.

NB: If n = 0 then [n−1
2 ] = −1; by definition any sum which runs from k = 0 to k = −1 is called the ’empty sum’

and has value 0.
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11. f (0)(0) = 0; for k ≥ 1, f (k)(x) =
(−1)k+1(k − 1)!

(1 + x)k
, f (k)(0) = (−1)k+1(k − 1)!; p0(x) = 0, p1(x) = x, p2(x) =

x− 1

2
x2, p3(x) = x− 1

2
x2 +

1

3
x3, p4(x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4;

n∑

k=1

(−1)k+1

k
xk.

12. f (k)(x) = (−1)k
k!

(1 + x)k+1
; f (k)(0) = (−1)kk!; p0(x) = 1, p1(x) = 1 − x, p2(x) = 1 − x + x2, p3(x) =

1− x+ x2 − x3, p4(x) = 1− x+ x2 − x3 + x4;
n∑

k=0

(−1)kxk.

13. f (k)(0) = 0 if k is odd, f (k)(0) = 1 if k is even; p0(x) = 1, p1(x) = 1, p2(x) = 1 + x2/2, p3(x) = 1 + x2/2, p4(x) =

1 + x2/2 + x4/4!;

[n2 ]∑

k=0

1

(2k)!
x2k.

14. f (k)(0) = 0 if k is even, f (k)(0) = 1 if k is odd; p0(x) = 0, p1(x) = x, p2(x) = x, p3(x) = x + x3/3!, p4(x) =

x+ x3/3!;

[n−1
2 ]∑

k=0

1

(2k + 1)!
x2k+1.

15. f (k)(x) =

{
(−1)k/2(x sinx− k cosx) k even
(−1)(k−1)/2(x cosx+ k sinx) k odd

, f (k)(0) =

{
(−1)1+k/2k k even
0 k odd

. p0(x) = 0, p1(x) =

0, p2(x) = x2, p3(x) = x2, p4(x) = x2 − 1

6
x4;

[n2 ]−1∑

k=0

(−1)k

(2k + 1)!
x2k+2.

16. f (k)(x) = (k + x)ex, f (k)(0) = k; p0(x) = 0, p1(x) = x, p2(x) = x + x2, p3(x) = x + x2 +
1

2
x3, p4(x) =

x+ x2 +
1

2
x3 +

1

3!
x4;

n∑

k=1

1

(k − 1)!
xk.

17. f (k)(x0) = e; p0(x) = e, p1(x) = e + e(x − 1), p2(x) = e + e(x − 1) +
e

2
(x − 1)2, p3(x) = e + e(x − 1) +

e

2
(x −

1)2 +
e

3!
(x− 1)3, p4(x) = e+ e(x− 1) +

e

2
(x− 1)2 +

e

3!
(x− 1)3 +

e

4!
(x− 1)4;

n∑

k=0

e

k!
(x− 1)k.

18. f (k)(x) = (−1)ke−x, f (k)(ln 2) = (−1)k
1

2
; p0(x) =

1

2
, p1(x) =

1

2
− 1

2
(x− ln 2), p2(x) =

1

2
− 1

2
(x− ln 2) +

1

2 · 2(x−

ln 2)2, p3(x) =
1

2
− 1

2
(x − ln 2) +

1

2 · 2(x − ln 2)2 − 1

2 · 3!
(x − ln 2)3, p4(x) =

1

2
− 1

2
(x − ln 2) +

1

2 · 2(x − ln 2)2 −
1

2 · 3!
(x− ln 2)3 +

1

2 · 4!
(x− ln 2)4;

n∑

k=0

(−1)k

2 · k!
(x− ln 2)k.

19. f (k)(x) =
(−1)kk!

xk+1
, f (k)(−1) = −k!; p0(x) = −1; p1(x) = −1− (x+ 1); p2(x) = −1− (x+ 1)− (x+ 1)2; p3(x) =

−1− (x+ 1)− (x+ 1)2 − (x+ 1)3; p4(x) = −1− (x+ 1)− (x+ 1)2 − (x+ 1)3 − (x+ 1)4;
n∑

k=0

(−1)(x+ 1)k.

20. f (k)(x) =
(−1)kk!

(x+ 2)k+1
, f (k)(3) =

(−1)kk!

5k+1
; p0(x) =

1

5
; p1(x) =

1

5
− 1

25
(x − 3); p2(x) =

1

5
− 1

25
(x − 3) +

1

125
(x −

3)2; p3(x) =
1

5
− 1

25
(x− 3) +

1

125
(x− 3)2 − 1

625
(x− 3)3; p4(x) =

1

5
− 1

25
(x− 3) +

1

125
(x− 3)2 − 1

625
(x− 3)3 +

1

3125
(x− 3)4;

n∑

k=0

(−1)k

5k+1
(x− 3)k.
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21. f (k)(1/2) = 0 if k is odd, f (k)(1/2) is alternately πk and −πk if k is even; p0(x) = p1(x) = 1, p2(x) = p3(x) =

1− π2

2
(x− 1/2)2, p4(x) = 1− π2

2
(x− 1/2)2 +

π4

4!
(x− 1/2)4;

[n2 ]∑

k=0

(−1)kπ2k

(2k)!
(x− 1/2)2k.

22. f (k)(π/2) = 0 if k is even, f (k)(π/2) is alternately −1 and 1 if k is odd; p0(x) = 0, p1(x) = −(x − π/2), p2(x) =

−(x−π/2), p3(x) = −(x−π/2) +
1

3!
(x−π/2)3, p4(x) = −(x−π/2) +

1

3!
(x−π/2)3;

[n−1
2 ]∑

k=0

(−1)k+1

(2k + 1)!
(x−π/2)2k+1.

23. f(1) = 0, for k ≥ 1, f (k)(x) =
(−1)k−1(k − 1)!

xk
; f (k)(1) = (−1)k−1(k − 1)!; p0(x) = 0, p1(x) = (x − 1); p2(x) =

(x− 1)− 1

2
(x− 1)2; p3(x) = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3, p4(x) = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − 1

4
(x−

1)4;
n∑

k=1

(−1)k−1

k
(x− 1)k.

24. f(e) = 1, for k ≥ 1, f (k)(x) =
(−1)k−1(k − 1)!

xk
; f (k)(e) =

(−1)k−1(k − 1)!

ek
; p0(x) = 1, p1(x) = 1 +

1

e
(x −

e); p2(x) = 1 +
1

e
(x− e)− 1

2e2
(x− e)2; p3(x) = 1 +

1

e
(x− e)− 1

2e2
(x− e)2 +

1

3e3
(x− e)3, p4(x) = 1 +

1

e
(x− e)−

1

2e2
(x− e)2 +

1

3e3
(x− e)3 − 1

4e4
(x− e)4; 1 +

n∑

k=1

(−1)k−1

kek
(x− e)k.

25. (a) f(0) = 1, f ′(0) = 2, f ′′(0) = −2, f ′′′(0) = 6, the third MacLaurin polynomial for f(x) is f(x).

(b) f(1) = 1, f ′(1) = 2, f ′′(1) = −2, f ′′′(1) = 6, the third Taylor polynomial for f(x) is f(x).

26. (a) f (k)(0) = k!ck for k ≤ n; the nth Maclaurin polynomial for f(x) is f(x).

(b) f (k)(x0) = k!ck for k ≤ n; the nth Taylor polynomial about x = 1 for f(x) is f(x).

27. f (k)(0) = (−2)k; p0(x) = 1, p1(x) = 1− 2x, p2(x) = 1− 2x+ 2x2, p3(x) = 1− 2x+ 2x2 − 4

3
x3.

4

-1

–0.6 0.6

28. f (k)(π/2) = 0 if k is odd, f (k)(π/2) is alternately 1 and −1 if k is even; p0(x) = 1, p2(x) = 1 − 1

2
(x − π/2)2,

p4(x) = 1− 1

2
(x− π/2)2 +

1

24
(x− π/2)4, p6(x) = 1− 1

2
(x− π/2)2 +

1

24
(x− π/2)4 − 1

720
(x− π/2)6.

1.25

–1.25

^ i
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29. f (k)(π) = 0 if k is odd, f (k)(π) is alternately −1 and 1 if k is even; p0(x) = −1, p2(x) = −1 +
1

2
(x − π)2,

p4(x) = −1 +
1

2
(x− π)2 − 1

24
(x− π)4, p6(x) = −1 +

1

2
(x− π)2 − 1

24
(x− π)4 +

1

720
(x− π)6.

1.25

–1.25

0 o

30. f(0) = 0; for k ≥ 1, f (k)(x) =
(−1)k−1(k − 1)!

(x+ 1)k
, f (k)(0) = (−1)k−1(k − 1)!; p0(x) = 0, p1(x) = x, p2(x) =

x− 1

2
x2, p3(x) = x− 1

2
x2 +

1

3
x3.

1.5

–1.5

–1 1

31. True.

32. True, a0 = f(0).

33. False, p
(4)
6 (x0) = f (4)(x0).

34. False, since M = e2, |e2 − p4(2)| ≤ M |x− 0|n+1

(n+ 1)!
≤ e2 · 25

5!
<

9 · 25

5!
.

35.
√
e = e1/2, f(x) = ex,M = e1/2, |e1/2 − pn(1/2)| ≤ M

|x− 1/2|n+1

(n+ 1)!
≤ 0.00005, by experimentation take n =

5,
√
e ≈ p5(1/2) ≈ 1.648698, calculator value ≈ 1.648721, difference ≈ 0.000023.

36. 1/e = e−1, f(x) = ex,Mn = max |f (n+1)(x)| = e0 = 1, |e−1 − pn(−1)| ≤ M
|0 + 1|n+1

(n+ 1)!
, so want

1

(n+ 1)!
≤ 0.0005,

n = 7, e−1 ≈ p7(−1) ≈ 0.367857, calculator gives e−1 ≈ 0.367879, |1/e− p7(−1)| ≈ 0.000022.

37. p(0) = 1, p(x) has slope −1 at x = 0, and p(x) is concave up at x = 0, eliminating I, II and III respectively and
leaving IV.

38. Let p0(x) = 2, p1(x) = p2(x) = 2− 3(x− 1), p3(x) = 2− 3(x− 1) + (x− 1)3.

39. From Exercise 2(a), p1(x) = 1 + x, p2(x) = 1 + x+ x2/2.
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(a)

3

–1

–1 1

(b) x −1.000 −0.750 −0.500 −0.250 0.000 0.250 0.500 0.750 1.000
f(x) 0.431 0.506 0.619 0.781 1.000 1.281 1.615 1.977 2.320
p1(x) 0.000 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000
p2(x) 0.500 0.531 0.625 0.781 1.000 1.281 1.625 2.031 2.500

(c) |esin x − (1 + x)| < 0.01 for − 0.14 < x < 0.14.

0.01

0
–0.15 0.15

(d) |esin x − (1 + x+ x2/2)| < 0.01 for − 0.50 < x < 0.50.

0.015

0
–0.6 0.6

40. (a) cosα ≈ 1− α2/2; x = r − r cosα = r(1− cosα) ≈ rα2/2.

(b) In Figure Ex-36 let r = 4000 mi and α = 1/80 so that the arc has length 2rα = 100 mi. Then x ≈ rα2/2 =
4000

2 · 802
= 5/16 mi.

41. (a) f (k)(x) = ex ≤ eb, |R2(x)| ≤ ebb3

3!
< 0.0005, ebb3 < 0.003 if b ≤ 0.137 (by trial and error with a hand

calculator), so [0, 0.137].

(b)
0.20

0.002

0

42. f (k)(ln 4) = 15/8 for k even, f (k)(ln 4) = 17/8 for k odd, which can be written as f (k)(ln 4) =
16− (−1)k

8
;
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n∑

k=0

16− (−1)k

8k!
(x− ln 4)k.

43. sinx = x− x3

3!
+ 0 · x4 +R4(x), |R4(x)| ≤ |x|

5

5!
< 0.5× 10−3 if |x|5 < 0.06, |x| < (0.06)1/5 ≈ 0.569, (−0.569, 0.569).

0.0005

–0.0005

–0.57 0.57

44. M = 1, cosx = 1− x2

2!
+
x4

4!
+R5(x), R5(x) ≤ 1

6!
|x|6 ≤ 0.0005 if |x| < 0.8434.

0

–0.0005

–0.85 0.85

45. f (6)(x) =
46080x6

(1 + x2)7
− 57600x4

(1 + x2)6
+

17280x2

(1 + x2)5
− 720

(1 + x2)4
, assume first that |x| < 1/2, then |f (6)(x)| < 46080|x|6 +

57600|x|4 + 17280|x|2 + 720, so let M = 9360, R5(x) ≤ 9360

5!
|x|5 < 0.0005 if x < 0.0915.

0

–0.00000005

–0.07 0.07

46. f(x) = ln(1 + x), f (4)(x) = −6/(1 + x)4, first assume |x| < 0.8, then we can calculate M = 6/2−4 = 96, and

|f(x)− p(x)| ≤ 96

4!
|x|4 < 0.0005 if |x| < 0.1057.

0

–0.0005

–0.22 0.22

Exercise Set 9.8

1. f (k)(x) = (−1)ke−x, f (k)(0) = (−1)k;
∞∑

k=0

(−1)k

k!
xk.
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2. f (k)(x) = akeax, f (k)(0) = ak;
∞∑

k=0

ak

k!
xk.

3. f (k)(0) = 0 if k is odd, f (k)(0) is alternately πk and −πk if k is even;
∞∑

k=0

(−1)kπ2k

(2k)!
x2k.

4. f (k)(0) = 0 if k is even, f (k)(0) is alternately πk and −πk if k is odd;
∞∑

k=0

(−1)kπ2k+1

(2k + 1)!
x2k+1.

5. f (0)(0) = 0; for k ≥ 1, f (k)(x) =
(−1)k+1(k − 1)!

(1 + x)k
, f (k)(0) = (−1)k+1(k − 1)!;

∞∑

k=1

(−1)k+1

k
xk.

6. f (k)(x) = (−1)k
k!

(1 + x)k+1
; f (k)(0) = (−1)kk!;

∞∑

k=0

(−1)kxk.

7. f (k)(0) = 0 if k is odd, f (k)(0) = 1 if k is even;
∞∑

k=0

1

(2k)!
x2k.

8. f (k)(0) = 0 if k is even, f (k)(0) = 1 if k is odd;
∞∑

k=0

1

(2k + 1)!
x2k+1.

9. f (k)(x) =

{
(−1)k/2(x sinx− k cosx) k even
(−1)(k−1)/2(x cosx+ k sinx) k odd

, f (k)(0) =

{
(−1)1+k/2k k even
0 k odd

;
∞∑

k=0

(−1)k

(2k + 1)!
x2k+2.

10. f (k)(x) = (k + x)ex, f (k)(0) = k;
∞∑

k=1

1

(k − 1)!
xk.

11. f (k)(x0) = e;
∞∑

k=0

e

k!
(x− 1)k.

12. f (k)(x) = (−1)ke−x, f (k)(ln 2) = (−1)k
1

2
;

∞∑

k=0

(−1)k

2 · k!
(x− ln 2)k.

13. f (k)(x) =
(−1)kk!

xk+1
, f (k)(−1) = −k!;

∞∑

k=0

(−1)(x+ 1)k.

14. f (k)(x) =
(−1)kk!

(x+ 2)k+1
, f (k)(3) =

(−1)kk!

5k+1
;

∞∑

k=0

(−1)k

5k+1
(x− 3)k.

15. f (k)(1/2) = 0 if k is odd, f (k)(1/2) is alternatively πk and −πk if k is even;
∞∑

k=0

(−1)kπ2k

(2k)!
(x− 1/2)2k.

16. f (k)(π/2) = 0 if k is even, f (k)(π/2) is alternately −1 and 1 if k is odd;
∞∑

k=0

(−1)k+1

(2k + 1)!
(x− π/2)2k+1.

17. f(1) = 0, for k ≥ 1, f (k)(x) =
(−1)k−1(k − 1)!

xk
; f (k)(1) = (−1)k−1(k − 1)!;

∞∑

k=1

(−1)k−1

k
(x− 1)k.
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18. f(e) = 1, for k ≥ 1, f (k)(x) =
(−1)k−1(k − 1)!

xk
; f (k)(e) =

(−1)k−1(k − 1)!

ek
; 1 +

∞∑

k=1

(−1)k−1

kek
(x− e)k.

19. Geometric series, r = −x, |r| = |x|, so the interval of convergence is −1 < x < 1, converges there to
1

1 + x
(the

series diverges for x = ±1).

20. Geometric series, r = x2, |r| = x2, so the interval of convergence is −1 < x < 1, converges there to
1

1− x2
(the

series diverges for x = ±1).

21. Geometric series, r = x − 2, |r| = |x − 2|, so the interval of convergence is 1 < x < 3, converges there to
1

1− (x− 2)
=

1

3− x (the series diverges for x = 1, 3).

22. Geometric series, r = −(x + 3), |r| = |x + 3|, so the interval of convergence is −4 < x < −2, converges there to
1

1 + (x+ 3)
=

1

4 + x
(the series diverges for x = −4,−2).

23. (a) Geometric series, r = −x/2, |r| = |x/2|, so the interval of convergence is −2 < x < 2, converges there to
1

1 + x/2
=

2

2 + x
(the series diverges for x = −2, 2).

(b) f(0) = 1, f(1) = 2/3.

24. (a) Geometric series, r = −x− 5

3
, |r| =

∣∣∣∣
x− 5

3

∣∣∣∣, so the interval of convergence is 2 < x < 8, converges to

1

1 + (x− 5)/3
=

3

x− 2
(the series diverges for x = 2, 8).

(b) f(3) = 3, f(6) = 3/4.

25. True.

26. False.

27. True.

28. False, it converges for all x.

29. ρ = lim
k→+∞

k + 1

k + 2
|x| = |x|, the series converges if |x| < 1 and diverges if |x| > 1. If x = −1,

∞∑

k=0

(−1)k

k + 1
converges by

the Alternating Series Test; if x = 1,
∞∑

k=0

1

k + 1
diverges. The radius of convergence is 1, the interval of convergence

is [−1, 1).

30. ρ = lim
k→+∞

3|x| = 3|x|, the series converges if 3|x| < 1 or |x| < 1/3 and diverges if |x| > 1/3. If x = −1/3,
∞∑

k=0

(−1)k

diverges, if x = 1/3,

∞∑

k=0

(1) diverges. The radius of convergence is 1/3, the interval of convergence is (−1/3, 1/3).

31. ρ = lim
k→+∞

|x|
k + 1

= 0, the radius of convergence is +∞, the interval is (−∞,+∞).



466 Chapter 9

32. If x 6= 0, ρ = lim
k→+∞

k + 1

2
|x| = +∞, the radius of convergence is 0, the series converges only if x = 0.

33. ρ = lim
k→+∞

5k2|x|
(k + 1)2

= 5|x|, converges if |x| < 1/5 and diverges if |x| > 1/5. If x = −1/5,
∞∑

k=1

(−1)k

k2
converges; if

x = 1/5,
∞∑

k=1

1/k2 converges. Radius of convergence is 1/5, interval of convergence is [−1/5, 1/5].

34. ρ = lim
k→+∞

ln k

ln(k + 1)
|x| = |x|, the series converges if |x| < 1 and diverges if |x| > 1. If x = −1,

∞∑

k=2

(−1)k

ln k
converges;

if x = 1,
∞∑

k=2

1/(ln k) diverges (compare to
∑

(1/k)). Radius of convergence is 1, interval of convergence is [−1, 1).

35. ρ = lim
k→+∞

k|x|
k + 2

= |x|, converges if |x| < 1, diverges if |x| > 1. If x = −1,
∞∑

k=1

(−1)k

k(k + 1)
converges; if x = 1,

∞∑

k=1

1

k(k + 1)
converges. Radius of convergence is 1, interval of convergence is [−1, 1].

36. ρ = lim
k→+∞

2
k + 1

k + 2
|x| = 2|x|, converges if |x| < 1/2, diverges if |x| > 1/2. If x = −1/2,

∞∑

k=0

−1

2(k + 1)
diverges; if

x = 1/2,
∞∑

k=0

(−1)k

2(k + 1)
converges. Radius of convergence is 1/2, interval of convergence is (−1/2, 1/2].

37. ρ = lim
k→+∞

√
k√

k + 1
|x| = |x|, converges if |x| < 1, diverges if |x| > 1. If x = −1,

∞∑

k=1

−1√
k

diverges; if x = 1,

∞∑

k=1

(−1)k−1

√
k

converges. Radius of convergence is 1, interval of convergence is (−1, 1].

38. ρ = lim
k→+∞

|x|2
(2k + 2)(2k + 1)

= 0, radius of convergence is +∞, interval of convergence is (−∞,+∞).

39. ρ = lim
k→+∞

3|x|
k + 1

= 0, radius of convergence is +∞, interval of convergence is (−∞,+∞).

40. ρ = lim
k→+∞

k(ln k)2|x|
(k + 1)[ln(k + 1)]2

= |x|, converges if |x| < 1, diverges if |x| > 1. If x = −1, then, by Exercise 9.4.25,

∞∑

k=2

−1

k(ln k)2
converges; if x = 1,

∞∑

k=2

(−1)k+1

k(ln k)2
converges. Radius of convergence is 1, interval of convergence is

[−1, 1].

41. ρ = lim
k→+∞

1 + k2

1 + (k + 1)2
|x| = |x|, converges if |x| < 1, diverges if |x| > 1. If x = −1,

∞∑

k=0

(−1)k

1 + k2
converges; if x = 1,

∞∑

k=0

1

1 + k2
converges. Radius of convergence is 1, interval of convergence is [−1, 1].

42. ρ = lim
k→+∞

|x|2
(2k + 3)(2k + 2)

= 0, radius of convergence is +∞, interval of convergence is (−∞,+∞).
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43. ρ = lim
k→+∞

(3/4)|x + 5| =
3

4
|x + 5|, converges if |x + 5| < 4/3, diverges if |x + 5| > 4/3. If x = −19/3,

∞∑

k=0

(−1)k

diverges; if x = −11/3,
∞∑

k=0

1 diverges. Radius of convergence is 4/3, interval of convergence is (−19/3,−11/3).

44. ρ = lim
k→+∞

1

2
|x − 3| =

1

2
|x − 3|, converges if |x − 3| < 2, diverges if |x − 3| > 2. If x = 1,

∞∑

k=0

(−1)k diverges; if

x = 5,
∞∑

k=0

1 diverges. Radius of convergence is 2, interval of convergence is (1, 5).

45. ρ = lim
k→+∞

k|x+ 1|
k + 1

= |x+ 1|, converges if |x+ 1| < 1, diverges if |x+ 1| > 1. If x = −2,
∞∑

k=1

−1

k
diverges; if x = 0,

∞∑

k=1

(−1)k+1

k
converges. Radius of convergence is 1, interval of convergence is (−2, 0].

46. ρ = lim
k→+∞

(k + 1)2

(k + 2)2
|x − 4| = |x − 4|, converges if |x − 4| < 1, diverges if |x − 4| > 1. If x = 3,

∞∑

k=0

1/(k + 1)2

converges; if x = 5,
∞∑

k=0

(−1)k/(k + 1)2 converges. Radius of convergence is 1, interval of convergence is [3, 5].

47. ρ = lim
k→+∞

k2 + 4

(k + 1)2 + 4
|x+ 1|2 = |x+ 1|2, converges if |x+ 1| < 1, diverges if |x+ 1| > 1. If x = −2,

∞∑

k=0

(−1)3k+1

k2 + 4

converges; if x = 0,

∞∑

k=0

(−1)k

k2 + 4
converges. Radius of convergence is 1, interval of convergence is [−2, 0].

48. If x 6= 2, ρ = lim
k→+∞

(2k + 3)(2k + 2)k3

(k + 1)3
|x− 2| = +∞, radius of convergence is 0, series converges only at x = 2.

49. ρ = lim
k→+∞

π|x− 1|2
(2k + 3)(2k + 2)

= 0, radius of convergence +∞, interval of convergence (−∞,+∞).

50. ρ = lim
k→+∞

1

16
|2x − 3| =

1

16
|2x − 3|, converges if

1

16
|2x − 3| < 1 or |x − 3/2| < 8, diverges if |x − 3/2| > 8. If

x = −13/2,
∞∑

k=0

(−1)k diverges; if x = 19/2,
∞∑

k=0

1 diverges. Radius of convergence is 8, interval of convergence is

(−13/2, 19/2).

51. ρ = lim
k→+∞

k
√
|uk| = lim

k→+∞
|x|
ln k

= 0, the series converges absolutely for all x so the interval of convergence is

(−∞,+∞).

52. ρ = lim
k→+∞

2k + 1

(2k)(2k − 1)
|x| = 0, so R = +∞ and the domain of f is (−∞,+∞).

53. If x ≥ 0, then cos
√
x = 1− (

√
x)2

2!
+

(
√
x)4

4!
− (
√
x)6

6!
+ . . . = 1− x

2!
+
x2

4!
− x3

6!
+ . . .; if x ≤ 0, then cosh(

√
−x) =

1 +
(
√−x)2

2!
+

(
√−x)4

4!
+

(
√−x)6

6!
+ . . . = 1− x

2!
+
x2

4!
− x3

6!
+ . . .
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54. (a)

10

–1
–1 1

55. By Exercise 76 of Section 3.6, the derivative of an odd (even) function is even (odd); hence all odd-numbered
derivatives of an odd function are even, all even-numbered derivatives of an odd function are odd; a similar
statement holds for an even function.

(a) If f(x) is an even function, then f (2k−1)(x) is an odd function, so f (2k−1)(0) = 0, and thus the MacLaurin
series coefficients a2k−1 = 0, k = 1, 2, . . .

(b) If f(x) is an odd function, then f (2k)(x) is an odd function, so f (2k)(0) = 0, and thus the MacLaurin series
coefficients a2k = 0, k = 1, 2, . . .

56. By Theorem 9.4.3(b) both series converge or diverge together, so they have the same radius of convergence.

57. By Theorem 9.4.3(a) the series
∑

(ck+dk)(x−x0)k converges if |x−x0| < R; if |x−x0| > R then
∑

(ck+dk)(x−x0)k

cannot converge, as otherwise
∑
ck(x−x0)k would converge by the same Theorem. Hence the radius of convergence

of
∑

(ck + dk)(x− x0)k is R.

58. Let r be the radius of convergence of
∑

(ck + dk)(x − x0)k. If |x − x0| < min(R1, R2) then
∑
ck(x − x0)k and∑

dk(x−x0)k converge, so
∑

(ck +dk)(x−x0)k converges. Hence r ≥ min(R1, R2) (to see that r > min(R1, R2) is
possible consider the case ck = −dk = 1). If in addition R1 6= R2, and R1 < |x−x0| < R2 (or R2 < |x−x0| < R1)
then

∑
(ck + dk)(x − x0)k cannot converge, as otherwise all three series would converge. Thus in this case

r = min(R1, R2).

59. By the Ratio Test for absolute convergence,

ρ = lim
k→+∞

(pk + p)!(k!)p

(pk)![(k + 1)!]p
|x| = lim

k→+∞
(pk + p)(pk + p− 1)(pk + p− 2) . . . (pk + p− [p− 1])

(k + 1)p
|x| =

= lim
k→+∞

p

(
p− 1

k + 1

)(
p− 2

k + 1

)
. . .

(
p− p− 1

k + 1

)
|x| = pp|x|, converges if |x| < 1/pp, diverges if |x| > 1/pp.

Radius of convergence is 1/pp.

60. By the Ratio Test for absolute convergence,

ρ = lim
k→+∞

(k + 1 + p)!k!(k + q)!

(k + p)!(k + 1)!(k + 1 + q)!
|x| = lim

k→+∞
k + 1 + p

(k + 1)(k + 1 + q)
|x| = 0, radius of convergence is +∞.

61. Ratio Test: ρ = lim
k→+∞

|x|2
4(k + 1)(k + 2)

= 0, R = +∞.

62. J0(x) =
∞∑

k=0

uk(x) =
∞∑

k=0

(−1)kx2k

22k(k!)2
, alternating series, |u4(1)| ≈ 0.00000678, small enough, so J0(1) ≈

3∑

k=0

(−1)k

22k(k!)2
≈

0.76519 with an error less than 7× 10−6. Next, J1(x) is given by J1(x) =
∞∑

k=0

uk(x) =
∞∑

k=0

(−1)kx2k+1

22k+1(k!)(k + 1)!
, alter-

nating series, |u4(1)| ≈ 6.78×10−7, small enough (though |u3(1)| isn’t), so J1(1) ≈
3∑

k=0

(−1)k

22k+1(k!)(k + 1)!
≈ 0.44005

with an error less than 7× 10−7.
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63. (a)

∫ +∞

n

1

x3.7
dx < 0.005 if n > 4.93; let n = 5. (b) sn ≈ 1.1062; sn : 1.10628824.

64. By the Root Test for absolute convergence, ρ = lim
k→+∞

|ck|1/k|x| = L|x|, L|x| < 1 if |x| < 1/L so the radius of

convergence is 1/L.

65. By assumption
∞∑

k=0

ckx
k converges if |x| < R so

∞∑

k=0

ckx
2k =

∞∑

k=0

ck(x2)k converges if |x2| < R, |x| <
√
R. Moreover,

∞∑

k=0

ckx
2k =

∞∑

k=0

ck(x2)k diverges if |x2| > R, |x| >
√
R. Thus

∞∑

k=0

ckx
2k has radius of convergence

√
R.

66. The assumption is that
∞∑

k=0

ckR
k is convergent and

∞∑

k=0

ck(−R)k is divergent. Suppose that
∞∑

k=0

ckR
k is absolutely

convergent then
∞∑

k=0

ck(−R)k is also absolutely convergent and hence convergent, because |ckRk| = |ck(−R)k|,

which contradicts the assumption that

∞∑

k=0

ck(−R)k is divergent so

∞∑

k=0

ckR
k must be conditionally convergent.

Exercise Set 9.9

1. f(x) = sinx, f (n+1)(x) = ± sinx or ± cosx, |f (n+1)(x)| ≤ 1, |Rn(x)| ≤ |x− π/4|
n+1

(n+ 1)!
, lim
n→+∞

|x− π/4|n+1

(n+ 1)!
= 0; by

the Squeezing Theorem, lim
n→+∞

|Rn(x)| = 0, so lim
n→+∞

Rn(x) = 0 for all x.

2. f(x) = ex, f (n+1)(x) = ex; if x > 1 then |Rn(x)| ≤ ex

(n+ 1)!
|x− 1|n+1; if x < 1, then |Rn(x)| ≤ e

(n+ 1)!
|x− 1|n+1.

But lim
n→+∞

|x− 1|n+1

(n+ 1)!
= 0 so lim

n→+∞
Rn(x) = 0.

3. sin 4◦ = sin
( π

45

)
=

π

45
− (π/45)3

3!
+

(π/45)5

5!
− . . .

(a) Method 1: |Rn(π/45)| ≤ (π/45)n+1

(n+ 1)!
< 0.000005 for n+ 1 = 4, n = 3; sin 4◦ ≈ π

45
− (π/45)3

3!
≈ 0.069756.

(b) Method 2: The first term in the alternating series that is less than 0.000005 is
(π/45)5

5!
, so the result is the

same as in part (a).

4. cos 3◦ = cos
( π

60

)
= 1− (π/60)2

2
+

(π/60)4

4!
− . . .

(a) Method 1: |Rn(π/60)| ≤ (π/60)n+1

(n+ 1)!
< 0.0005 for n = 2; cos 3◦ ≈ 1− (π/60)2

2
≈ 0.9986.

(b) Method 2: The first term in the alternating series that is less than 0.0005 is
(π/60)4

4!
, so the result is the

same as in part (a).

5. |Rn(0.1)| ≤ (0.1)n+1

(n+ 1)!
≤ 0.000005 for n = 3; cos 0.1 ≈ 1− (0.1)2/2 = 0.99500, calculator value 0.995004 . . .

6. (0.1)3/3 < 0.5× 10−3 so tan−1(0.1) ≈ 0.100, calculator value ≈ 0.0997.
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7. Expand about π/2 to get sinx = 1− 1

2!
(x−π/2)2+

1

4!
(x−π/2)4−. . ., 85◦ = 17π/36 radians, |Rn(x)| ≤ |x− π/2|

n+1

(n+ 1)!
,

|Rn(17π/36)| ≤ |17π/36− π/2|n+1

(n+ 1)!
=

(π/36)n+1

(n+ 1)!
< 0.5 × 10−4, if n = 3, sin 85◦ ≈ 1 − 1

2
(−π/36)2 ≈ 0.99619,

calculator value 0.99619 . . .

8. −175◦ = −π + π/36 rad; x0 = −π, x = −π + π/36, cosx = −1 +
(x+ π)2

2
− (x+ π)4

4!
− . . . ; |Rn| ≤

(π/36)n+1

(n+ 1)!
≤

0.00005 for n = 3; cos(−π + π/36) = −1 +
(π/36)2

2
≈ −0.99619, calculator value −0.99619 . . .

9. f (k)(x) = coshx or sinhx, |f (k)(x)| ≤ coshx ≤ cosh 0.5 =
1

2

(
e0.5 + e−0.5

)
<

1

2
(2 + 1) = 1.5, so |Rn(x)| <

1.5(0.5)n+1

(n+ 1)!
≤ 0.5× 10−3 if n = 4, sinh 0.5 ≈ 0.5 +

(0.5)3

3!
≈ 0.5208, calculator value 0.52109 . . .

10. f (k)(x) = coshx or sinhx, |f (k)(x)| ≤ coshx ≤ cosh 0.1 =
1

2

(
e0.1 + e−0.1

)
< 1.006, so |Rn(x)| < 1.006(0.1)n+1

(n+ 1)!
≤

0.006× 10−3 for n = 2, cosh 0.1 ≈ 1 +
(0.1)2

2!
= 1.005, calculator value 1.0050 . . .

11. (a) Let x = 1/9 in series (12).

(b) ln 1.25 ≈ 2

(
1/9 +

(1/9)3

3

)
= 2(1/9 + 1/37) ≈ 0.223, which agrees with the calculator value 0.22314 . . . to

three decimal places.

12. (a) Let x = 1/2 in series (12).

(b) ln 3 ≈ 2

(
1/2 +

(1/2)3

3

)
= 2(1/2 + 1/24) = 13/12 ≈ 1.083; the calculator value is 1.099 to three decimal

places.

13. (a) (1/2)9/9 < 0.5× 10−3 and (1/3)7/7 < 0.5× 10−3, so tan−1(1/2) ≈ 1/2− (1/2)3

3
+

(1/2)5

5
− (1/2)7

7
≈ 0.4635,

tan−1(1/3) ≈ 1/3− (1/3)3

3
+

(1/3)5

5
≈ 0.3218.

(b) From Formula (16), π ≈ 4(0.4635 + 0.3218) = 3.1412.

(c) Let a = tan−1 1

2
, b = tan−1 1

3
; then |a− 0.4635| < 0.0005 and |b− 0.3218| < 0.0005, so |4(a+ b)− 3.1412| ≤

4|a− 0.4635|+ 4|b− 0.3218| < 0.004, so two decimal-place accuracy is guaranteed, but not three.

14. (a) f ′(0) = lim
h→0

f(h)− f(0)

h
= lim

h→0

e−1/h2

h
, let t = 1/h then h = 1/t and lim

h→0+

e−1/h2

h
= lim

t→+∞
te−t

2

=

lim
t→+∞

t

et2
= lim
t→+∞

1

2tet2
= 0, similarly lim

h→0−

e−1/h2

h
= 0 so f ′(0) = 0.

(b) The Maclaurin series is 0 + 0 · x+ 0 · x2 + . . . = 0, but f(0) = 0 and f(x) > 0 if x 6= 0 so the series converges
to f(x) only at the point x = 0.

15. (a) cosx = 1− x2

2!
+
x4

4!
+ (0)x5 +R5(x), |R5(x)| ≤ |x|

6

6!
≤ (0.2)6

6!
< 9× 10−8.
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(b)

0.00000005

0
–0.2 0.2

16. (a) f ′′(x) = −1/(1 + x)2, |f ′′(x)| < 1/(0.99)2 ≤ 1.03, |R1(x)| ≤ 1.03|x|2
2

≤ 1.03(0.01)2

2
≤ 5.15 × 10−5 for

−0.01 ≤ x ≤ 0.01.

(b)

0.00005

0
–0.01 0.01

17. (a) (1 + x)−1 = 1− x+
−1(−2)

2!
x2 +

−1(−2)(−3)

3!
x3 + . . .+

−1(−2)(−3) . . . (−k)

k!
xk + . . . =

∞∑

k=0

(−1)kxk.

(b) (1 +x)1/3 = 1 + (1/3)x+
(1/3)(−2/3)

2!
x2 +

(1/3)(−2/3)(−5/3)

3!
x3 + . . .+

(1/3)(−2/3) . . . (4− 3k)/3

k!
xk+ . . . =

1+x/3+
∞∑

k=2

(−1)k−1 2 · 5 . . . (3k − 4)

3kk!
xk.

(c) (1+x)−3 = 1−3x+
(−3)(−4)

2!
x2+

(−3)(−4)(−5)

3!
x3+. . .+

(−3)(−4) . . . (−2− k)

k!
xk+. . . =

∞∑

k=0

(−1)k
(k + 2)!

2 · k!
xk =

∞∑

k=0

(−1)k
(k + 2)(k + 1)

2
xk.

18. (1 + x)m =

(
m
0

)
+
∞∑

k=1

(
m
k

)
xk =

∞∑

k=0

(
m
k

)
xk.

19. (a)
d

dx
ln(1 + x) =

1

1 + x
,
dk

dxk
ln(1 + x) = (−1)k−1 (k − 1)!

(1 + x)k
; similarly

d

dx
ln(1− x) = − (k − 1)!

(1− x)k
, so f (n+1)(x) =

n!

[
(−1)n

(1 + x)n+1
+

1

(1− x)n+1

]
.

(b)
∣∣f (n+1)(x)

∣∣ ≤ n!

∣∣∣∣
(−1)n

(1 + x)n+1

∣∣∣∣+ n!

∣∣∣∣
1

(1− x)n+1

∣∣∣∣ = n!

[
1

(1 + x)n+1
+

1

(1− x)n+1

]
.

(c) If
∣∣f (n+1)(x)

∣∣ ≤M on the interval [0, 1/3] then |Rn(1/3)| ≤ M

(n+ 1)!

(
1

3

)n+1

.

(d) If 0 ≤ x ≤ 1/3 then 1 + x ≥ 1, 1− x ≥ 2/3,
∣∣f (n+1)(x)

∣∣ ≤M = n!

[
1 +

1

(2/3)n+1

]
.
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(e) 0.000005 ≥ M

(n+ 1)!

(
1

3

)n+1

=
1

n+ 1

[(
1

3

)n+1

+
(1/3)n+1

(2/3)n+1

]
=

1

n+ 1

[(
1

3

)n+1

+

(
1

2

)n+1
]

. By inspection

the inequality holds for n = 13 but for no smaller n.

20. Set x = 1/4 in Formula (12). Follow the argument of Exercise 19: parts (a) and (b) remain unchanged; in part

(c) replace (1/3) with (1/4):

∣∣∣∣Rn
(

1

4

)∣∣∣∣ ≤
M

(n+ 1)!

(
1

4

)n+1

≤ 0.000005 for x in the interval [0, 1/4]. From part

(b), together with 0 ≤ x ≤ 1/4, 1 + x ≥ 1, 1 − x ≥ 3/4, follows part (d): M = n!

[
1 +

1

(3/4)n+1

]
. Part (e) now

becomes 0.000005 ≥ M

(n+ 1)!

(
1

4

)n+1

=
1

n+ 1

[(
1

4

)n+1

+

(
1

3

)n+1
]

, which is true for n = 9.

21. f(x) = cosx, f (n+1)(x) = ± sinx or ± cosx, |f (n+1)(x)| ≤ 1, set M = 1, |Rn(x)| ≤ 1

(n+ 1)!
|x− x0|n+1,

lim
n→+∞

|x− x0|n+1

(n+ 1)!
= 0 so lim

n→+∞
Rn(x) = 0 for all x.

22. f(x) = sinx, f (n+1)(x) = ± sinx or ± cosx, |f (n+1)(x)| ≤ 1, follow Exercise 21.

23. e−x = 1−x+x2/2!+ . . .. Replace x with (
x− 100

16
)2/2 to obtain e−( x−100

16 )
2
/2 = 1− (x− 100)2

2 · 162
+

(x− 100)4

8 · 164
+ . . .,

thus p ≈ 1

16
√

2π

∫ 110

100

[
1− (x− 100)2

2 · 162
+

(x− 100)4

8 · 164

]
dx ≈ 0.23406 or 23.406%.

24. (a) From Machin’s formula and a CAS,
π

4
≈ 0.7853981633974483096156608, accurate to the 25th decimal place.

(b) n sn
0 0.3183098 78 . . .

1 0.3183098 861837906 067 . . .

2 0.3183098 861837906 7153776 695 . . .

3 0.3183098 861837906 7153776 752674502 34 . . .

1/π 0.3183098 861837906 7153776 752674502 87 . . .

Exercise Set 9.10

1. (a) Replace x with −x :
1

1 + x
= 1− x+ x2 − . . .+ (−1)kxk + . . . ; R = 1.

(b) Replace x with x2 :
1

1− x2
= 1 + x2 + x4 + . . .+ x2k + . . . ; R = 1.

(c) Replace x with 2x :
1

1− 2x
= 1 + 2x+ 4x2 + . . .+ 2kxk + . . . ; R = 1/2.

(d)
1

2− x =
1/2

1− x/2 ; replace x with x/2 :
1

2− x =
1

2
+

1

22
x+

1

23
x2 + . . .+

1

2k+1
xk + . . . ; R = 2.

2. (a) Replace x with −x : ln(1− x) = −x− x2/2− x3/3− . . .− xk/k − . . . ; R = 1.

(b) Replace x with x2 : ln(1 + x2) = x2 − x4/2 + x6/3− . . .+ (−1)k−1x2k/k + . . . ; R = 1.

(c) Replace x with 2x : ln(1 + 2x) = 2x− (2x)2/2 + (2x)3/3− . . .+ (−1)k−1(2x)k/k + . . . ; R = 1/2.
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(d) ln(2 + x) = ln 2 + ln(1 + x/2); replace x with x/2 : ln(2 + x) = ln 2 + x/2 − (x/2)2/2 + (x/2)3/3 + . . . +
(−1)k−1(x/2)k/k + . . . ; R = 2.

3. (a) From Section 9.9, Example 4(b),
1√

1 + x
= 1− 1

2
x+

1 · 3
22 · 2!

x2−1 · 3 · 5
23 · 3!

x3+. . ., so (2+x)−1/2 =
1√

2
√

1 + x/2
=

1

21/2
− 1

25/2
x+

1 · 3
29/2 · 2!

x2 − 1 · 3 · 5
213/2 · 3!

x3 + . . .

(b) Example 4(a):
1

(1 + x)2
= 1− 2x+ 3x2 − 4x3 + . . ., so

1

(1− x2)2
= 1 + 2x2 + 3x4 + 4x6 + . . .

4. (a)
1

a− x =
1/a

1− x/a = 1/a+ x/a2 + x2/a3 + . . .+ xk/ak+1 + . . . ; R = |a|.

(b) 1/(a+x)2 =
1

a2

1

(1 + x/a)2
=

1

a2

(
1− 2(x/a) + 3(x/a)2 − 4(x/a)3 + . . .

)
=

1

a2
− 2

a3
x+

3

a4
x2− 4

a5
x3+. . . ; R =

|a|.

5. (a) 2x− 23

3!
x3 +

25

5!
x5 − 27

7!
x7 + . . .; R = +∞.

(b) 1− 2x+ 2x2 − 4

3
x3 + . . .; R = +∞.

(c) 1 + x2 +
1

2!
x4 +

1

3!
x6 + . . .; R = +∞.

(d) x2 − π2

2
x4 +

π4

4!
x6 − π6

6!
x8 + . . . ; R = +∞.

6. (a) 1− 22

2!
x2 +

24

4!
x4 − 26

6!
x6 + . . .; R = +∞.

(b) x2

(
1 + x+

1

2!
x2 +

1

3!
x3 + . . .

)
= x2 + x3 +

1

2!
x4 +

1

3!
x5 + . . .; R = +∞.

(c) x

(
1− x+

1

2!
x2 − 1

3!
x3 + . . .

)
= x− x2 +

1

2!
x3 − 1

3!
x4 + . . .; R = +∞.

(d) x2 − 1

3!
x6 +

1

5!
x10 − 1

7!
x14 + . . .; R = +∞.

7. (a) x2
(
1− 3x+ 9x2 − 27x3 + . . .

)
= x2 − 3x3 + 9x4 − 27x5 + . . .; R = 1/3.

(b) x

(
2x+

23

3!
x3 +

25

5!
x5 +

27

7!
x7 + . . .

)
= 2x2 +

23

3!
x4 +

25

5!
x6 +

27

7!
x8 + . . .; R = +∞.

(c) Substitute 3/2 for m and −x2 for x in Equation (17) of Section 9.9, then multiply by x: x − 3

2
x3 +

3

8
x5 +

1

16
x7 + . . .; R = 1.

8. (a)
x

x− 1
=
−x

1− x = −x
(
1 + x+ x2 + x3 + . . .

)
= −x− x2 − x3 − x4 − . . . ; R = 1.

(b) 3 +
3

2!
x4 +

3

4!
x8 +

3

6!
x12 + . . .; R = +∞.
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(c) From Table 9.9.1 with m = −3, (1+x)−3 = 1−3x+6x2−10x3+. . ., so x(1+2x)−3 = x−6x2+24x3−80x4+. . .;
R = 1/2.

9. (a) sin2 x =
1

2
(1− cos 2x) =

1

2

[
1−

(
1− 22

2!
x2 +

24

4!
x4 − 26

6!
x6 + . . .

)]
= x2 − 23

4!
x4 +

25

6!
x6 − 27

8!
x8 + . . .

(b) ln
[
(1 + x3)12

]
= 12 ln(1 + x3) = 12x3 − 6x6 + 4x9 − 3x12 + . . .

10. (a) cos2 x =
1

2
(1 + cos 2x) =

1

2

[
1 +

(
1− 22

2!
x2 +

24

4!
x4 − 26

6!
x6 + . . .

)]
= 1− x2 +

23

4!
x4 − 25

6!
x6 + . . .

(b) In Equation (12) of Section 9.9 replace x with −x : ln

(
1− x
1 + x

)
= −2

(
x+

1

3
x3 +

1

5
x5 +

1

7
x7 . . .

)

11. (a)
1

x
=

1

1− (1− x)
= 1+(1−x)+(1−x)2 + . . .+(1−x)k+ . . . = 1− (x−1)+(x−1)2− . . .+(−1)k(x−1)k+ . . .

(b) (0, 2).

12. (a)
1

x
=

1/x0

1 + (x− x0)/x0
= 1/x0 − (x− x0)/x2

0 + (x− x0)2/x3
0 − . . .+ (−1)k(x− x0)k/xk+1

0 + . . .

(b) (0, 2x0).

13. (a) (1 + x+ x2/2 + x3/3! + x4/4! + . . .)(x− x3/3! + x5/5!− . . .) = x+ x2 + x3/3− x5/30 + . . .

(b) (1 + x/2 − x2/8 + x3/16 − (5/128)x4 + . . .)(x − x2/2 + x3/3 − x4/4 + x5/5 − . . .) = x − x3/24 + x4/24 −
(71/1920)x5 + . . .

14. (a) (1− x2 + x4/2− x6/6 + . . .)

(
1− 1

2
x2 +

1

24
x4 − 1

720
x6 . . .

)
= 1− 3

2
x2 +

25

24
x4 − 331

720
x6 + . . .

(b)

(
1 +

4

3
x2 + . . .

)(
1 +

1

3
x− 1

9
x2 +

5

81
x3 − . . .

)
= 1 +

1

3
x+

11

9
x2 +

41

81
x3 + . . .

15. (a)
1

cosx
= 1

/(
1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + . . .

)
= 1 +

1

2
x2 +

5

24
x4 +

61

720
x6 + . . .

(b)
sinx

ex
=

(
x− x3

3!
+
x5

5!
− . . .

)/(
1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ . . .

)
= x− x2 +

1

3
x3 − 1

30
x5 + . . .

16. (a)
tan−1 x

1 + x
=
(
x− x3/3 + x5/5− . . .

)
/ (1 + x) = x− x2 +

2

3
x3 − 2

3
x4 . . .

(b)
ln(1 + x)

1− x =
(
x− x2/2 + x3/3− x4/4 + . . .

)
/ (1− x) = x+

1

2
x2 +

5

6
x3 +

7

12
x4 + . . .

17. ex = 1 + x + x2/2 + x3/3! + . . . + xk/k! + . . . , e−x = 1 − x + x2/2 − x3/3! + . . . + (−1)kxk/k! + . . .; sinhx =
1

2

(
ex − e−x

)
= x + x3/3! + x5/5! + . . . + x2k+1/(2k + 1)! + . . . , R = +∞; coshx =

1

2

(
ex + e−x

)
= 1 + x2/2 +

x4/4! + . . .+ x2k/(2k)! + . . . , R = +∞.

18. tanhx =
x+ x3/3! + x5/5! + x7/7! + . . .

1 + x2/2 + x4/4! + x6/6! . . .
= x− 1

3
x3 +

2

15
x5 − 17

315
x7 + . . .
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19.
4x− 2

x2 − 1
=
−1

1− x +
3

1 + x
= −

(
1 + x+ x2 + x3 + x4 + . . .

)
+ 3

(
1− x+ x2 − x3 + x4 + . . .

)
= 2− 4x+ 2x2− 4x3 +

2x4 + . . .

20.
x3 + x2 + 2x− 2

x2 − 1
= x+1− 1

1− x+
2

1 + x
= x+1−

(
1 + x+ x2 + x3 + x4 + . . .

)
+2
(
1− x+ x2 − x3 + x4 + . . .

)
=

2− 2x+ x2 − 3x3 + x4 − . . .

21. (a)
d

dx

(
1− x2/2! + x4/4!− x6/6! + . . .

)
= −x+ x3/3!− x5/5! + . . . = − sinx.

(b)
d

dx

(
x− x2/2 + x3/3− . . .

)
= 1− x+ x2 − . . . = 1/(1 + x).

22. (a)
d

dx

(
x+ x3/3! + x5/5! + . . .

)
= 1 + x2/2! + x4/4! + . . . = coshx.

(b)
d

dx

(
x− x3/3 + x5/5− x7/7 + . . .

)
= 1− x2 + x4 − x6 + . . . =

1

1 + x2
.

23. (a)

∫ (
1 + x+ x2/2! + . . .

)
dx = (x+x2/2!+x3/3!+ . . .)+C1 =

(
1 + x+ x2/2! + x3/3! + . . .

)
+C1−1 = ex+C.

(b)

∫ (
x+ x3/3! + x5/5! + . . .

)
= x2/2! + x4/4! + . . .+ C1 = 1 + x2/2! + x4/4! + . . .+ C1 − 1 = coshx+ C.

24. (a)

∫ (
x− x3/3! + x5/5!− . . .

)
dx =

(
x2/2!− x4/4! + x6/6!− . . .

)
+ C1 = −

(
1− x2/2! + x4/4!− x6/6! + . . .

)
+

C1 + 1 = − cosx+ C.

(b)

∫ (
1− x+ x2 − . . .

)
dx =

(
x− x2/2 + x3/3− . . .

)
+C = ln(1+x)+C (Note: −1 < x < 1, so |1+x| = 1+x).

25.
d

dx

∞∑

k=0

xk+1

(k + 1)(k + 2)
=
∞∑

k=0

xk

k + 2
. Each series has radius of convergence ρ = 1, as can be seen from the Ratio

Test. The intervals of convergence are [−1, 1] and [−1, 1), respectively.

26.

∫ ∞∑

k=1

(−3)k

k
xk =

∑ (−3)kxk+1

k(k + 1)
. Each series has radius of convergence ρ =

1

3
, as can be seen from the Ratio

Test. The intervals of convergence are (−1/3, 1/3] and [−1/3, 1/3], respectively.

27. (a) Substitute x2 for x in the Maclaurin Series for 1/(1 − x) (Table 9.9.1) and then multiply by x:
x

1− x2
=

x
∞∑

k=0

(x2)k =
∞∑

k=0

x2k+1.

(b) f (5)(0) = 5!c5 = 5!, f (6)(0) = 6!c6 = 0.

(c) f (n)(0) = n!cn =

{
n! if n odd

0 if n even

28. x2 cos 2x =
∞∑

k=0

(−1)k22k

(2k)!
x2k+2; f (99)(0) = 0 because c99 = 0.

29. (a) lim
x→0

sinx

x
= lim
x→0

(
1− x2/3! + x4/5!− . . .

)
= 1.
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(b) lim
x→0

tan−1 x− x
x3

= lim
x→0

(
x− x3/3 + x5/5− x7/7 + . . .

)
− x

x3
= −1/3.

30. (a)
1− cosx

sinx
=

1−
(
1− x2/2! + x4/4!− x6/6! + . . .

)

x− x3/3! + x5/5!− . . . =
x2/2!− x4/4! + x6/6!− . . .
x− x3/3! + x5/5!− . . . =

x/2!− x3/4! + x5/6!− . . .
1− x2/3! + x4/5!− . . . ,

x 6= 0; lim
x→0

1− cosx

sinx
=

0

1
= 0.

(b) lim
x→0

1

x

[
ln
√

1 + x− sin 2x
]

= lim
x→0

1

x

[
1

2
ln(1 + x)− sin 2x

]
=

= lim
x→0

1

x

[
1

2

(
x− 1

2
x2 +

1

3
x3 − . . .

)
−
(

2x− 4

3
x3 +

4

15
x5 − . . .

)]
= lim
x→0

(
−3

2
− 1

4
x+

3

2
x2 + . . .

)
= −3/2.

31.

∫ 1

0

sin
(
x2
)
dx =

∫ 1

0

(
x2 − 1

3!
x6 +

1

5!
x10 − 1

7!
x14 + . . .

)
dx =

1

3
x3 − 1

7 · 3!
x7 +

1

11 · 5!
x11 − 1

15 · 7!
x15 + . . .

]1

0

=

1

3
− 1

7 · 3!
+

1

11 · 5!
− 1

15 · 7!
+ . . ., but

1

15 · 7!
< 0.5× 10−3 so

∫ 1

0

sin(x2)dx ≈ 1

3
− 1

7 · 3!
+

1

11 · 5!
≈ 0.3103.

32.

∫ 1/2

0

tan−1
(
2x2
)
dx =

∫ 1/2

0

(
2x2 − 8

3
x6 +

32

5
x10 − 128

7
x14 + . . .

)
dx =

2

3
x3 − 8

21
x7 +

32

55
x11 − 128

105
x15 + . . .

]1/2

0

=
2

3

1

23
− 8

21

1

27
+

32

55

1

211
− 128

105

1

215
− . . ., but

32

55 · 211
< 0.5×10−3 so

∫ 1/2

0

tan−1(2x2)dx ≈ 2

3 · 23
− 8

21 · 27
≈ 0.0804.

33.

∫ 0.2

0

(
1 + x4

)1/3
dx =

∫ 0.2

0

(
1 +

1

3
x4 − 1

9
x8 + . . .

)
dx = x+

1

15
x5 − 1

81
x9 + . . .

]0.2

0

= 0.2+
1

15
(0.2)5− 1

81
(0.2)9 +

. . ., but
1

15
(0.2)5 < 0.5× 10−3 so

∫ 0.2

0

(1 + x4)1/3dx ≈ 0.200.

34.

∫ 1/2

0

(1 + x2)−1/4dx =

∫ 1/2

0

(
1− 1

4
x2 +

5

32
x4 − 15

128
x6 + . . .

)
dx = x− 1

12
x3 +

1

32
x5 − 15

896
x7 + . . .

]1/2

0

= 1/2−

1

12
(1/2)3 +

1

32
(1/2)5 − 15

896
(1/2)7 + . . ., but

15

896
(1/2)7 < 0.5× 10−3 so

∫ 1/2

0

(1 + x2)−1/4dx ≈ 1/2− 1

12
(1/2)3 +

1

32
(1/2)5 ≈ 0.4906

35. (a) Substitute x4 for x in the MacLaurin Series for ex to obtain
+∞∑

k=0

x4k

k!
. The radius of convergence is R = +∞.

(b) The first method is to multiply the MacLaurin Series for ex
4

by x3: x3ex
4

=
+∞∑

k=0

x4k+3

k!
. The second method

involves differentiation:
d

dx
ex

4

= 4x3ex
4

, so x3ex
4

=
1

4

d

dx
ex

4

=
1

4

d

dx

+∞∑

k=0

x4k

k!
=

1

4

+∞∑

k=0

4kx4k−1

k!
=

+∞∑

k=1

x4k−1

(k − 1)!
.

Use the change of variable j = k − 1 to show equality of the two series.

36. (a)
x

(1− x)2
= x

d

dx

[
1

1− x

]
= x

d

dx

[ ∞∑

k=0

xk

]
= x

[ ∞∑

k=1

kxk−1

]
=
∞∑

k=1

kxk.

(b) − ln(1− x) =

∫
1

1− xdx−C =

∫ [ ∞∑

k=0

xk

]
dx−C =

∞∑

k=0

xk+1

k + 1
−C =

∞∑

k=1

xk

k
−C,− ln(1− 0) = 0 so C = 0.
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(c) Replace x with −x in part (b): ln(1 + x) = −
+∞∑

k=1

(−1)k

k
xk =

+∞∑

k=1

(−1)k+1

k
xk.

(d)
+∞∑

k=1

(−1)k+1

k
converges by the Alternating Series Test.

(e) By parts (c) and (d) and the remark,
+∞∑

k=1

(−1)k+1

k
xk converges to ln(1 + x) for −1 < x ≤ 1.

37. (a) In Exercise 36(a), set x =
1

3
, S =

1/3

(1− 1/3)2
=

3

4
.

(b) In part (b) set x = 1/4, S = ln(4/3).

38. (a) In part (c) set x = 1, S = ln 2.

(b) In part (b) set x = (e− 1)/e, S = ln e = 1.

39. (a) sinh−1 x =

∫ (
1 + x2

)−1/2
dx− C =

∫ (
1− 1

2
x2 +

3

8
x4 − 5

16
x6 + . . .

)
dx− C =

=

(
x− 1

6
x3 +

3

40
x5 − 5

112
x7 + . . .

)
− C; sinh−1 0 = 0 so C = 0.

(b)
(
1 + x2

)−1/2
= 1 +

∞∑

k=1

(−1/2)(−3/2)(−5/2) . . . (−1/2− k + 1)

k!
(x2)k = 1 +

∞∑

k=1

(−1)k
1 · 3 · 5 . . . (2k − 1)

2kk!
x2k,

sinh−1 x = x+
∞∑

k=1

(−1)k
1 · 3 · 5 . . . (2k − 1)

2kk!(2k + 1)
x2k+1.

(c) R = 1.

40. (a) sin−1 x =

∫
(1−x2)−1/2dx−C =

∫ (
1 +

1

2
x2 +

3

8
x4 +

5

16
x6 + . . .

)
dx−C =

(
x+

1

6
x3 +

3

40
x5 +

5

112
x7 + . . .

)
−

C, sin−1 0 = 0 so C = 0.

(b)
(
1− x2

)−1/2
= 1 +

∞∑

k=1

(−1/2)(−3/2)(−5/2) . . . (−1/2− k + 1)

k!

(
−x2

)k
=

= 1 +
∞∑

k=1

(−1)k(1/2)k(1)(3)(5) . . . (2k − 1)

k!
(−1)kx2k = 1 +

∞∑

k=1

1 · 3 · 5 . . . (2k − 1)

2kk!
x2k sin−1 x =

= x+
∞∑

k=1

1 · 3 · 5 . . . (2k − 1)

2kk!(2k + 1)
x2k+1.

(c) R = 1.

41. (a) y(t) = y0

∞∑

k=0

(−1)k(0.000121)ktk

k!
.

(b) y(1) ≈ y0(1− 0.000121t)
]
t=1

= 0.999879y0.

(c) y0e
−0.000121 ≈ 0.9998790073y0.
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42. θ0 = 5◦ = π/36 rad, k = sin(π/72).

(a) T ≈ 2π

√
L

g
= 2π

√
1/9.8 ≈ 2.00709.

(b) T ≈ 2π

√
L

g

(
1 +

k2

4

)
≈ 2.008044621.

(c) 2.008045644.

43. The third order model gives the same result as the second, because there is no term of degree three in (8). By

the Wallis sine formula,

∫ π/2

0

sin4 φdφ =
1 · 3
2 · 4

π

2
, and T ≈ 4

√
L

g

∫ π/2

0

(
1 +

1

2
k2 sin2 φ+

1 · 3
222!

k4 sin4 φ

)
dφ =

4

√
L

g

(
π

2
+
k2

2

π

4
+

3k4

8

3π

16

)
= 2π

√
L

g

(
1 +

k2

4
+

9k4

64

)
.

44. (a) F =
mgR2

(R+ h)2
=

mg

(1 + h/R)2
= mg

(
1− 2h/R+ 3h2/R2 − 4h3/R3 + . . .

)
.

(b) If h = 0, then the binomial series converges to 1 and F = mg.

(c) Sum the series to the linear term, F ≈ mg − 2mgh/R.

(d)
mg − 2mgh/R

mg
= 1− 2h

R
= 1− 2 · 29,028

4000 · 5280
≈ 0.9973, so about 0.27% less.

45. (a) We can differentiate term-by-term: y′ =

∞∑

k=1

(−1)kx2k−1

22k−1k!(k − 1)!
=

∞∑

k=0

(−1)k+1x2k+1

22k+1(k + 1)!k!
, y′′ =

∞∑

k=0

(−1)k+1(2k + 1)x2k

22k+1(k + 1)!k!
,

and xy′′ + y′ + xy =
∞∑

k=0

(−1)k+1(2k + 1)x2k+1

22k+1(k + 1)!k!
+
∞∑

k=0

(−1)k+1x2k+1

22k+1(k + 1)!k!
+
∞∑

k=0

(−1)kx2k+1

22k(k!)2
, so

xy′′ + y′ + xy =
∞∑

k=0

(−1)k+1x2k+1

22k(k!)2

[
2k + 1

2(k + 1)
+

1

2(k + 1)
− 1

]
= 0.

(b) y′ =
∞∑

k=0

(−1)k(2k + 1)x2k

22k+1k!(k + 1)!
, y′′ =

∞∑

k=1

(−1)k(2k + 1)x2k−1

22k(k − 1)!(k + 1)!
. Since J1(x) =

∞∑

k=0

(−1)kx2k+1

22k+1k!(k + 1)!
and x2J1(x) =

∞∑

k=1

(−1)k−1x2k+1

22k−1(k − 1)!k!
, it follows that x2y′′ + xy′ + (x2 − 1)y =

∞∑

k=1

(−1)k(2k + 1)x2k+1

22k(k − 1)!(k + 1)!
+

∞∑

k=0

(−1)k(2k + 1)x2k+1

22k+1(k!)(k + 1)!
+

∞∑

k=1

(−1)k−1x2k+1

22k−1(k − 1)!k!
−
∞∑

k=0

(−1)kx2k+1

22k+1k!(k + 1)!
=
x

2
−x

2
+
∞∑

k=1

(−1)kx2k+1

22k−1(k − 1)!k!

(
2k + 1

2(k + 1)
+

2k + 1

4k(k + 1)
− 1− 1

4k(k + 1)

)
=

0.

(c) From part (a), J ′0(x) =
∞∑

k=0

(−1)k+1x2k+1

22k+1(k + 1)!k!
= −J1(x).

46. Suppose not, and suppose that k0 is the first integer for which ak 6= bk. Then ak0x
k0 + ak0+1x

k0+1 + . . . =
bk0x

k0 + bk0+1x
k0+1 + . . . Divide by xk0 and let x → 0 to show that ak0 = bk0 which contradicts the assumption

that they were not equal. Thus ak = bk for all k.

Chapter 9 Review Exercises

7. The series converges for |x− x0| < R and may or may not converge at x = x0 ±R.
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8. (a)
∞∑

k=0

f (k)(0)

k!
xk. (b)

∞∑

k=0

f (k)(x0)

k!
(x− x0)k.

9. (a) Always true by Theorem 9.4.2.

(b) Sometimes false, for example the harmonic series diverges but
∑

(1/k2) converges.

(c) Sometimes false, for example f(x) = sinπx, ak = 0, L = 0.

(d) Always true by the comments which follow Example 3(d) of Section 9.1.

(e) Sometimes false, for example an =
1

2
+ (−1)n

1

4
.

(f) Sometimes false, for example uk = 1/2.

(g) Always false by Theorem 9.4.3.

(h) Sometimes false, for example uk = 1/k, vk = 2/k.

(i) Always true by the Comparison Test.

(j) Always true by the Comparison Test.

(k) Sometimes false, for example
∑

(−1)k/k.

(l) Sometimes false, for example
∑

(−1)k/k.

10. (a) False, f(x) is not differentiable at x = 0, Definition 9.8.1.

(b) True: sn = 1 if n is odd and s2n = 1 + 1/(n+ 1); lim
n→+∞

sn = 1.

(c) False, lim ak 6= 0.

11. (a) an =
n+ 2

(n+ 1)2 − n2
=

n+ 2

((n+ 1) + n)((n+ 1)− n)
=

n+ 2

2n+ 1
, limit = 1/2.

(b) an = (−1)n−1 n

2n+ 1
, limit does not exist because of alternating signs.

12. ak =
√
ak−1 = a

1/2
k−1 = a

1/4
k−2 = . . . = a

1/2k−1

1 = c1/2
k

.

(a) If c = 1/2 then lim
k→+∞

ak = 1. (b) If c = 3/2 then lim
k→+∞

ak = 1.

13. (a) an+1/an = (n+ 1− 10)4/(n− 10)4 = (n− 9)4/(n− 10)4. Since n− 9 > n− 10, for all n > 10 it follows that
(n− 9)4 > (n− 10)4 and thus that an+1/an > 1 for all n > 10, hence the sequence is eventually strictly monotone
increasing.

(b)
100n+1

(2(n+ 1))!(n+ 1)!
· (2n)!n!

100n
=

100

(2n+ 2)(2n+ 1)(n+ 1)
< 1 for n ≥ 3, so the sequence is eventually strictly

monotone decreasing.

14. (a) an = (−1)n. (b) an = n.
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15. (a) Geometric series, r = 1/5, |r| = 1/5 < 1, series converges.

(b) 1/(5k + 1) < 1/5k, Comparison Test with part (a), series converges.

16. (a) Converges by the Alternating Series Test.

(b) Absolutely convergent:
∞∑

k=1

[
k + 2

3k − 1

]k
converges by the Root Test.

17. (a)
1

k3 + 2k + 1
<

1

k3
,
∞∑

k=1

1/k3 converges (p-series with p = 3 > 1), so
∞∑

k=1

1

k3 + 2k + 1
converges by the

Comparison Test.

(b) Limit Comparison Test, compare with the divergent p-series (p = 2/5 < 1)
∞∑

k=1

1

k2/5
, diverges.

18. (a)
∞∑

k=1

ln k

k
√
k

=
∞∑

k=2

ln k

k
√
k

because ln 1 = 0,

∫ +∞

2

lnx

x3/2
dx = lim

`→+∞

[
−2 lnx

x1/2
− 4

x1/2

]`

2

=
√

2(ln 2 + 2) which implies

that
∞∑

k=2

ln k

k3/2
converges. (Integral Test, assumptions are true.)

(b) Comparison Test:
k4/3

8k2 + 5k + 1
≥ k4/3

8k2 + 5k2 + k2
=

1

14k2/3
,

1

14

∞∑

k=1

1

k2/3
diverges (p-series with p = 2/3 <

1), so the original series also diverges.

19. (a) Comparison Test:
9√
k + 1

≥ 9√
k +
√
k

=
9

2
√
k

,
9

2

∞∑

k=1

1√
k

diverges (p-series with p = 1/2 < 1), so the original

series also diverges.

(b) Converges absolutely using the Comparison Test:

∣∣∣∣
cos(1/k)

k2

∣∣∣∣ ≤
1

k2
and

+∞∑

k=1

1

k2
converges (p-series with

p = 2 > 1).

20. (a) Comparison Test:
k−1/2

2 + sin2 k
>

k−1

2 + 1
=

1

3k
,

1

3

∞∑

k=1

1

k
diverges (harmonic series), so the original series also

diverges.

(b) Absolutely convergent:
∞∑

k=1

1

k2 + 1
converges (Comparison Test with the p-series

∑
1/k2).

21.
∞∑

k=0

1

5k
−

99∑

k=0

1

5k
=

∞∑

k=100

1

5k
=

1

5100

∞∑

k=0

1

5k
=

1

4 · 599
.

22. (a) u100 =
100∑

k=1

uk −
99∑

k=1

uk =

(
2− 1

100

)
−
(

2− 1

99

)
=

1

9900
.

(b) u1 = 1; for k ≥ 2, uk =

(
2− 1

k

)
−
(

2− 1

k − 1

)
=

1

k(k − 1)
, lim
k→+∞

uk = 0.
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(c)
∞∑

k=1

uk = lim
n→+∞

n∑

k=1

uk = lim
n→+∞

(
2− 1

n

)
= 2.

23. (a)
∞∑

k=1

(
3

2k
− 2

3k

)
=
∞∑

k=1

3

2k
−
∞∑

k=1

2

3k
=

(
3

2

)
1

1− (1/2)
−
(

2

3

)
1

1− (1/3)
= 2 (geometric series).

(b)
n∑

k=1

[ln(k + 1)− ln k] = ln(n+ 1), so
∞∑

k=1

[ln(k + 1)− ln k] = lim
n→+∞

ln(n+ 1) = +∞, diverges.

(c) lim
n→+∞

n∑

k=1

1

2

(
1

k
− 1

k + 2

)
= lim
n→+∞

1

2

(
1 +

1

2
− 1

n+ 1
− 1

n+ 2

)
=

3

4
.

(d) lim
n→+∞

n∑

k=1

[
tan−1(k + 1)− tan−1 k

]
= lim
n→+∞

[
tan−1(n+ 1)− tan−1(1)

]
=
π

2
− π

4
=
π

4
.

24. (a) ρ = lim
k→+∞

(
2k

k!

)1/k

= lim
k→+∞

2
k
√
k!

= 0, converges.

(b) ρ = lim
k→+∞

u
1/k
k = lim

k→+∞
k
k
√
k!

= e, diverges.

25. Compare with 1/kp: converges if p > 1, diverges otherwise.

26. By the Ratio Test for absolute convergence, ρ = lim
k→+∞

|x− x0|
b

=
|x− x0|

b
; converges if |x − x0| < b, diverges

if |x − x0| > b. If x = x0 − b,
∞∑

k=0

(−1)k diverges; if x = x0 + b,
∞∑

k=0

1 diverges. The interval of convergence is

(x0 − b, x0 + b).

27. (a) 1 ≤ k, 2 ≤ k, 3 ≤ k, . . . , k ≤ k, therefore 1 · 2 · 3 . . . k ≤ k · k · k . . . k, or k! ≤ kk.

(b)
∑ 1

kk
≤
∑ 1

k!
, converges.

(c) lim
k→+∞

(
1

kk

)1/k

= lim
k→+∞

1

k
= 0, converges.

28. No, (−1)k+1 k

2k − 1
does not approach 0, therefore the given series diverges by the Divergence Test.

29. (a) p0(x) = 1, p1(x) = 1− 7x, p2(x) = 1− 7x+ 5x2, p3(x) = 1− 7x+ 5x2 + 4x3, p4(x) = 1− 7x+ 5x2 + 4x3.

(b) If f(x) is a polynomial of degree n and k ≥ n then the Maclaurin polynomial of degree k is the polynomial
itself; if k < n then it is the truncated polynomial.

30. sinx = x−x3/3! +x5/5!−x7/7! + . . . is an alternating series, so | sinx−x+x3/3!−x5/5!| ≤ x7/7! ≤ π7/(477!) ≤
0.00005.

31. ln(1 + x) = x− x2/2 + . . . ; so |ln(1 + x)− x| ≤ x2/2 by Theorem 9.6.2.

32.

∫ 1

0

1− cosx

x
dx =

[
x2

2 · 2!
− x4

4 · 4!
+

x6

6 · 6!
− . . .

]1

0

=
1

2 · 2!
− 1

4 · 4!
+

1

6 · 6!
−. . ., and

1

6 · 6!
< 0.0005, so

∫ 1

0

1− cosx

x
dx =

1

2 · 2!
− 1

4 · 4!
= 0.2396 to three decimal-place accuracy.
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33. (a) e2 − 1. (b) sinπ = 0. (c) cos e. (d) e− ln 3 = 1/3.

34. (a) x+
1

2
x2 +

3

14
x3 +

3

35
x4 + . . .; ρ = lim

k→+∞
k + 1

3k + 1
|x| = 1

3
|x|, converges if

1

3
|x| < 1, |x| < 3 so R = 3.

(b) −x3 +
2

3
x5 − 2

5
x7 +

8

35
x9 − . . .; ρ = lim

k→+∞
k + 1

2k + 1
|x|2 =

1

2
|x|2, converges if

1

2
|x|2 < 1, |x|2 < 2, |x| <

√
2 so

R =
√

2.

35. (27+x)1/3 = 3(1+x/33)1/3 = 3

(
1 +

1

34
x− 1 · 2

382
x2 +

1 · 2 · 5
3123!

x3 + . . .

)
, alternates after first term,

3 · 2
382

< 0.0005,

√
28 ≈ 3

(
1 +

1

34

)
≈ 3.0370.

36. (x+ 1)ex =
d

dx
(xex) =

d

dx

∞∑

k=0

xk+1

k!
=
∞∑

k=0

k + 1

k!
xk, so set x = 1 to obtain the result.

37. Both (a) and (b): x− 2

3
x3 +

2

15
x5 − 4

315
x7.

Chapter 9 Making Connections

1. P0P1 = a sin θ, P1P2 = a sin θ cos θ, P2P3 = a sin θ cos2 θ, P3P4 = a sin θ cos3 θ, . . . (see figure). Each sum is a
geometric series.

a

P

u
u

u

a sin u cos3 u

a sin u cos2 u

a sin u cos u

a sin u

P1

P0 P2 P4

P3

(a) P0P1 + P1P2 + P2P3 + . . . = a sin θ + a sin θ cos θ + a sin θ cos2 θ + . . . =
a sin θ

1− cos θ
.

(b) P0P1 + P2P3 + P4P5 + . . . = a sin θ + a sin θ cos2 θ + a sin θ cos4 θ + . . . =
a sin θ

1− cos2 θ
=
a sin θ

sin2 θ
= a csc θ.

(c) P1P2 + P3P4 + P5P6 + . . . = a sin θ cos θ + a sin θ cos3 θ + . . . =
a sin θ cos θ

1− cos2 θ
=
a sin θ cos θ

sin2 θ
= a cot θ.

2. (a)
2kA

3k − 2k
+

2kB

3k+1 − 2k+1
=

2k
(
3k+1 − 2k+1

)
A+ 2k

(
3k − 2k

)
B

(3k − 2k) (3k+1 − 2k+1)
=

(
3 · 6k − 2 · 22k

)
A+

(
6k − 22k

)
B

(3k − 2k) (3k+1 − 2k+1)
=

=
(3A+B)6k − (2A+B)22k

(3k − 2k) (3k+1 − 2k+1)
, so 3A+B = 1 and 2A+B = 0, A = 1 and B = −2.

(b) sn =
n∑

k=1

[
2k

3k − 2k
− 2k+1

3k+1 − 2k+1

]
=

n∑

k=1

(ak − ak+1) where ak =
2k

3k − 2k
. But sn = (a1 − a2) + (a2 − a3) +

(a3 − a4) + . . . + (an − an+1) which is a telescoping sum, sn = a1 − an+1 = 2 − 2n+1

3n+1 − 2n+1
, lim
n→+∞

sn =

lim
n→+∞

[
2− (2/3)n+1

1− (2/3)n+1

]
= 2.
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3.
∑

(1/kp) converges if p > 1 and diverges if p ≤ 1, so
∞∑

k=1

(−1)k
1

kp
converges absolutely if p > 1, and converges

conditionally if 0 < p ≤ 1 since it satisfies the Alternating Series Test; it diverges for p ≤ 0 since lim
k→+∞

ak 6= 0.

4. (a) The distance d from the starting point is d = 180− 180

2
+

180

3
− . . .− 180

1000
= 180

[
1− 1

2
+

1

3
− . . .− 1

1000

]
.

From Theorem 9.6.2, 1− 1

2
+

1

3
−. . .− 1

1000
differs from ln 2 by less than 1/1001, so 180(ln 2−1/1001) < d < 180 ln 2,

124.58 < d < 124.77.

(b) The total distance traveled is s = 180 +
180

2
+

180

3
+ . . . +

180

1000
, and from inequality (2) in Section 9.4,

∫ 1001

1

180

x
dx < s < 180 +

∫ 1000

1

180

x
dx, 180 ln 1001 < s < 180(1 + ln 1000), 1243 < s < 1424.

5.

(
1− v2

c2

)−1/2

≈ 1 +
v2

2c2
, so K = m0c

2

[
1√

1− v2/c2
− 1

]
≈ m0c

2(v2/2c2) = m0v
2/2.

6. (a) If
ct

m
≈ 0 then e−ct/m ≈ 1− ct

m
, and v(t) ≈

(
1− ct

m

)(
v0 +

mg

c

)
− mg

c
= v0 −

(cv0

m
+ g
)
t.

(b) The quadratic approximation is v0 ≈
(

1− ct

m
+

(ct)2

2m2

)(
v0 +

mg

c

)
−mg

c
= v0−

(cv0

m
+ g
)
t+

c2

2m2

(
v0 +

mg

c

)
t2.
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Parametric and Polar Curves; Conic Sections

Exercise Set 10.1

1. (a) x+ 1 = t = y − 1, y = x+ 2. (c) t 0 1 2 3 4 5

x −1 0 1 2 3 4

y 1 2 3 4 5 6

2

4

6
y

2 4

t = 0

t = 1
t = 2

t = 3
t = 4

t = 5

x

2. (a) x2 + y2 = 1. (c) t 0 0.2500 0.50 0.7500 1

x 1 0.7071 0.00 −0.7071 −1

y 0 0.7071 1.00 0.7071 0

1

y

–1 1

xt = 1

t = 0.5
t = 0.75 t = 0.25

t = 0

3. t = (x+ 4)/3; y = 2x+ 10.

–8 6

12

x

y

4. t = x+ 3; y = 3x+ 2, −3 ≤ x ≤ 0.

485
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x

y

(0, 2)

(–3, –7)

5. cos t = x/2, sin t = y/5; x2/4 + y2/25 = 1.

–5 5

–5

5

x

y

6. t = x2; y = 2x2 + 4, x ≥ 0.

1

4

8

x

y

7. cos t = (x− 3)/2, sin t = (y − 2)/4; (x− 3)2/4 + (y − 2)2/16 = 1.

7

–2

6

x

y

8. sec2 t− tan2 t = 1; x2 − y2 = 1, x ≤ −1 and y ≥ 0.

–1

x

y

9. cos 2t = 1− 2 sin2 t; x = 1− 2y2, −1 ≤ y ≤ 1.

–1 1

–1

1

x

y
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10. t = (x− 3)/4; y = (x− 3)2 − 9.

x

y

(3, –9)

11. x/2 + y/3 = 1, 0 ≤ x ≤ 2, 0 ≤ y ≤ 3.

x

y

2

3

12. y = x− 1, x ≥ 1, y ≥ 0

1

1

x

y

13. x = 5 cos t, y = −5 sin t, 0 ≤ t ≤ 2π.

5

5

14. x = cos t, y = sin t, π ≤ t ≤ 3π/2.

1

1

-1

-1

15. x = 2, y = t.
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3

-1

2

16. x = 2 cos t, y = 3 sin t, 0 ≤ t ≤ 2π.

2-2

-3

3

17. x = t2, y = t, −1 ≤ t ≤ 1.

1

-1

1

18. x = 1 + 4 cos t, y = −3 + 4 sin t, 0 ≤ t ≤ 2π.

-3 1 5

-3

-7

1

19. (a)

14

0
–35 8

(b) t 0 1 2 3 4 5

x 0 5.5 8 4.5 −8 −32.5

y 1 1.5 3 5.5 9 13.5

(c) x = 0 when t = 0, 2
√

3. (d) For 0 < t < 2
√

2. (e) At t = 2.
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20. (a)

5

0
–2 14

(b) y is always ≥ 1 since cos t ≤ 1. (c) Greater than 5, since cos t ≥ −1.

21. (a)

3

–5

0 20

(b)

o

O

–1 1

22. (a)

1.7

–1.7

–2.3 2.3

(b)

–10 10

^

6

23. (a) IV, because x always increases whereas y oscillates.

(b) II, because (x/2)2 + (y/3)2 = 1, an ellipse.

(c) V, because x2 + y2 = t2 increases in magnitude while x and y keep changing sign.

(d) VI; examine the cases t < −1 and t > −1 and you see the curve lies in the first, second and fourth quadrants
only.

(e) III, because y > 0.

(f) I; since x and y are bounded, the answer must be I or II; since x = y = 0 when t = π/2, the curve passes
through the origin, so it must be I.

24. (a) (a) (IV): from left to right. (b) (II): counterclockwise. (c) (V): counterclockwise. (d) (VI): As t travels from
−∞ to −1, the curve goes from (near) the origin in the fourth quadrant and travels down and right. As t travels
from −1 to +∞ the curve comes from way up in the second quadrant, hits the origin at t = 0, and then makes the
loop in the first quadrant counterclockwise and finally approaches the origin again as t→ +∞. (e) (III): from left
to right. (f) (I): Starting, say, at (1/2, 0) at t = 0, the curve goes up into the first quadrant, loops back through
the origin and into the third quadrant, and then continues the figure-eight.

(b) The two branches corresponding to −1 ≤ t ≤ 0 and 0 ≤ t ≤ 1 coincide, with opposite directions.

25. (a) |R − P |2 = (x − x0)2 + (y − y0)2 = t2[(x1 − x0)2 + (y1 − y0)2] and |Q − P |2 = (x1 − x0)2 + (y1 − y0)2, so
r = |R− P | = |Q− P |t = qt.
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(b) t = 1/2. (c) t = 3/4.

26. x = 2 + t, y = −1 + 2t.

(a) (5/2, 0) (b) (9/4,−1/2) (c) (11/4, 1/2)

27. (a) Eliminate
t− t0
t1 − t0

from the parametric equations to obtain
y − y0

x− x0
=

y1 − y0

x1 − x0
, which is an equation of the

line through the 2 points.

(b) From (x0, y0) to (x1, y1).

(c) x = 3− 2(t− 1), y = −1 + 5(t− 1).

5

–2

0 5

28. (a) If a 6= 0 then t =
x− b
a

and y = c
x− b
a

+ d =
c

a
x +

(
d− bc

a

)
so the graph is the part of the line

y =
c

a
x +

(
d− bc

a

)
with x between at0 + b and at1 + b. If a = 0 then c 6= 0 and the graph is the part of the

vertical line x = b with y between ct0 + d and ct1 + d.

(b)

1

2

3
y

1 2 3

x

(c) If a = 0 the line segment is vertical; if c = 0 it is horizontal.

(d) The curve degenerates to the point (b, d).

29.

6

–2

–2 6

30.

10

–5

–5 10
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31.

3

0
0 3

32.

6

0
0 6

33. False. The parametric curve only gives the part of y = 1− x2 with −1 ≤ x ≤ 1.

34. False. It is the reflection of y = f(x) across the line y = x.

35. True. By equation (4),
dy

dx
=
dy/dt

dx/dt
=

12t3 − 6t2

x′(t)
.

36. False. t = x1/3 so y = x2 +x1/3, y′ = 2x+
1

3
x−2/3, and y′′ = 2− 2

9
x−5/3. For t < 0, x < 0 and y′′ > 2, so the curve

is concave up for t < 0. In fact the only part of the curve which is concave down is the part with 0 < x < 9−3/5;
i.e. 0 < t < 9−1/5.

37.

1

2
y

0.5 1

x

38. x = 1/2− 4t, y = 1/2 for 0 ≤ t ≤ 1/4; x = −1/2, y = 1/2− 4(t− 1/4) for 1/4 ≤ t ≤ 1/2; x = −1/2 + 4(t− 1/2),
y = −1/2 for 1/2 ≤ t ≤ 3/4; x = 1/2, y = −1/2 + 4(t− 3/4) for 3/4 ≤ t ≤ 1.

39. (a) x = 4 cos t, y = 3 sin t. (b) x = −1 + 4 cos t, y = 2 + 3 sin t.

(c)

3

–3

–4 4

5

–1

–5 3

40. (a) t =
x

v0 cosα
, so y = − g

2v2
0 cos2 α

x2 + (tanα)x.
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(b)

x

y

80000 90000

12000

(c) The parametric equations are x = 500
√

3t, y = 500t− 4.9t2. So
dy

dt
= 500− 9.8t = 0 when t =

500

9.8
=

2500

49
.

The maximum height is y

(
2500

49

)
=

625, 000

49
≈ 12755 m.

(d) y = t(500 − 4.9t) = 0 when t = 0 or t =
500

4.9
=

5000

49
. So the horizontal distance is x

(
5000

49

)
=

2, 500, 000
√

3

49
≈ 88370 m.

41. (a) dy/dx =
2t

1/2
= 4t; dy/dx

∣∣
t=−1

= −4; dy/dx
∣∣
t=1

= 4.

(b) y = (2x)2 + 1, dy/dx = 8x, dy/dx
∣∣
x=±(1/2)

= ±4.

42. (a)
dy

dx
=

4 cos t

−3 sin t
= −4

3
cot t;

dy

dx

∣∣∣∣
t=π/4

= −4

3
,
dy

dx

∣∣∣∣
t=7π/4

=
4

3
.

(b) Since
x2

9
+
y2

16
= cos2 t + sin2 t = 1, we have y = ±4

3

√
9− x2. For 0 ≤ t ≤ π, y ≥ 0 so y =

4

3

√
9− x2

and
dy

dx
= − 4x

3
√

9− x2
; at t =

π

4
, x =

3√
2

and
dy

dx
= −4

3
. For π ≤ t ≤ 2π, y ≤ 0 so y = −4

3

√
9− x2 and

dy

dx
=

4x

3
√

9− x2
; at t =

7π

4
, x =

3√
2

and
dy

dx
=

4

3
.

43. From Exercise 41(a),
dy

dx
= 4t so

d2y

dx2
=

d

dt

(
dy

dx

)/
dx

dt
=

4

1/2
= 8. The sign of

d2y

dx2
is positive for all t, including

t = ±1.

44. From Exercise 42(a),
d2y

dx2
=

d

dt

(
dy

dx

)/
dx

dt
=
−(4/3)(− csc2 t)

−3 sin t
= −4

9
csc3 t; negative at t = π/4, positive at

t = 7π/4.

45.
dy

dx
=
dy/dt

dx/dt
=

2

1/(2
√
t)

= 4
√
t,
d2y

dx2
=

d

dt

(
dy

dx

)/
dx

dt
=

2/
√
t

1/(2
√
t)

= 4,
dy

dx

∣∣∣∣
t=1

= 4,
d2y

dx2

∣∣∣∣
t=1

= 4.

46.
dy

dx
=
dy/dt

dx/dt
=
t2 − 1

t
= t− 1

t
,
d2y

dx2
=

d

dt

(
dy

dx

)/
dx

dt
=

(
1 +

1

t2

)/
t =

t2 + 1

t3
,
dy

dx

∣∣∣∣
t=2

=
3

2
,
d2y

dx2

∣∣∣∣
t=2

=
5

8

47.
dy

dx
=
dy/dt

dx/dt
=

sec2 t

sec t tan t
= csc t,

d2y

dx2
=

d

dt

(
dy

dx

)/
dx

dt
=
− csc t cot t

sec t tan t
= − cot3 t,

dy

dx

∣∣∣∣
t=π/3

=
2√
3

,
d2y

dx2

∣∣∣∣
t=π/3

=

− 1

3
√

3
.

48.
dy

dx
=
dy/dt

dx/dt
=

sinh t

cosh t
= tanh t,

d2y

dx2
=

d

dt

(
dy

dx

)/
dx

dt
=

sech2t

cosh t
= sech3t,

dy

dx

∣∣∣∣
t=0

= 0,
d2y

dx2

∣∣∣∣
t=0

= 1.
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49.
dy

dx
=
dy/dθ

dx/dθ
=

cos θ

1− sin θ
;
d2y

dx2
=

d

dθ

(
dy

dx

)/
dx

dθ
=

(1− sin θ)(− sin θ) + cos2 θ

(1− sin θ)2

1

1− sin θ
=

1

(1− sin θ)2
;

dy

dx

∣∣∣
θ=π/6

=

√
3/2

1− 1/2
=
√

3;
d2y

dx2

∣∣∣
θ=π/6

=
1

(1− 1/2)2
= 4.

50.
dy

dx
=

dy/dφ

dx/dφ
=

3 cosφ

− sinφ
= −3 cotφ;

d2y

dx2
=

d

dφ

(
dy

dx

)/
dx

dφ
=
−3(− csc2 φ)

− sinφ
= −3 csc3 φ;

dy

dx

∣∣∣∣
φ=5π/6

= 3
√

3;

d2y

dx2

∣∣∣∣
φ=5π/6

= −24.

51. (a) dy/dx =
−e−t
et

= −e−2t; for t = 1, dy/dx = −e−2, (x, y) = (e, e−1); y−e−1 = −e−2(x−e), y = −e−2x+2e−1.

(b) y = 1/x, dy/dx = −1/x2,m = −1/e2, y − e−1 = − 1

e2
(x− e), y = − 1

e2
x+

2

e
.

52. At t = 1, x = 6 and y = 10.

(a)
dy

dx
=

16t− 2

2
= 8t− 1; for t = 1,

dy

dx
= 7. The tangent line is y − 10 = 7(x− 6), y = 7x− 32.

(b) t =
x− 4

2
so y = 2x2−17x+40. At t = 1, x = 6 so

dy

dx
= 4x−17 = 7 and the tangent line is y−10 = 7(x−6),

y = 7x− 32.

53. dy/dx =
−4 sin t

2 cos t
= −2 tan t.

(a) dy/dx = 0 if tan t = 0; t = 0, π, 2π.

(b) dx/dy = −1

2
cot t = 0 if cot t = 0; t = π/2, 3π/2.

54. dy/dx =
2t+ 1

6t2 − 30t+ 24
=

2t+ 1

6(t− 1)(t− 4)
.

(a) dy/dx = 0 if t = −1/2.

(b) dx/dy =
6(t− 1)(t− 4)

2t+ 1
= 0 if t = 1, 4.

55. (a) a = 1, b = 2.

x

y

1-1

1

-1
a = 2, b = 3.

x

y

1-1

1

-1
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a = 3, b = 4.

x

y

1-1

1

-1
a = 4, b = 5.

x

y

1-1

1

-1

(b) x = y = 0 when t = 0, π;
dy

dx
=

2 cos 2t

cos t
;
dy

dx

∣∣∣∣
t=0

= 2,
dy

dx

∣∣∣∣
t=π

= −2, the equations of the tangent lines are

y = −2x, y = 2x.

56. y(t) = 0 has three solutions, t = 0,±π/2; the last two correspond to the crossing point. For t = ±π/2, m =
dy

dx
=

2

±π ; the tangent lines are given by y = ± 2

π
(x− 2).

57. If x = 4 then t2 = 4, t = ±2, y = 0 for t = ±2 so (4, 0) is reached when t = ±2. dy/dx = (3t2 − 4)/2t. For t = 2,
dy/dx = 2 and for t = −2, dy/dx = −2. The tangent lines are y = ±2(x− 4).

58. If x = 3 then t2−3t+5 = 3, t2−3t+2 = 0, (t−1)(t−2) = 0, t = 1 or 2. If t = 1 or 2 then y = 1 so (3, 1) is reached
when t = 1 or 2. dy/dx = (3t2 + 2t − 10)/(2t − 3). For t = 1, dy/dx = 5, the tangent line is y − 1 = 5(x − 3),
y = 5x− 14. For t = 2, dy/dx = 6, the tangent line is y − 1 = 6(x− 3), y = 6x− 17.

59. (a)

1

–1

–1 1

(b)
dx

dt
= −3 cos2 t sin t and

dy

dt
= 3 sin2 t cos t are both zero when t = 0, π/2, π, 3π/2, 2π, so singular points occur

at these values of t.

60. By equations (4) and (10),
dy

dx
=

dy/dθ

dx/dθ
=

a sin θ

a− a cos θ
=

sin θ

1− cos θ
=

1 + cos θ

sin θ
. The x-intercepts occur when

y = a − a cos θ = 0, so cos θ = 1 and θ = 2πn for some integer n. As θ → (2πn)−, sin θ → 0− and cos θ → 1,

so
dy

dx
=

1 + cos θ

sin θ
→ −∞. As θ → (2πn)+, sin θ → 0+ and cos θ → 1, so

dy

dx
=

1 + cos θ

sin θ
→ +∞. Hence there

are cusps at the x-intercepts. When θ = π + 2πn for some integer n, we have x = πa(2n + 1), which is halfway

between the x-intercepts x = 2πan and x = 2πa(n+ 1). At these points,
dy

dx
=

sin θ

1− cos θ
=

0

1− (−1)
= 0, so the

tangent line is horizontal.

61. (a) From (6),
dy

dx
=

3 sin t

1− 3 cos t
.

(b) At t = 10,
dy

dx
=

3 sin 10

1− 3 cos 10
≈ −0.46402, θ ≈ tan−1(−0.46402) = −0.4345.

62. (a)
dy

dx
= 0 when

dy

dt
= −2 cos t = 0, t = π/2, 3π/2, 5π/2.



Exercise Set 10.1 495

(b)
dx

dt
= 0 when 1 + 2 sin t = 0, sin t = −1/2, t = 7π/6, 11π/6, 19π/6.

63. Eliminate the parameter to get (x−h)2/a2 + (y−k)2/b2 = 1, which is the equation of an ellipse centered at (h, k).
Depending on the relative sizes of h and k, the ellipse may be a circle, or may have a horizontal or vertical major
axis.

(a) Ellipses with a fixed center and varying shapes and sizes.

(b) Ellipses with varying centers and fixed shape and size.

(c) Circles of radius 1 with centers on the line y = x− 1.

64. (a)

1

–1

1

x

y

a = 1/2

3

–3

–1

1

3

x

y

a = 3

5

–5

–1

1

5

x

y

a = 5

(b) (x− a)2 + y2 = (2a cos2 t− a)2 + (2a cos t sin t)2 = 4a2 cos4 t− 4a2 cos2 t+ a2 + 4a2 cos2 t sin2 t = 4a2 cos4 t−
4a2 cos2 t+ a2 + 4a2 cos2 t(1− cos2 t) = a2, a circle about (a, 0) of radius a.

65. L =

∫ 1

0

√
(dx/dt)2 + (dy/dt)2 dt =

∫ 1

0

√
(2t)2 + (t2)2 dt =

∫ 1

0

t
√

4 + t2 dt. Let u = 4 + t2, du = 2t dt. Then

L =

∫ 5

4

1

2

√
u du =

1

3
u3/2

]5

4

=
1

3
(5
√

5− 8).

66. Let t = u2; the curve is also parameterized by x = u− 2, y = 2u3/2, (1 ≤ u ≤ 4). So

L =

∫ 4

1

√
(dx/du)2 + (dy/du)2 du =

∫ 4

1

√
1 + 9u du =

2

27
(1 + 9u)3/2

]4

1

=
2

27
(37
√

37− 10
√

10).

67. The curve is a circle of radius 1, traced one and a half times, so the arc length is
3

2
· 2π · 1 = 3π.

68. L =

∫ π

0

√
(dx/dt)2 + (dy/dt)2 dt =

∫ π

0

√
(cos t− sin t)2 + (cos t+ sin t)2 dt =

∫ π

0

√
2(cos2 t+ sin2 t) dt =

=
∫ π

0

√
2 dt =

√
2π.

69. L =

∫ 1

−1

√
(dx/dt)2 + (dy/dt)2 dt =

∫ 1

−1

√
[e2t(3 cos t+ sin t)]2 + [e2t(3 sin t− cos t)]2 dt =

∫ 1

−1

√
10 e2t dt =

=
1

2

√
10 e2t

]1

−1

=
1

2

√
10 (e2 − e−2).

70. L =

∫ 1/2

0

√
(dx/dt)2 + (dy/dt)2 dt =

∫ 1/2

0

√(
2√

1− t2
)2

+

( −2t

1− t2
)2

dt =

∫ 1/2

0

2

1− t2 dt = ln

∣∣∣∣
t+ 1

t− 1

∣∣∣∣
]1/2

0

=

ln 3.

71. (a) (dx/dθ)2 + (dy/dθ)2 = (a(1 − cos θ))2 + (a sin θ)2 = a2(2 − 2 cos θ), so L =

∫ 2π

0

√
(dx/dθ)2 + (dy/dθ)2 dθ =

a

∫ 2π

0

√
2(1− cos θ) dθ.
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(b) If you type the definite integral from (a) into your CAS, the output should be something equivalent to
“8a”. Here’s a proof that doesn’t use a CAS: cos θ = 1 − 2 sin2(θ/2), so 2(1 − cos θ) = 4 sin2(θ/2), and L =

a

∫ 2π

0

√
2(1− cos θ) dθ = a

∫ 2π

0

2 sin(θ/2) dθ = −4a cos(θ/2)

]2π

0

= 8a.

72. From (10),
dy

dx
=
dy/dθ

dx/dθ
=

sin θ

1− cos θ
, so

(
1 +

(
dy

dx

)2
)
y =

(
1 +

sin2 θ

(1− cos θ)2

)
(a− a cos θ) =

= a
(1− cos θ)2 + sin2 θ

1− cos θ
= a

2− 2 cos θ

1− cos θ
= 2a.

73. (a) The end of the inner arm traces out the circle x1 = cos t, y1 = sin t. Relative to the end of the inner arm, the
outer arm traces out the circle x2 = cos 2t, y2 = − sin 2t. Add to get the motion of the center of the rider cage
relative to the center of the inner arm: x = cos t+ cos 2t, y = sin t− sin 2t.

(b) Same as part (a), except x2 = cos 2t, y2 = sin 2t, so x = cos t+ cos 2t, y = sin t+ sin 2t.

(c) L1 =

∫ 2π

0

[(
dx

dt

)2

+

(
dy

dt

)2
]1/2

dt =

∫ 2π

0

√
5− 4 cos 3t dt ≈ 13.36489321, L2 =

∫ 2π

0

√
5 + 4 cos t dt ≈

13.36489322; L1 and L2 appear to be equal, and indeed, with the substitution u = 3t − π and the periodicity of

cosu, L1 =
1

3

∫ 5π

−π

√
5− 4 cos(u+ π) du =

∫ 2π

0

√
5 + 4 cosu du = L2.

74. (a) The thread leaves the circle at the point x1 = a cos θ, y1 = a sin θ, and the end of the thread is, relative to
the point on the circle, on the tangent line at x2 = aθ sin θ, y2 = −aθ cos θ; adding, x = a(cos θ + θ sin θ), y =
a(sin θ − θ cos θ).

(b) dx/dθ = aθ cos θ, dy/dθ = aθ sin θ; dx/dθ = 0 has solutions θ = 0, π/2, 3π/2; and dy/dθ = 0 has solutions θ =
0, π, 2π. At θ = π/2, dy/dθ > 0, so the direction is North; at θ = π, dx/dθ < 0, so West; at θ = 3π/2, dy/dθ < 0,

so South; at θ = 2π, dx/dθ > 0, so East. Finally, lim
θ→0+

dy

dx
= lim
θ→0+

tan θ = 0, so East.

(c)

–5

5

–5 51

a = 1

x

y

75. x′ = 2t, y′ = 3, (x′)2 + (y′)2 = 4t2 + 9, and S = 2π

∫ 2

0

(3t)
√

4t2 + 9dt = 6π

∫ 4

0

t
√

4t2 + 9dt =
π

2
(4t2 + 9)3/2

]2

0

=

π

2
(125− 27) = 49π.

76. x′ = et(cos t− sin t), y′ = et(cos t+ sin t), (x′)2 + (y′)2 = 2e2t, so S = 2π

∫ π/2

0

(et sin t)
√

2e2tdt =

= 2
√

2π

∫ π/2

0

e2t sin t dt = 2
√

2π

[
1

5
e2t(2 sin t− cos t)

]π/2

0

=
2
√

2

5
π(2eπ + 1).

77. x′ = −2 sin t cos t, y′ = 2 sin t cos t, (x′)2 + (y′)2 = 8 sin2 t cos2 t, so S = 2π

∫ π/2

0

cos2 t
√

8 sin2 t cos2 t dt =
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4
√

2π

∫ π/2

0

cos3 t sin t dt = −
√

2π cos4 t

]π/2

0

=
√

2π.

78. x′ = 6, y′ = 8t, (x′)2 + (y′)2 = 36 + 64t2, so S = 2π

∫ 1

0

6t
√

36 + 64t2 dt = 49π.

79. x′ = −r sin t, y′ = r cos t, (x′)2 + (y′)2 = r2, so S = 2π

∫ π

0

r sin t
√
r2 dt = 2πr2

∫ π

0

sin t dt = 4πr2.

80.
dx

dφ
= a(1−cosφ),

dy

dφ
= a sinφ,

(
dx

dφ

)2
+

(
dy

dφ

)2
= 2a2(1−cosφ), so S = 2π

∫ 2π

0

a(1−cosφ)
√

2a2(1− cosφ) dφ =

2
√

2πa2

∫ 2π

0

(1 − cosφ)3/2dφ, but 1 − cosφ = 2 sin2 φ

2
so (1 − cosφ)3/2 = 2

√
2 sin3 φ

2
for 0 ≤ φ ≤ π and, taking

advantage of the symmetry of the cycloid, S = 16πa2

∫ π

0

sin3 φ

2
dφ = 64πa2/3.

82. For some curves, we may not be able to find a formula for f(x), so a parametric form may be our only option.
For example, for the curve x = t+ et, y = t there is no elementary function f such that y = f(x). Even if we can
find a formula for f(x), the parametric form may provide more information. For example, if the curve is the path
traced out by a moving object, then expressing x and y in terms of time tells us where the object is at any given
time; the y = f(x) form does not.

Exercise Set 10.2

1.

(1,  6)
(3,  3)

(4,  e)
(–1,  r)

0

c/2

(5,  8)

(–6, –p)

2.

(   , L)3
2

0

c/2

(–3,  i)(–5,  @)

(2,  $)

(0,  c)

(2,  g)

3. (a) (3
√

3, 3) (b) (−7/2, 7
√

3/2) (c) (3
√

3, 3) (d) (0, 0) (e) (−7
√

3/2, 7/2) (f) (−5, 0)

4. (a) (−
√

2,−
√

2) (b) (3
√

2,−3
√

2) (c) (2
√

2, 2
√

2) (d) (3, 0) (e) (0,−4) (f) (0, 0)

5. (a) (5, π), (5,−π) (b) (4, 11π/6), (4,−π/6) (c) (2, 3π/2), (2,−π/2) (d) (8
√

2, 5π/4), (8
√

2,−3π/4)

(e) (6, 2π/3), (6,−4π/3) (f) (
√

2, π/4), (
√

2,−7π/4)

6. (a) (2, 5π/6) (b) (−2, 11π/6) (c) (2,−7π/6) (d) (−2,−π/6)
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7. (a) (5, 0.92730) (b) (10,−0.92730) (c) (1.27155, 2.47582)

8. (a) (5, 2.21430) (b) (3.44819, 2.62604) (c) (2.06740, 0.25605)

9. (a) r2 = x2 + y2 = 4; circle.

(b) y = 4; horizontal line.

(c) r2 = 3r cos θ, x2 + y2 = 3x, (x− 3/2)2 + y2 = 9/4; circle.

(d) 3r cos θ + 2r sin θ = 6, 3x+ 2y = 6; line.

10. (a) r cos θ = 5, x = 5; vertical line.

(b) r2 = 2r sin θ, x2 + y2 = 2y, x2 + (y − 1)2 = 1; circle.

(c) r2 = 4r cos θ + 4r sin θ, x2 + y2 = 4x+ 4y, (x− 2)2 + (y − 2)2 = 8; circle.

(d) r =
1

cos θ

sin θ

cos θ
, r cos2 θ = sin θ, r2 cos2 θ = r sin θ, x2 = y; parabola.

11. (a) r cos θ = 3. (b) r =
√

7. (c) r2 + 6r sin θ = 0, r = −6 sin θ.

(d) 9(r cos θ)(r sin θ) = 4, 9r2 sin θ cos θ = 4, r2 sin 2θ = 8/9.

12. (a) r sin θ = −3. (b) r =
√

5. (c) r2 + 4r cos θ = 0, r = −4 cos θ.

(d) r4 cos2 θ = r2 sin2 θ, r2 = tan2 θ, r = ± tan θ.

13. r = 3 sin 2θ.

0

c/2

–3

–3

3

3

14. r = 2 cos 3θ.

0

! /2

2
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15. r = 3− 4 sin
(π

4
θ
)

.

3 6

!4

4

0

" /2

16. r = 2 + 2 sin θ.

-3 -2 -1 0 1 2 3
-1

1

2

3

4

5

17. (a) r = 5.

(b) (x− 3)2 + y2 = 9, r = 6 cos θ.

(c) Example 8, r = 1− cos θ.

18. (a) From (8-9), r = a±b sin θ or r = a±b cos θ. The curve is not symmetric about the y-axis, so Theorem 10.2.1(b)
eliminates the sine function, thus r = a ± b cos θ. The cartesian point (−3, 0) is either the polar point (3, π) or
(−3, 0), and the cartesian point (−1, 0) is either the polar point (1, π) or (−1, 0). A solution is a = 1, b = −2; we
may take the equation as r = 1− 2 cos θ.

(b) x2 + (y + 3/2)2 = 9/4, r = −3 sin θ.

(c) Figure 10.2.19, a = 1, n = 3, r = sin 3θ.

19. (a) Figure 10.2.19, a = 3, n = 2, r = 3 sin 2θ.

(b) From (8-9), symmetry about the y-axis and Theorem 10.2.1(b), the equation is of the form r = a ± b sin θ.
The cartesian points (3, 0) and (0, 5) give a = 3 and 5 = a+ b, so b = 2 and r = 3 + 2 sin θ.

(c) Example 9, r2 = 9 cos 2θ.

20. (a) Example 8 rotated through π/2 radians: a = 3, r = 3− 3 sin θ.

(b) Figure 10.2.19, a = 1, r = cos 5θ.

(c) x2 + (y − 2)2 = 4, r = 4 sin θ.
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21. Line

4

22. Line

(

23. Circle

3

24.

4

Circle 25.

6

Circle

26.

4

2

Cardioid 27. Cardioid

3

6

28.

5

10

Cardioid 29.

4

8

Cardioid 30.

1

3

1

Limaçon

31.

1

2

Cardioid 32.

1 7

4

Limaçon 33.

4

2

3

Limaçon 34. Limaçon

3

1 7

35.

2

5

8

Limaçon

36.

3

5

Limaçon

7

37.

31

7

Limaçon 38. Lemniscate

1

39. Lemniscate

4

40. Spiral

2c
4c

6c

8c

41. Spiral

2c
4c

6c

8c

42.

2c

6c

4c

Spiral 43.

2

Four-petal rose 44.

3

Four-petal rose 45.

9

Eight-petal rose

46.

2

Three-petal rose

47. True. Both have rectangular coordinates (−1/2,−
√

3/2).

48. True. If the graph in rectangular θr-coordinates is symmetric across the r-axis, then f(θ) = f(−θ) for all θ. So
for each point (f(θ), θ) on the graph in polar coordinates, the point (f(−θ),−θ) = (f(θ),−θ) is also on the graph.
But this point is the reflection of (f(θ), θ) across the x-axis, so the graph is symmetric across the x-axis.
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49. False. For π/2 < θ < π, sin 2θ < 0. Hence the point with polar coordinates (sin 2θ, θ) is in the fourth quadrant.

50. False. If 1 < a/b < 2, then a ± b sin θ = b(a/b ± sin θ) > 0, and similarly a ± b cos θ > 0. So none of the curves
described by equations (8-9) pass through the origin.

51. 0 ≤ θ < 4π
-1

1

1-1

52. 0 ≤ θ < 4π
-1

1

1-1

53. 0 ≤ θ < 8π

-3 3

3

-3

54. 0 ≤ θ < 6π

1

-1

1

-1
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55. 0 ≤ θ < 5π

-1-1 1

1

-1

56. 0 ≤ θ < 8π.

57. (a) −4π ≤ θ ≤ 4π.

58. Family I: x2 + (y − b)2 = b2, b < 0, or r = 2b sin θ; Family II: (x− a)2 + y2 = a2, a < 0, or r = 2a cos θ.

59. (a) r =
a

cos θ
, r cos θ = a, x = a. (b) r sin θ = b, y = b.

60. In I, along the x-axis, x = r grows ever slower with θ. In II x = r grows linearly with θ. Hence I: r =
√
θ; II:

r = θ.

61. (a)

0
!/2

(1,"!/4)
(b)

0

!/2(1, 3!/4)

(c)

0
!/2

(1,"!/4)
(d)

0
!/2

("1, !/4)

62. (a)

0
!/2

(1,"3!/4)
(b)

0
!/2

(1, 5!/4)
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(c)
0

!/2 (1, !/4)

(d)

0
!/2

("1, 3!/4)

63. (a)
0

!/2 (2,!/4)

(1, 0)

(1,!/2)

(b)

0

!/2 (1,!/4)

("1, 0)

("1, !/2)

64. (a)
0

!/2(2, 3!/4)

(1, !/2)

(1,!) (b)

0

!/2(1, 3!/4)

("1, !)

("1, !/2)

65. The image of (r0, θ0) under a rotation through an angle α is (r0, θ0 +α). Hence (f(θ), θ) lies on the original curve
if and only if (f(θ), θ+α) lies on the rotated curve, i.e. (r, θ) lies on the rotated curve if and only if r = f(θ−α).

66. r2 = 4 cos 2(θ − π/2) = −4 cos 2θ.

67. (a) r = 1 + cos(θ − π/4) = 1 +

√
2

2
(cos θ + sin θ).

(b) r = 1 + cos(θ − π/2) = 1 + sin θ.

(c) r = 1 + cos(θ − π) = 1− cos θ.

(d) r = 1 + cos(θ − 5π/4) = 1−
√

2

2
(cos θ + sin θ).

68. (a) r2 = Ar sin θ + Br cos θ, x2 + y2 = Ay + Bx, (x − B/2)2 + (y − A/2)2 = (A2 + B2)/4, which is a circle of

radius
1

2

√
A2 +B2.

(b) Formula (4) follows by setting A = 0, B = 2a, (x− a)2 + y2 = a2, the circle of radius a about (a, 0). Formula
(5) is derived in a similar fashion.

69. y = r sin θ = (1 + cos θ) sin θ = sin θ + sin θ cos θ, dy/dθ = cos θ − sin2 θ + cos2 θ = 2 cos2 θ + cos θ − 1 =
(2 cos θ − 1)(cos θ + 1); dy/dθ = 0 if cos θ = 1/2 or if cos θ = −1; θ = π/3 or π (or θ = −π/3, which leads to the
minimum point). If θ = π/3, π, then y = 3

√
3/4, 0 so the maximum value of y is 3

√
3/4 and the polar coordinates

of the highest point are (3/2, π/3).
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70. x = r cos θ = (1 + cos θ) cos θ = cos θ + cos2 θ, dx/dθ = − sin θ − 2 sin θ cos θ = − sin θ(1 + 2 cos θ), dx/dθ = 0 if
sin θ = 0 or if cos θ = −1/2; θ = 0, 2π/3, or π. If θ = 0, 2π/3, π, then x = 2,−1/4, 0 so the minimum value of x
is −1/4. The leftmost point has polar coordinates (1/2, 2π/3).

71. Let (x1, y1) and (x2, y2) be the rectangular coordinates of the points (r1, θ1) and (r2, θ2) then

d =
√

(x2 − x1)2 + (y2 − y1)2 =
√

(r2 cos θ2 − r1 cos θ1)2 + (r2 sin θ2 − r1 sin θ1)2 =

=
√
r2
1 + r2

2 − 2r1r2(cos θ1 cos θ2 + sin θ1 sin θ2) =
√
r2
1 + r2

2 − 2r1r2 cos(θ1 − θ2). An alternate proof follows di-
rectly from the Law of Cosines.

72. From Exercise 71, d =
√

9 + 4− 2 · 3 · 2 cos(π/6− π/3) =
√

13− 6
√

3 ≈ 1.615.

73. The tips occur when θ = 0, π/2, π, 3π/2 for which r = 1: d =
√

12 + 12 − 2(1)(1) cos(±π/2) =
√

2. Geometrically,
find the distance between, e.g., the points (0, 1) and (1, 0).

74. The tips are located at r = 1, θ = π/6, 5π/6, 3π/2 and, for example, d =
√

1 + 1− 2 cos(5π/6− π/6) =

=
√

2(1− cos(2π/3)) =
√

3. By trigonometry, d = 2 sin(π/3) =
√

3.

75. (a) 0 = (r2 + a2)2 − a4 − 4a2r2 cos2 θ = r4 + a4 + 2r2a2 − a4 − 4a2r2 cos2 θ = r4 + 2r2a2 − 4a2r2 cos2 θ, so
r2 = 2a2(2 cos2 θ − 1) = 2a2 cos 2θ.

(b) The distance from the point (r, θ) to (a, 0) is (from Exercise 73(a))
√
r2 + a2 − 2ra cos(θ − 0) =

√
r2 − 2ar cos θ + a2, and to the point (a, π) is

√
r2 + a2 − 2ra cos(θ − π) =

=
√
r2 + 2ar cos θ + a2, and their product is

√
(r2 + a2)2 − 4a2r2 cos2 θ =

√
r4 + a4 + 2a2r2(1− 2 cos2 θ) =

√
4a4 cos2 2θ + a4 + 2a2(2a2 cos 2θ)(− cos 2θ) =

a2.

76. lim
θ→0+

y = lim
θ→0+

r sin θ = lim
θ→0+

sin θ

θ
= 1, and lim

θ→0+
x = lim

θ→0+
r cos θ = lim

θ→0+

cos θ

θ
= +∞.

1

–1

–1 2

77. lim
θ→0±

y = lim
θ→0±

r sin θ = lim
θ→0±

sin θ

θ2
= lim
θ→0±

sin θ

θ
lim
θ→0±

1

θ
= 1 · lim

θ→0±

1

θ
, so lim

θ→0±
y does not exist.

78. Let r = a sinnθ (the proof for r = a cosnθ is similar). If θ starts at 0, then θ would have to increase by some
positive integer multiple of π radians in order to reach the starting point and begin to retrace the curve. Let (r, θ)
be the coordinates of a point P on the curve for 0 ≤ θ < 2π. Now a sinn(θ+ 2π) = a sin(nθ+ 2πn) = a sinnθ = r
so P is reached again with coordinates (r, θ+ 2π) thus the curve is traced out either exactly once or exactly twice
for 0 ≤ θ < 2π. If for 0 ≤ θ < π, P (r, θ) is reached again with coordinates (−r, θ+ π) then the curve is traced out
exactly once for 0 ≤ θ < π, otherwise exactly once for 0 ≤ θ < 2π. But

a sinn(θ + π) = a sin(nθ + nπ) =

{
a sinnθ, n even
−a sinnθ, n odd

so the curve is traced out exactly once for 0 ≤ θ < 2π if n is even, and exactly once for 0 ≤ θ < π if n is odd.
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79. (a)

0

! /2

2

(b) Replacing θ with −θ changes r = 2 − sin(θ/2) into r = 2 + sin(θ/2) which is not an equivalent equation.
But the locus of points satisfying the first equation, when θ runs from 0 to 4π, is the same as the locus of points
satisfying the second equation when θ runs from 0 to 4π, as can be seen under the change of variables (equivalent
to reversing direction of θ) θ → 4π − θ, for which 2 + sin(4π − θ) = 2− sin θ.

80. The curve is symmetric with respect to rotation about the origin through an angle of 2π/n. If a < 1 it has n

‘lobes’ and does not pass through the origin. It can be shown that the curve is convex if a ≤ 1

n2 + 1
; otherwise

it has n ‘dimples’ between the lobes. If a = 1 it still has n lobes but each one just touches the origin. If a > 1 it
passes through the origin and has 2n lobes. For n odd, half of the lobes are contained in the other half; for n even
none of them are contained in others. Some examples are shown below:

n = 3, a = 0.09 <
1

n2 + 1

1

n = 3, a = 0.5 >
1

n2 + 1

1

n = 3, a = 1

1 2

n = 3, a = 2

1 2 3

n = 3, a = 4

3 5

n = 4, a = 2

1 2 3
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Exercise Set 10.3

1. Substituting θ = π/6, r = 1, and dr/dθ =
√

3 in equation (2) gives slope m =
√

3.

2. As in Exercise 1, θ = π/2, dr/dθ = −1, r = 1, m = 1.

3. As in Exercise 1, θ = 2, dr/dθ = −1/4, r = 1/2, m =
tan 2− 2

2 tan 2 + 1
.

4. As in Exercise 1, θ = π/6, dr/dθ = 4
√

3a, r = 2a, m = 3
√

3/5.

5. As in Exercise 1, θ = π/4, dr/dθ = −3
√

2/2, r =
√

2/2, m = 1/2.

6. As in Exercise 1, θ = π, dr/dθ = 3, r = 4, m = 4/3.

7. m =
dy

dx
=

r cos θ + (sin θ)(dr/dθ)

−r sin θ + (cos θ)(dr/dθ)
=

cos θ + 2 sin θ cos θ

− sin θ + cos2 θ − sin2 θ
; if θ = 0, π/2, π, then m = 1, 0,−1.

8. m =
dy

dx
=

cos θ(4 sin θ − 1)

4 cos2 θ + sin θ − 2
; if θ = 0, π/2, π then m = −1/2, 0, 1/2.

9. dx/dθ = −a sin θ(1 + 2 cos θ), dy/dθ = a(2 cos θ − 1)(cos θ + 1).

The tangent line is horizontal if dy/dθ = 0 and dx/dθ 6= 0. dy/dθ = 0 when cos θ = 1/2 or cos θ = −1 so θ = π/3,
5π/3, or π; dx/dθ 6= 0 for θ = π/3 and 5π/3. For the singular point θ = π we find that lim

θ→π
dy/dx = 0. There are

horizontal tangent lines at (3a/2, π/3), (0, π), and (3a/2, 5π/3).

The tangent line is vertical if dy/dθ 6= 0 and dx/dθ = 0. dx/dθ = 0 when sin θ = 0 or cos θ = −1/2 so θ = 0, π,
2π/3, or 4π/3; dy/dθ 6= 0 for θ = 0, 2π/3, and 4π/3. The singular point θ = π was discussed earlier. There are
vertical tangent lines at (2a, 0), (a/2, 2π/3), and (a/2, 4π/3).

10. dx/dθ = a(cos2 θ − sin2 θ) = a cos 2θ, dy/dθ = 2a sin θ cos θ = a sin 2θ.

The tangent line is horizontal if dy/dθ = 0 and dx/dθ 6= 0. dy/dθ = 0 when θ = 0, π/2, π, 3π/2; dx/dθ 6= 0 for
(0, 0), (a, π/2), (0, π), (−a, 3π/2); in reality only two distinct points.

The tangent line is vertical if dy/dθ 6= 0 and dx/dθ = 0. dx/dθ = 0 when θ = π/4, 3π/4, 5π/4, 7π/4; dy/dθ 6= 0
there, so vertical tangent line at (a/

√
2, π/4), (a/

√
2, 3π/4), (−a/

√
2, 5π/4), (−a/

√
2, 7π/4), only two distinct

points.

11. Since r(θ + π) = −r(θ), the curve is traced out once as θ goes from 0 to π. dy/dθ = (d/dθ)(sin2 θ cos2 θ) =
(sin 4θ)/2 = 0 at θ = 0, π/4, π/2, 3π/4, π. When θ = 0, π/2, or π, r = 0, so these 3 values give the same point,
and we only have 3 points to consider. dx/dθ = (d/dθ)(sin θ cos3 θ) = cos2 θ(4 cos2 θ − 3) is nonzero when θ = 0,
π/4, or 3π/4. Hence there are horizontal tangents at all 3 of these points. (There is also a singular point at the
origin corresponding to θ = π/2.)

12. dx/dθ = 4 sin2 θ − sin θ − 2, dy/dθ = cos θ(1− 4 sin θ). dy/dθ = 0 when cos θ = 0 or sin θ = 1/4 so θ = π/2, 3π/2,
sin−1(1/4), or π − sin−1(1/4); dx/dθ 6= 0 at these four points, so there is a horizontal tangent at each one.

13. θ = π/6, π/2, 5π/6.

0

c/2

2
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14. θ = 0.

0

c/2
4

15. θ = ±π/4.

0

c/2

4

16. θ = 0, π/2

0

c/2

17. θ = π/3, 5π/3

0

c/2

3

18. θ = 0

0

c/2

19. r2 + (dr/dθ)2 = a2 + 02 = a2, L =

∫ 2π

0

a dθ = 2πa.
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20. r2 + (dr/dθ)2 = (2a cos θ)2 + (−2a sin θ)2 = 4a2, L =

∫ π/2

−π/2
2a dθ = 2πa.

21. r2 + (dr/dθ)2 = [a(1− cos θ)]2 + [a sin θ]2 = 4a2 sin2(θ/2), L = 2

∫ π

0

2a sin(θ/2) dθ = 8a.

22. r2 + (dr/dθ)2 = (e3θ)2 + (3e3θ)2 = 10e6θ, L =

∫ 2

0

√
10e3θ dθ =

√
10(e6 − 1)/3.

23. (a) r2 + (dr/dθ)2 = (cosnθ)2 + (−n sinnθ)2 = cos2 nθ + n2 sin2 nθ = (1 − sin2 nθ) + n2 sin2 nθ = 1 + (n2 −
1) sin2 nθ. The top half of the petal along the polar axis is traced out as θ goes from 0 to π/(2n), so L =

2

∫ π/(2n)

0

√
1 + (n2 − 1) sin2 nθ dθ.

(b) L = 2

∫ π/4

0

√
1 + 3 sin2 2θ dθ ≈ 2.42.

(c)
n 2 3 4 5 6 7 8 9 10 11
L 2.42211 2.22748 2.14461 2.10100 2.07501 2.05816 2.04656 2.03821 2.03199 2.02721

n 12 13 14 15 16 17 18 19 20
L 2.02346 2.02046 2.01802 2.01600 2.01431 2.01288 2.01167 2.01062 2.00971

The limit seems to be 2. This is to be expected, since as n → +∞ each petal more closely resembles a pair of
straight lines of length 1.

24. (a)

1
0

! /2

(b) r2 + (dr/dθ)2 = (e−θ/8)2 + (−1

8
e−θ/8)2 =

65

64
e−θ/4, so L =

√
65

8

∫ +∞

0

e−θ/8 dθ.

(c) L = lim
θ0→+∞

√
65

8

∫ θ0

0

e−θ/8 dθ = lim
θ0→+∞

√
65(1− e−θ0/8) =

√
65.

25. (a)

∫ π

π/2

1

2
(1− cos θ)2 dθ. (b)

∫ π/2

0

2 cos2 θ dθ. (c)

∫ π/2

0

1

2
sin2 2θ dθ.

(d)

∫ 2π

0

1

2
θ2 dθ. (e)

∫ π/2

−π/2

1

2
(1− sin θ)2 dθ. (f)

∫ π/4

−π/4

1

2
cos2 2θ dθ =

∫ π/4

0

cos2 2θ dθ.

26. A =

∫ 2π

0

1

2
θ2 dθ =

1

6
θ3

]2π

0

=
4π3

3
.

27. (a) A =

∫ π

0

1

2
4a2 sin2 θ dθ = πa2. (b) A =

∫ π/2

−π/2

1

2
4a2 cos2 θ dθ = πa2.
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28. (a) r2 = 2r sin θ + 2r cos θ, x2 + y2 − 2y − 2x = 0, (x− 1)
2

+ (y − 1)
2

= 2.

(b) The circle’s radius is
√

2, so its area is π(
√

2)2 = 2π. A =

∫ 3π/4

−π/4

1

2
(2 sin θ + 2 cos θ)2 dθ = 2π.

29. A =

∫ 2π

0

1

2
(2 + 2 sin θ)2 dθ = 6π.

30. A =

∫ π/2

0

1

2
(1 + cos θ)2 dθ =

3π

8
+ 1.

31. A = 6

∫ π/6

0

1

2
(16 cos2 3θ) dθ = 4π.

32. The petal in the first quadrant has area

∫ π/2

0

1

2
4 sin2 2θ dθ =

π

2
, so total area = 2π.

33. A = 2

∫ π

2π/3

1

2
(1 + 2 cos θ)2 dθ = π − 3

√
3

2
.

34. A =

∫ 3

1

2

θ2
dθ =

4

3
.

35. Area = A1 −A2 =

∫ π/2

0

1

2
4 cos2 θ dθ −

∫ π/4

0

1

2
cos 2θ dθ =

π

2
− 1

4
.

36. Area = A1 −A2 =

∫ π

0

1

2
(1 + cos θ)2 dθ −

∫ π/2

0

1

2
cos2 θ dθ =

5π

8
.

37. The circles intersect when cos θ =
√

3 sin θ, tan θ = 1/
√

3, θ = π/6, so A = A1 + A2 =

∫ π/6

0

1

2
(4
√

3 sin θ)2 dθ +

∫ π/2

π/6

1

2
(4 cos θ)2 dθ = 2π − 3

√
3 +

4π

3
−
√

3 =
10π

3
− 4
√

3.

38. The curves intersect when 1 + cos θ = 3 cos θ, cos θ = 1/2, θ = ±π/3, so the total area is A = 2

∫ π/3

0

1

2
(1 +

cos θ)2 dθ + 2

∫ π/2

π/3

1

2
9 cos2 θ dθ = 2

(
π

4
+

9
√

3

16
+

3π

8
− 9
√

3

16

)
=

5π

4
.

39. A = 2

∫ π/2

π/6

1

2
[9 sin2 θ − (1 + sin θ)2] dθ = π.

40. A = 2

∫ π

0

1

2
[16− (2− 2 cos θ)2] dθ = 10π.

41. A = 2

∫ π/3

0

1

2
[(2 + 2 cos θ)2 − 9] dθ =

9
√

3

2
− π.

42. A = 2

∫ π/4

0

1

2
(2 sin θ)2 dθ =

[
2θ − sin 2θ

]π/4

0

=
π

2
− 1.
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43. A = 2

[∫ 2π/3

0

1

2
(1/2 + cos θ)2 dθ −

∫ π

2π/3

1

2
(1/2 + cos θ)2 dθ

]
=
π + 3

√
3

4
.

44. A = 2

∫ π/3

0

1

2

[
(2 + 2 cos θ)2 − 9

4
sec2 θ

]
dθ = 2π +

9

4

√
3.

45. A = 2

∫ π/4

0

1

2
(4− 2 sec2 θ) dθ = π − 2.

46. A = 8

∫ π/8

0

1

2
(4a2 cos2 2θ − 2a2) dθ = 2a2.

47. True. When θ = 3π, r = cos(3π/2) = 0 so the curve passes through the origin. Also,
dr

dθ
= −1

2
sin(θ/2) =

1

2
6= 0.

Hence, by Theorem 10.3.1, the line θ = 3π is tangent to the curve at the origin. But θ = 3π is the x-axis.

48. False. By Formula (3), the arc length is

∫ π/2

0

√
(
√
θ)2 +

(
1

2
√
θ

)2

dθ =

∫ π/2

0

√
θ +

1

4θ
dθ ≈ 1.988. The integral

given in the exercise is

∫ π/2

0

√
1 +

1

4θ
dθ ≈ 2.104.

49. False. The area is
θ

2π
times the area of the circle =

θ

2π
· πr2 =

θ

2
r2, not θr2.

50. True. The inner loop is traced out as θ ranges from −π/4 to π/4 and r is ≤ 0 for θ in that range. So Theorem

10.3.4 implies that the area is

∫ π/4

−π/4

1

2
(1−

√
2 cos θ)2 dθ.

51. (a) r is not real for π/4 < θ < 3π/4 and 5π/4 < θ < 7π/4.

(b) A = 4

∫ π/4

0

1

2
a2 cos 2θ dθ = a2.

(c) A = 4

∫ π/6

0

1

2

[
4 cos 2θ − 2

]
dθ = 2

√
3− 2π

3
.

52. A = 2

∫ π/2

0

1

2
sin 2θ dθ = 1.

53. A =

∫ 4π

2π

1

2
a2θ2 dθ −

∫ 2π

0

1

2
a2θ2 dθ = 8π3a2.

54. (a)
dr

dt
= 2 and

dθ

dt
= 1 so

dr

dθ
=
dr/dt

dθ/dt
=

2

1
= 2, r = 2θ + C, r = 10 when θ = 0 so 10 = C, r = 2θ + 10.

(b) r2+(dr/dθ)2 = (2θ+10)2+4, during the first 5 seconds the rod rotates through an angle of (1)(5) = 5 radians so

L =

∫ 5

0

√
(2θ + 10)2 + 4dθ, let u = 2θ+10 to get L =

1

2

∫ 20

10

√
u2 + 4du =

1

2

[u
2

√
u2 + 4 + 2 ln |u+

√
u2 + 4|

]20

10
=

1

2

[
10
√

404− 5
√

104 + 2 ln
20 +

√
404

10 +
√

104

]
≈ 75.7 mm.

55. (a) r3 cos3 θ − 3r2 cos θ sin θ + r3 sin3 θ = 0, r =
3 cos θ sin θ

cos3 θ + sin3 θ
.
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(b) A =

∫ π/2

0

1

2

(
3 cos θ sin θ

cos3 θ + sin3 θ

)2

dθ =
2 sin3 θ − cos3 θ

2(cos3 θ + sin3 θ)

]π/2

0

=
3

2
.

56. (a) A = 2

∫ π/(2n)

0

1

2
a2 cos2 nθ dθ =

πa2

4n
. (b) A = 2

∫ π/(2n)

0

1

2
a2 cos2 nθ dθ =

πa2

4n
.

(c) Total area = 2n · πa
2

4n
=
πa2

2
. (d) Total area = n · πa

2

4n
=
πa2

4
.

57. If the upper right corner of the square is the point (a, a) then the large circle has equation r =
√

2a and the small

circle has equation (x−a)2 +y2 = a2, r = 2a cos θ, so area of crescent = 2

∫ π/4

0

1

2

[
(2a cos θ)2− (

√
2a)2

]
dθ = a2 =

area of square.

58. A =

∫ 2π

0

1

2
(cos 3θ + 2)2 dθ = 9π/2.

0

! /2

2

3

59. A =

∫ π/2

0

1

2
4 cos2 θ sin4 θ dθ = π/16.

0

! /2

0.5

0.5

60. x = r cos θ, y = r sin θ,
dx

dθ
=

dr

dθ
cos θ − r sin θ,

dy

dθ
= r cos θ +

dr

dθ
sin θ,

(
dx

dθ

)2

+

(
dy

dθ

)2

= r2 +

(
dr

dθ

)2

, and

Formula (9) of Section 10.1 becomes L =

∫ β

α

√
r2 +

(
dr

dθ

)2

dθ.

61. tanψ = tan(φ− θ) =
tanφ− tan θ

1 + tanφ tan θ
=

dy

dx
− y

x

1 +
y

x

dy

dx

=

r cos θ + (dr/dθ) sin θ

−r sin θ + (dr/dθ) cos θ
− sin θ

cos θ

1 +

(
r cos θ + (dr/dθ) sin θ)

−r sin θ + (dr/dθ) cos θ)

)(
sin θ

cos θ

) =
r

dr/dθ
.

62. (a) From Exercise 61, tanψ =
r

dr/dθ
=

1− cos θ

sin θ
= tan

θ

2
, so ψ = θ/2.
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(b)

0

! /2

"

"

-2

1

(c) At θ = π/2, ψ = θ/2 = π/4. At θ = 3π/2, ψ = θ/2 = 3π/4.

63. tanψ =
r

dr/dθ
=

aebθ

abebθ
=

1

b
is constant, so ψ is constant.

64. (a) x = r cos θ, y = r sin θ, (dx/dθ)2 + (dy/dθ)2 = (f ′(θ) cos θ− f(θ) sin θ)2 + (f ′(θ) sin θ+ f(θ) cos θ)2 = f ′(θ)2 +

f(θ)2; S =

∫ β

α

2πf(θ) sin θ
√
f ′(θ)2 + f(θ)2 dθ if about θ = 0; similarly for θ = π/2.

(b) f ′ is continuous and no segment of the curve is traced more than once.

65. r2 +

(
dr

dθ

)2

= cos2 θ + sin2 θ = 1, so S =

∫ π/2

−π/2
2π cos2 θ dθ = π2.

66. S =

∫ π/2

0

2πeθ cos θ
√

2e2θ dθ = 2
√

2π

∫ π/2

0

e2θ cos θ dθ =
2
√

2π

5
(eπ − 2).

67. S =

∫ π

0

2π(1−cos θ) sin θ
√

1− 2 cos θ + cos2 θ + sin2 θ dθ = 2
√

2π

∫ π

0

sin θ(1−cos θ)3/2 dθ =
2

5
2
√

2π(1−cos θ)5/2
]π

0
=

32π/5.
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68. S =

∫ π

0

2πa(sin θ)a dθ = 4πa2.

69. (a) Let P and Q have polar coordinates (r1, θ1), (r2, θ2), respectively. Then the perpendicular from Q to OP has

length h = r2 sin(θ2 − θ1) and A =
1

2
hr1 =

1

2
r1r2 sin(θ2 − θ1).

(b) Define θ1, · · · , θn−1 and A1, · · · , An as in the text’s solution to the area problem. Also let θ0 = α and θn = β.
Then An is approximately the area of the triangle whose vertices have polar coordinates (0, 0), (f(θn−1), θn−1), and

(f(θn), θn). From part (a), An ≈
1

2
f(θn−1)f(θn) sin(θn − θn−1), so A =

n∑

k=1

Ak ≈
n∑

k=1

1

2
f(θn−1)f(θn) sin(∆θn).

If the mesh size of the partition is small, then θn−1 ≈ θn and sin(∆θn) ≈ ∆θn, so A ≈
n∑

k=1

1

2
f(θn)2∆θn ≈

∫ β

α

1

2
[f(θ)]2 dθ.

70. Let f(θ) = cos 2θ and g(θ) = 1. As shown in the figure, the graph of r = f(θ) is a 4-petal rose and the graph
of r = g(θ) is a circle; they meet at 4 points. But f(θ) = g(θ) when θ = nπ for integers n; this only gives 2 of
the intersection points, (1, 0) and (1, π). In general, to find all of the intersection points other than the origin, we
must solve the equations f(θ) = g(θ + 2nπ) and f(θ) = −g(θ + (2n+ 1)π) for all integers n. Additionally, if both
f(θ) = 0 and g(θ) = 0 have solutions, then the origin is an intersection point.

1

Exercise Set 10.4

1. (a) 4px = y2, point (1, 1), 4p = 1, x = y2.

(b) −4py = x2, point (3,−3), 12p = 9,−3y = x2.
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(c) a = 3, b = 2,
x2

9
+
y2

4
= 1.

(d) a = 2, b = 3,
x2

4
+
y2

9
= 1.

(e) Asymptotes: y = ±x, so a = b; point (0, 1), so y2 − x2 = 1.

(f) Asymptotes: y = ±x, so b = a; point (2, 0), so
x2

4
− y2

4
= 1.

2. (a) Part (a): vertex (0, 0), p = 1/4; focus (1/4, 0), directrix: x = −1/4. Part (b): vertex (0, 0), p = 3/4; focus
(0,−3/4), directrix: y = 3/4.

(b) Part (c): c =
√
a2 − b2 =

√
5, foci (±

√
5, 0). Part (d): c =

√
a2 − b2 =

√
5, foci (0,±

√
5).

(c) Part (e): c =
√
a2 + b2 =

√
2, foci at (0,±

√
2); asymptotes: y2 − x2 = 0, y = ±x. Part (f): c =

√
a2 + b2 =

√
8 = 2

√
2, foci at (±2

√
2, 0); asymptotes:

x2

4
− y2

4
= 0, y = ±x.

3. (a)

–3 3

–3

3

F(1,0) x

y

x = –1

(b)

x

y

F(0, –2)

y = 2 

–5 5

–5

5

4. (a)

-10

-10

10

x

y

x =5/2

F (-5/2, 0)

(b)

x

y

F(0, 1)

y = –1

5. (a)

x = –1

x

y

F(–7, 1)

V(–4, 1)

(b)

F(1, 1)

1

V (1,   )1

directrix
y = 0

2

x

y
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6. (a)

x

y9
2

x = –

7
2

F(–  , 3)
V(–4, 3)

(b)
!1

1

5

9

x

y

y = 15/16

V(!1, 1)

F(!1, 17/16)

7. (a) c2 = 16− 9 = 7, c =
√

7.

(4, 0)

(0, 3)

(0, –3)

(–4, 0) x

y

(–√7, 0)

(√7, 0)

(b)
x2

1
+
y2

9
= 1, c2 = 9− 1 = 8, c = 2

√
2.

(0, 3)

(0, –3)

(–1, 0) (1, 0)

x

y

(0, √8)

(0, –√8)

8. (a) c2 = 25− 4 = 21, c =
√

21.

x

y

(5, 0)(!5, 0)

(0, 2)

(0, !2)

( 21, 0)(! 21, 0)

(b)
x2

9
+
y2

36
= 1, c2 = 36− 9 = 27, c = 3

√
3.

x

y (3√3, 0)

(3, 0)

(0, 6)

(0, –6)

(–3, 0)

(–3√3, 0)



516 Chapter 10

9. (a)
(x+ 3)2

16
+

(y − 5)2

4
= 1, c2 = 16− 4 = 12, c = 2

√
3.

(1, 5)

(–3, 7)

(–3, 3)

(–7, 5)

x

y

(–3 – 2√3, 5)

(–3 + 2√3, 5)

(b)
x2

4
+

(y + 2)2

9
= 1, c2 = 9− 4 = 5, c =

√
5.

(0, –5)

(0, 1) (0, –2 + √5)

(0, –2 – √5)

(–2, –2) (2, –2)

x

y

10. (a)
(x− 1)2

4
+

(y + 3)2

9
= 1, c2 = 9− 4 = 5, c =

√
5.

(1, –3 + √5)

(1, –3 – √5)

(3, –3)

(1, 0)

(1, –6)

(–1, –3)

x

y

(b)
(x+ 2)2

9
+

(y − 3)2

5
= 1, c2 = 9− 5 = 4, c = 2.

(–2, 3 + √5)

(–2, 3 – √5)

(0, 3)
(–5, 3) (1, 3)

(–4, 3)

x

y

11. (a) c2 = a2 + b2 = 16 + 9 = 25, c = 5.

(–4, 0) (4, 0)

x

y

3
4

y = –   x 3
4

y =    x

(–5, 0) (5, 0)
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(b) y2/4− x2/36 = 1, c2 = 4 + 36 = 40, c = 2
√

10.

x

y

1
3

y = –   x1
3

y =    x

(0, –2)

(0, 2)

(0, 2√10)

(0, –2√10)

12. (a) c2 = a2 + b2 = 9 + 25 = 34, c =
√

34.

(0, –3)

(0, 3)

x

y

(0, √34)

(0, –√34)

3
5

y = –   x 3
5

y =    x

(b) x2/25− y2/16 = 1, c2 = 25 + 16 = 41, c =
√

41.

(–5, 0) (5, 0)

x

y
4
5

y = –   x 4
5

y =    x

(–√41, 0) (√41, 0)

13. (a) c2 = 3 + 5 = 8, c = 2
√

2.

x

y

(2, –4 + √3)

(2, –4 – √3)

(2, –4 – 2√2)

(2, –4 + 2√2)

√3
5

y + 4 =         (x – 2)

√3
5

y + 4 = –         (x – 2)

(b) (x+ 1)2/1− (y − 3)2/2 = 1, c2 = 1 + 2 = 3, c =
√

3.

(–2, 3)

(–1 + √3, 3)(–1 − √3, 3)

(0, 3)

y − 3 = √2(x + 1)

y − 3 = −√2(x + 1)

x

y
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14. (a) (x+ 1)2/4− (y − 1)2/1 = 1, c2 = 4 + 1 = 5, c =
√

5.

(–3, 1)

(1, 1)

x

y

y – 1 = –   (x + 1)1
2

y – 1 =    (x + 1)1
2

(–1 – √5, 1)

(–1 + √5, 1)

(b) (x− 1)2/4− (y + 3)2/64 = 1, c2 = 4 + 64 = 68, c = 2
√

17.

(–1, –3) (3, –3) x

y

y + 3 = –4(x –1)

y + 3 = 4(x –1)

(1 + 2√17, –3)(1 – 2√17, –3)

15. (a) y2 = 4px, p = 3, y2 = 12x. (b) x2 = −4py, p = 1/4, x2 = −y.

16. (a) y2 = 4px, p = 6, y2 = 24x.

(b) The focus is 3 units above the directrix so p = 3/2. The vertex is halfway between the focus and the directrix,
at (1,−1/2). So the equation is (x− 1)2 = 6(y + 1/2).

17. y2 = a(x− h), 4 = a(3− h) and 2 = a(2− h), solve simultaneously to get h = 1, a = 2 so y2 = 2(x− 1).

18. (x− 5)2 = a(y + 3), (9− 5)2 = a(5 + 3) so a = 2, (x− 5)2 = 2(y + 3).

19. (a) x2/9 + y2/4 = 1. (b) b = 4, c = 3, a2 = b2 + c2 = 16 + 9 = 25; x2/16 + y2/25 = 1.

20. (a) c = 1, a2 = b2 + c2 = 2 + 1 = 3; x2/3 + y2/2 = 1.

(b) b2 = 16− 12 = 4; either x2/16 + y2/4 = 1 or x2/4 + y2/16 = 1.

21. (a) a = 6, (−3, 2) satisfies
x2

a2
+
y2

36
= 1 so

9

a2
+

4

36
= 1, a2 =

81

8
;
x2

81/8
+
y2

36
= 1.

(b) The center is midway between the foci so it is at (−1, 2), thus c = 1, b = 2, a2 = 1 + 4 = 5, a =
√

5;
(x+ 1)2/4 + (y − 2)2/5 = 1.

22. (a) Substitute (3, 2) and (1, 6) into x2/A + y2/B = 1 to get 9/A + 4/B = 1 and 1/A + 36/B = 1 which yields
A = 10, B = 40; x2/10 + y2/40 = 1.

(b) The center is at (2,−1) thus c = 2, a = 3, b2 = 9− 4 = 5; (x− 2)2/5 + (y + 1)2/9 = 1.

23. (a) a = 2, c = 3, b2 = 9− 4 = 5; x2/4− y2/5 = 1. (b) a = 2, a/b = 2/3, b = 3; y2/4− x2/9 = 1.

24. (a) Vertices along x-axis: b/a = 3/2 so a = 8/3; x2/(64/9) − y2/16 = 1. Vertices along y-axis: a/b = 3/2 so
a = 6; y2/36− x2/16 = 1.
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(b) c = 5, a/b = 2 and a2 + b2 = 25, solve to get a2 = 20, b2 = 5; y2/20− x2/5 = 1.

25. (a) Foci along the x-axis: b/a = 3/4 and a2 + b2 = 25, solve to get a2 = 16, b2 = 9; x2/16− y2/9 = 1. Foci along
the y-axis: a/b = 3/4 and a2 + b2 = 25 which results in y2/9− x2/16 = 1.

(b) c = 3, b/a = 2 and a2 + b2 = 9 so a2 = 9/5, b2 = 36/5; x2/(9/5)− y2/(36/5) = 1.

26. (a) The center is at (3, 6), a = 3, c = 5, b2 = 25− 9 = 16; (x− 3)2/9− (y − 6)2/16 = 1.

(b) The asymptotes intersect at (3, 1) which is the center, (x − 3)2/a2 − (y − 1)2/b2 = 1 is the form of the
equation because (0, 0) is to the left of both asymptotes, 9/a2− 1/b2 = 1 and a/b = 1 which yields a2 = 8, b2 = 8;
(x− 3)2/8− (y − 1)2/8 = 1.

27. False. The set described is a parabola.

28. True, by the definition of “major axis”.

29. False. The distance is 2p, as shown in Figure 10.4.6.

30. False, unless a = ±1. The equations of the asymptotes can be found by substituting 0 for 1 in the equation of the

hyperbola. So the asymptotes satisfy
y2

a2
− x2 = 0; i.e. y = ±ax.

31. (a) y = ax2 + b, (20, 0) and (10, 12) are on the curve, so 400a+ b = 0 and 100a+ b = 12. Solve for b to get b = 16
ft = height of arch.

(b)
x2

a2
+
y2

b2
= 1, 400 = a2, a = 20;

100

400
+

144

b2
= 1, b = 8

√
3 ft = height of arch.

–20 –10 10 20

(10, 12)

x

y

32. (a) (x− b/2)2 = a(y − h), but (0, 0) is on the parabola so b2/4 = −ah, a = − b
2

4h
, (x− b/2)2 = − b

2

4h
(y − h).

(b) As in part (a), y = −4h

b2
(x− b/2)2 + h, A =

∫ b

0

[
−4h

b2
(x− b/2)2 + h

]
dx =

2

3
bh.

33. We may assume that the vertex is (0, 0) and the parabola opens to the right. Let P (x0, y0) be a point on the
parabola y2 = 4px, then by the definition of a parabola, PF = distance from P to directrix x = −p, so PF = x0+p
where x0 ≥ 0 and PF is a minimum when x0 = 0 (the vertex).

34. Let p = distance (in millions of miles) between the vertex (closest point) and the focus F . Then PF = PD,
40 = 2p+ 40 cos(60◦) = 2p+ 20, and p = 10 million miles.
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F

P
D

p p 20

40

directrix

60˚

2p +20

35. Use an xy-coordinate system so that y2 = 4px is an equation of the parabola. Then (1, 1/2) is a point on the curve
so (1/2)2 = 4p(1), p = 1/16. The light source should be placed at the focus which is 1/16 ft. from the vertex.

36. (a) For any point (x, y), the equation y = b sinh t has a unique solution t, −∞ < t < +∞. On the hyperbola,
x2

a2
= 1 +

y2

b2
= 1 + sinh2 t = cosh2 t, so x = ±a cosh t.

(b)

-2 2

-2

-1

1

2

x

y

37. (a) For any point (x, y), the equation y = b tan t has a unique solution t, −π/2 < t < π/2. On the hyperbola,
x2

a2
= 1 +

y2

b2
= 1 + tan2 t = sec2 t, so x = ±a sec t.

(b)

-2 2

-2

-1

1

2

x

y

38. (x− 2)2 + (y − 4)2 = y2, (x− 2)2 = 8y − 16, (x− 2)2 = 8(y − 2).

39. (4, 1) and (4, 5) are the foci so the center is at (4, 3) thus c = 2, a = 12/2 = 6, b2 = 36 − 4 = 32; (x − 4)2/32 +
(y − 3)2/36 = 1.

40. From the definition of a hyperbola,
∣∣∣
√

(x− 1)2 + (y − 1)2 −
√
x2 + y2

∣∣∣ = 1,
√

(x− 1)2 + (y − 1)2 −
√
x2 + y2 =

±1, transpose the second radical to the right hand side of the equation and square and simplify to get±2
√
x2 + y2 =

−2x− 2y + 1, square and simplify again to get 8xy − 4x− 4y + 1 = 0.

41. Let the ellipse have equation
4

81
x2+

y2

4
= 1, thenA(x) = (2y)2 = 16

(
1− 4x2

81

)
, so V = 2

∫ 9/2

0

16

(
1− 4x2

81

)
dx =

96.
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42. See Exercise 41, A(y) =
√

3x2 =
√

3
81

4

(
1− y2

4

)
, so V = 2

∫ 2

0

√
3

81

4

(
1− y2

4

)
dy = 54

√
3.

43. Assume
x2

a2
+
y2

b2
= 1, A = 4

∫ a

0

b
√

1− x2/a2 dx = πab.

44. In the x′y′-plane an equation of the circle is (x′)2 + (y′)2 = r2 where r is the radius of the cylinder. Let P (x, y)
be a point on the curve in the xy-plane, then x′ = x cos θ and y′ = y so x2 cos2 θ + y2 = r2 which is an equation
of an ellipse in the xy-plane.

45. L = 2a =
√
D2 + p2D2 = D

√
1 + p2 (see figure), so a =

1

2
D
√

1 + p2, but b =
1

2
D, T = c =

√
a2 − b2 =

√
1

4
D2(1 + p2)− 1

4
D2 =

1

2
pD.

D

pD

46. Let d1 and d2 be the distances of the first and second observers, respectively, from the point of the explosion. Then
t = (time for sound to reach the second observer) − (time for sound to reach the first observer) = d2/v − d1/v
so d2 − d1 = vt. For constant v and t the difference of distances, d2 and d1 is constant so the explosion occurred

somewhere on a branch of a hyperbola whose foci are where the observers are. Since d2 − d1 = 2a, a =
vt

2
, b2 =

c2 − v2t2

4
, and

x2

v2t2/4
− y2

c2 − (v2t2/4)
= 1.

47. As in Exercise 46, d2 − d1 = 2a = vt = (299,792,458 m/s)(100 · 10−6 s) ≈ 29979 m = 29.979 km. a2 = (vt/2)2 ≈
224.689 km2; c2 = (50)2 = 2500 km2, b2 = c2 − a2 ≈ 2275.311 km,

x2

224.688
− y2

2275.311
= 1. But y = 200 km, so

x ≈ 64.612 km. The ship is located at (64.612, 200).

48. (a)
x2

225
− y2

1521
= 1, so V = 2

∫ h/2

0

225π

(
1 +

y2

1521

)
dy =

25

2028
πh3 + 225πh ft3.

(b) S = 2

∫ h/2

0

2πx
√

1 + (dx/dy)2 dy = 4π

∫ h/2

0

√√√√225 + y2

(
225

1521
+

(
225

1521

)2
)
dy =

5πh

338

√
1028196 + 194h2 +

7605
√

194

97
π ln

[√
194h+

√
1028196 + 194h2

1014

]
ft2.

49. (a) V =

∫ √a2+b2

a

π
(
b2x2/a2 − b2

)
dx =

πb2

3a2
(b2 − 2a2)

√
a2 + b2 +

2

3
ab2π.

x

y
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(b) V = 2π

∫ √a2+b2

a

x
√
b2x2/a2 − b2 dx = (2b4/3a)π.

x

y

50. (a) Use
x2

9
+
y2

4
= 1, x =

3

2

√
4− y2. We obtain that V =

∫ −2+h

−2

(2)(3/2)
√

4− y2(18)dy = 54

∫ −2+h

−2

√
4− y2dy =

54
[y

2

√
4− y2 + 2 sin−1 y

2

]−2+h

−2
= 27

(
4 sin−1 h− 2

2
+ (h− 2)

√
4h− h2 + 2π

)
ft3.

(b) When h = 4 ft, Vfull = 108 sin−1 1 + 54π = 108π ft3, so solve for h when V = (k/4)Vfull, k = 1, 2, 3, to get
h = 1.19205, 2, 2.80795 ft or 14.30465, 24, 33.69535 in.

51. y =
1

4p
x2, dy/dx =

1

2p
x, dy/dx|x=x0

=
1

2p
x0, the tangent line at (x0, y0) has the formula y − y0 =

x0

2p
(x− x0) =

x0

2p
x− x

2
0

2p
, but

x2
0

2p
= 2y0 because (x0, y0) is on the parabola y =

1

4p
x2. Thus the tangent line is y−y0 =

x0

2p
x−2y0,

y =
x0

2p
x− y0.

52. By implicit differentiation,
dy

dx

∣∣∣∣
(x0,y0)

= − b
2

a2

x0

y0
if y0 6= 0, the tangent line is y−y0 = − b

2

a2

x0

y0
(x−x0), a2y0y−a2y2

0 =

−b2x0x+ b2x2
0, b2x0x+ a2y0y = b2x2

0 + a2y2
0 , but (x0, y0) is on the ellipse so b2x2

0 + a2y2
0 = a2b2; thus the tangent

line is b2x0x+a2y0y = a2b2, x0x/a
2 + y0y/b

2 = 1. If y0 = 0 then x0 = ±a and the tangent lines are x = ±a which
also follows from x0x/a

2 + y0y/b
2 = 1.

53. By implicit differentiation,
dy

dx

∣∣∣∣
(x0,y0)

=
b2

a2

x0

y0
if y0 6= 0, the tangent line is y−y0 =

b2

a2

x0

y0
(x−x0), b2x0x−a2y0y =

b2x2
0 − a2y2

0 = a2b2, x0x/a
2 − y0y/b

2 = 1. If y0 = 0 then x0 = ±a and the tangent lines are x = ±a which also
follow from x0x/a

2 − y0y/b
2 = 1.

54. Use
x2

a2
+
y2

b2
= 1 and

x2

A2
− y2

B2
= 1 as the equations of the ellipse and hyperbola. If (x0, y0) is a point of intersection

then
x2

0

a2
+
y2

0

b2
= 1 =

x2
0

A2
− y2

0

B2
, so x2

0

(
1

A2
− 1

a2

)
= y2

0

(
1

B2
+

1

b2

)
and a2A2y2

0(b2 + B2) = b2B2x2
0(a2 − A2).

Since the conics have the same foci, a2 − b2 = c2 = A2 + B2, so a2 − A2 = b2 + B2. Hence a2A2y2
0 = b2B2x2

0.

From Exercises 52 and 53, the slopes of the tangent lines are − b
2x0

a2y0
and

B2x0

A2y0
, whose product is −b

2B2x2
0

a2A2y2
0

= −1.

Hence the tangent lines are perpendicular.

55. Use implicit differentiation on x2 + 4y2 = 8 to get
dy

dx

∣∣∣∣
(x0,y0)

= − x0

4y0
where (x0, y0) is the point of tangency, but

−x0/(4y0) = −1/2 because the slope of the line is −1/2, so x0 = 2y0. (x0, y0) is on the ellipse so x2
0 + 4y2

0 = 8
which when solved with x0 = 2y0 yields the points of tangency (2, 1) and (−2,−1). Substitute these into the
equation of the line to get k = ±4.

56. Let (x0, y0) be such a point. The foci are at (−
√

5, 0) and (
√

5, 0), the lines are perpendicular if the product of

their slopes is −1 so
y0

x0 +
√

5
· y0

x0 −
√

5
= −1, y2

0 = 5 − x2
0 and 4x2

0 − y2
0 = 4. Solve these to get x0 = ±3/

√
5,

y0 = ±4/
√

5. The coordinates are (±3/
√

5, 4/
√

5), (±3/
√

5,−4/
√

5).
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57. Let (x0, y0) be one of the points; then
dy

dx

∣∣∣∣
(x0,y0)

=
4x0

y0
, the tangent line is y = (4x0/y0)x + 4, but (x0, y0) is on

both the line and the curve which leads to 4x2
0−y2

0 +4y0 = 0 and 4x2
0−y2

0 = 36, so we obtain that x0 = ±3
√

13/2,
y0 = −9.

58. We may assume A > 0, since if A < 0 then we can multiply the equation by −1, and if A = 0 then we can
exchange x with y and thus A with C (C cannot be zero if A = 0). Then Ax2 + Cy2 + Dx + Ey + F =

A

(
x+

D

2A

)2

+ C

(
y +

E

2C

)2

+ F − D2

4A
− E2

4C
= 0.

(a) Let AC > 0. If F <
D2

4A
+
E2

4C
the equation represents an ellipse (a circle if A = C); if F =

D2

4A
+
E2

4C
, the

point x = −D/(2A), y = −E/(2C); and if F >
D2

4A
+
E2

4C
then the graph is empty.

(b) IfAC < 0 and F =
D2

4A
+
E2

4C
, then

[√
A

(
x+

D

2A

)
+
√
−C

(
y +

E

2C

)][√
A

(
x+

D

2A

)
−
√
−C

(
y +

E

2C

)]
=

0, a pair of lines; otherwise a hyperbola.

(c) Assume C = 0, so Ax2 + Dx + Ey + F = 0. If E 6= 0, parabola; if E = 0 then Ax2 + Dx + F = 0. If this
polynomial has roots x = x1, x2 with x1 6= x2 then a pair of parallel lines; if x1 = x2 then one line; if no roots,
then graph is empty. If A = 0, C 6= 0 then a similar argument applies.

59. (a) (x− 1)2 − 5(y + 1)2 = 5, hyperbola.

(b) x2 − 3(y + 1)2 = 0, x = ±
√

3(y + 1), two lines.

(c) 4(x+ 2)2 + 8(y + 1)2 = 4, ellipse.

(d) 3(x+ 2)2 + (y + 1)2 = 0, the point (−2,−1) (degenerate case).

(e) (x+ 4)2 + 2y = 2, parabola.

(f) 5(x+ 4)2 + 2y = −14, parabola.

60. The distance from the point (x, y) to the focus (0, p) is equal to the distance to the directrix y = −p, so x2+(y−p)2 =
(y + p)2, x2 = 4py.

61. The distance from the point (x, y) to the focus (0,−c) plus distance to the focus (0, c) is equal to the constant 2a,

so
√
x2 + (y + c)2 +

√
x2 + (y − c)2 = 2a, x2 +(y+c)2 = 4a2 +x2 +(y−c)2−4a

√
x2 + (y − c)2,

√
x2 + (y − c)2 =

a− c

a
y, and since a2 − c2 = b2,

x2

b2
+
y2

a2
= 1.

62. The distance from the point (x, y) to the focus (−c, 0) less distance to the focus (c, 0) is equal to 2a,
√

(x+ c)2 + y2−√
(x− c)2 + y2 = ±2a, (x + c)2 + y2 = (x − c)2 + y2 + 4a2 ± 4a

√
(x− c)2 + y2,

√
(x− c)2 + y2 = ±

(cx
a
− a
)

,

and, since c2 − a2 = b2,
x2

a2
− y2

b2
= 1.

63. Assume the equation of the parabola is x2 = 4py. The tangent line at P = (x0, y0) (see figure) is given by
(y − y0)/(x − x0) = m = x0/2p. To find the y-intercept set x = 0 and obtain y = −y0. Thus the tangent line
meets the y-axis at Q = (0,−y0). The focus is F = (0, p) = (0, x2

0/4y0), so the distance from P to the focus is√
x2

0 + (y0 − p)2 =
√

4py0 + (y0 − p)2 =
√

(y0 + p)2 = y0 + p and the distance from the focus to Q is p + y0.
Hence triangle FPQ is isosceles, and angles FPQ and FQP are equal. The angle between the tangent line and
the vertical line through P equals angle FQP , so it also equals angle FPQ, as stated in the theorem.
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x

y

Q(0, !y0 )

P (x0, y0 )
F (0, p)

64. (a) tan θ = tan(φ2 − φ1) =
tanφ2 − tanφ1

1 + tanφ2 tanφ1
=

m2 −m1

1 +m1m2
.

(b) Let P (x0, y0) be a point in the first quadrant on the ellipse and let m be the slope of the tangent line at

P . By implicit differentiation, m =
dy

dx

∣∣∣∣
P (x0,y0)

= − b
2

a2

x0

y0
if y0 6= 0. Let m1 and m2 be the slopes of the lines

through P and the foci at (−c, 0) and (c, 0) respectively; then m1 =
y0

x0 + c
and m2 =

y0

x0 − c
. Let α and β be the

angles shown in the figure; then tanα =
m−m2

1 +mm2
=
−(b2x0)/(a2y0)− y0/(x0 − c)

1− (b2x0)/[a2(x0 − c)]
=
−b2x2

0 − a2y2
0 + b2cx0

[(a2 − b2)x0 − a2c] y0
=

−a2b2 + b2cx0

(c2x0 − a2c)y0
=

b2

cy0
, and similarly tan(π − β) =

m−m1

1 +mm1
= − b2

cy0
= − tanβ so tanα = tanβ, α = β. The

proof for the case y0 = 0 follows trivially. By symmetry, the result holds for P in the other three quadrants as
well.

!
" P

c#c

mm1 m2

(c) Let P (x0, y0) be a point in the third quadrant on the hyperbola and let m be the slope of the tangent line at

P . By implicit differentiation, m =
dy

dx

∣∣∣∣
(x0,y0)

=
b2x0

a2y0
if y0 6= 0. Let m1 and m2 be the slopes of the lines through

P and the foci at (−c, 0) and (c, 0) respectively; then m1 =
y0

x0 + c
, m2 =

y0

x0 − c
. Use tanα =

m1 −m
1 +m1m

and

tanβ =
m−m2

1 +mm2
to get tanα = tanβ = − b2

cy0
so α = β. If y0 = 0 the result follows trivially and by symmetry

the result holds for P in the other three quadrants as well.

! "

P

c#c

m

m1

m2

65. Assuming that the major and minor axes have already been drawn, open the compass to the length of half the
major axis, place the point of the compass at an end of the minor axis, and draw arcs that cross the major axis
to both sides of the center of the ellipse. Place the tacks where the arcs intersect the major axis.
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Exercise Set 10.5

1. (a) sin θ =
√

3/2, cos θ = 1/2; x′ = (−2)(1/2) + (6)(
√

3/2) = −1 + 3
√

3, y′ = −(−2)(
√

3/2) + 6(1/2) = 3 +
√

3.

(b) x =
1

2
x′ −

√
3

2
y′ =

1

2
(x′ −

√
3y′), y =

√
3

2
x′ +

1

2
y′ =

1

2
(
√

3x′ + y′);
√

3

[
1

2
(x′ −

√
3y′)

] [
1

2
(
√

3x′ + y′)

]
+

[
1

2
(
√

3x′ + y′)

]2

= 6,

√
3

4
(
√

3(x′)2 − 2x′y′ −
√

3(y′)2) +
1

4
(3(x′)2 + 2

√
3x′y′ + (y′)2) = 6,

3

2
(x′)2 − 1

2
(y′)2 = 6,

3(x′)2 − (y′)2 = 12

(c)

x′

y′

x

y

2. (a) sin θ = 1/2, cos θ =
√

3/2; x′ = (1)(
√

3/2) + (−
√

3)(1/2) = 0, y′ = −(1)(1/2) + (−
√

3)(
√

3/2) = −2.

(b) x =

√
3

2
x′ − 1

2
y′ =

1

2
(
√

3x′ − y′), y =
1

2
x′ +

√
3

2
y′ =

1

2
(x′ +

√
3y′);

2

[
1

2
(
√

3x′ − y′)
]2

+ 2
√

3

[
1

2
(
√

3x′ − y′)
] [

1

2
(x′ +

√
3y′)

]
= 3,

1

2
(3(x′)2− 2

√
3x′y′+ (y′)2) +

√
3

2
(
√

3(x′)2 + 2x′y′−
√

3(y′)2) = 3, 3(x′)2 − (y′)2 = 3, (x′)2/1− (y′)2/3 = 1.

(c)

x

y

x′

y′

3. cot 2θ = (0 − 0)/1 = 0, 2θ = 90◦, θ = 45◦, x = (
√

2/2)(x′ − y′), y = (
√

2/2)(x′ + y′), (y′)2/18 − (x′)2/18 = 1,
hyperbola.

x

y
x′y′

4. cot 2θ = (1− 1)/(−1) = 0, θ = 45◦, x = (
√

2/2)(x′ − y′), y = (
√

2/2)(x′ + y′), (x′)2/4 + (y′)2/(4/3) = 1, ellipse.
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x

y
x′y′

5. cot 2θ = [1 − (−2)]/4 = 3/4, cos 2θ = 3/5, sin θ =
√

(1− 3/5)/2 = 1/
√

5, cos θ =
√

(1 + 3/5)/2 = 2/
√

5,

x = (1/
√

5)(2x′ − y′), y = (1/
√

5)(x′ + 2y′), (x′)2/3− (y′)2/2 = 1, hyperbola.

x

y

x′

y′

6. cot 2θ = (31 − 21)/(10
√

3) = 1/
√

3, 2θ = 60◦, θ = 30◦, x = (1/2)(
√

3x′ − y′), y = (1/2)(x′ +
√

3y′), (x′)2/4 +
(y′)2/9 = 1, ellipse.

x

y

x′

y′

7. cot 2θ = (1 − 3)/(2
√

3) = −1/
√

3, 2θ = 120◦, θ = 60◦, x = (1/2)(x′ −
√

3y′), y = (1/2)(
√

3x′ + y′), y′ = (x′)2,
parabola.

x

y x′

y′

8. cot 2θ = (34 − 41)/(−24) = 7/24, cos 2θ = 7/25, sin θ =
√

(1− 7/25)/2 = 3/5, cos θ =
√

(1 + 7/25)/2 = 4/5,
x = (1/5)(4x′ − 3y′), y = (1/5)(3x′ + 4y′), (x′)2 + (y′)2/(1/2) = 1, ellipse.
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x

y

x′
y′

9. cot 2θ = (9− 16)/(−24) = 7/24, cos 2θ = 7/25, sin θ = 3/5, cos θ = 4/5, x = (1/5)(4x′− 3y′), y = (1/5)(3x′+ 4y′),
(y′)2 = 4(x′ − 1), parabola.

x

y

x′
y′

10. cot 2θ = (5− 5)/(−6) = 0, θ = 45◦, x = (
√

2/2)(x′ − y′), y = (
√

2/2)(x′ + y′), (x′)2/8 + (y′ + 1)2/2 = 1, ellipse.

x

y
x′y′

11. cot 2θ = (52−73)/(−72) = 7/24, cos 2θ = 7/25, sin θ = 3/5, cos θ = 4/5, x = (1/5)(4x′−3y′), y = (1/5)(3x′+4y′),
(x′ + 1)2/4 + (y′)2 = 1, ellipse.

x

y

x′
y′

12. cot 2θ = [6− (−1)]/24 = 7/24, cos 2θ = 7/25, sin θ = 3/5, cos θ = 4/5, x = (1/5)(4x′ − 3y′), y = (1/5)(3x′ + 4y′),
(y′ − 7/5)2/3− (x′ + 1/5)2/2 = 1, hyperbola.
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x

y

x′
y′

13. x′ = (
√

2/2)(x+ y), y′ = (
√

2/2)(−x+ y) which when substituted into 3(x′)2 + (y′)2 = 6 yields x2 + xy + y2 = 3.

14. From (5), x =
1

2
(
√

3x′ − y′) and y =
1

2
(x′ +

√
3y′) so y = x2 becomes

1

2
(x′ +

√
3y′) =

1

4
(
√

3x′ − y′)2; simplify to

get 3(x′)2 − 2
√

3x′y′ + (y′)2 − 2x′ − 2
√

3y′ = 0.

15. Let x = x′ cos θ−y′ sin θ, y = x′ sin θ+y′ cos θ then x2+y2 = r2 becomes (sin2 θ+cos2 θ)(x′)2+(sin2 θ+cos2 θ)(y′)2 =
r2, (x′)2 +(y′)2 = r2. Under a rotation transformation the center of the circle stays at the origin of both coordinate
systems.

16. Multiply the first equation through by cos θ and the second by sin θ and add to get x cos θ + y sin θ = (cos2 θ +
sin2 θ)x′ = x′. Multiply the first by − sin θ and the second by cos θ and add to get y′.

17. Use the Rotation Equations (5).

18. If the line is given by Dx′ + Ey′ + F = 0 then from (6), D(x cos θ + y sin θ) + E(−x sin θ + y cos θ) + F = 0, or
(D cos θ − E sin θ)x+ (D sin θ + E cos θ)y + F = 0, which is a line in the xy-coordinates.

19. Set cot 2θ = (A − C)/B = 0, 2θ = π/2, θ = π/4, cos θ = sin θ = 1/
√

2. Set x = (x′ − y′)/
√

2, y = (x′ + y′)/
√

2
and insert these into the equation to obtain 4y′ = (x′)2; parabola, p = 1. In x′y′-coordinates: vertex (0, 0), focus
(0, 1), directrix y′ = −1. In xy-coordinates: vertex (0, 0), focus (−1/

√
2, 1/
√

2), directrix y = x−
√

2.

20. cot 2θ = (1 − 3)/(−2
√

3) = 1/
√

3, 2θ = π/3, θ = π/6, cos θ =
√

3/2, sin θ = 1/2. Set x =
√

3x′/2 − y′/2, y =
x′/2 +

√
3y′/2 and obtain 4x′ = (y′)2; parabola, p = 1. In x′y′-coordinates: vertex (0, 0), focus (1, 0), directrix

x′ = −1. In xy-coordinates: vertex (0, 0), focus (
√

3/2, 1/2), directrix y = −
√

3x− 2.

21. cot 2θ = (9 − 16)/(−24) = 7/24. Use the method of Example 4 to obtain cos 2θ =
7

25
, so cos θ =

√
1 + cos 2θ

2
=

√
1 + 7

25

2
=

4

5
, sin θ =

√
1− cos 2θ

2
=

3

5
. Set x =

4

5
x′ − 3

5
y′, y =

3

5
x′ +

4

5
y′, and insert these into the original

equation to obtain (y′)2 = 4(x′ − 1); parabola, p = 1. In x′y′-coordinates: vertex (1, 0), focus (2, 0), directrix
x′ = 0. In xy-coordinates: vertex (4/5, 3/5), focus (8/5, 6/5), directrix y = −4x/3.

22. cot 2θ = (1 − 3)/(2
√

3) = −1/
√

3, 2θ = 2π/3, θ = π/3, cos θ = 1/2, sin θ =
√

3/2. Set x = (x′ −
√

3y′)/2,
y = (

√
3x′ + y′)/2, and the equation is transformed into (x′)2 = 8(y′ + 3); parabola, p = 2. In x′y′-coordinates:

vertex (0,−3), focus (0,−1), directrix y′ = −5. In xy-coordinates: vertex (3
√

3/2,−3/2), focus (
√

3/2,−1/2),
directrix y =

√
3x− 10.

23. cot 2θ = (288 − 337)/(−168) = 49/168 = 7/24; proceed as in Exercise 21 to obtain cos θ = 4/5, sin θ = 3/5. Set
x = (4x′−3y′)/5, y = (3x′+4y′)/5 to get (x′)2/16+(y′)2/9 = 1; ellipse, a = 4, b = 3, c =

√
7. In x′y′-coordinates:

foci (±
√

7, 0), vertices (±4, 0), minor axis endpoints (0,±3). In xy-coordinates: foci ±(4
√

7/5, 3
√

7/5), vertices
±(16/5, 12/5), minor axis endpoints ±(−9/5, 12/5).

24. cot 2θ = 0, 2θ = π/2, θ = π/4, cos θ = sin θ = 1/
√

2. Set x = (x′ − y′)/
√

2, y = (x′ + y′)/
√

2 and the equation
becomes (x′)2/16 + (y′)2/9 = 1; ellipse, a = 4, b = 3, c =

√
7. In x′y′-coordinates: foci (±

√
7, 0), vertices (±4, 0),
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minor axis endpoints (0,±3). In xy-coordinates: foci ±(
√

7/2,
√

7/2), vertices ±(2
√

2, 2
√

2), minor axis endpoints

±(−3/
√

2, 3/
√

2).

25. cot 2θ = (31 − 21)/(10
√

3) = 1/
√

3, 2θ = π/3, θ = π/6, cos θ =
√

3/2, sin θ = 1/2. Set x =
√

3x′/2 − y′/2, y =
x′/2+

√
3y′/2 and obtain (x′)2/4+(y′+2)2/9 = 1; ellipse, a = 3, b = 2, c =

√
9− 4 =

√
5. In x′y′-coordinates: foci

(0,−2±
√

5), vertices (0, 1) and (0,−5), ends of minor axis (±2,−2). In xy-coordinates: foci

(
1−
√

5

2
,−
√

3+

√
15

2

)

and

(
1 +

√
5

2
,−
√

3 −
√

15

2

)
, vertices

(
− 1

2
,

√
3

2

)
and

(
5

2
,−5
√

3

2

)
, ends of minor axis

(
1 +
√

3, 1 −
√

3

)
and

(
1−
√

3,−1−
√

3

)
.

26. cot 2θ = 1/
√

3, 2θ = π/3, θ = π/6, cos θ =
√

3/2, sin θ = 1/2. Set x =
√

3x′/2 − y′/2, y = x′/2 +
√

3y′/2
and obtain (x′ − 1)2/16 + (y′)2/9 = 1; ellipse, a = 4, b = 3, c =

√
16− 9 =

√
7. In x′y′-coordinates: foci

(1±
√

7, 0), vertices (5, 0) and (−3, 0), ends of minor axis (1,±3). In xy-coordinates: foci

(√
3 +
√

21

2
,

1 +
√

7

2

)

and

(√
3−
√

21

2
,

1−
√

7

2

)
, vertices

(
5
√

3

2
,

5

2

)
and

(
− 3
√

3

2
,−3

2

)
, ends of minor axis

(√
3− 3

2
,

1 + 3
√

3

2

)
and

(√
3 + 3

2
,

1− 3
√

3

2

)
.

27. cot 2θ = (1 − 11)/(−10
√

3) = 1/
√

3, 2θ = π/3, θ = π/6, cos θ =
√

3/2, sin θ = 1/2. Set x =
√

3x′/2 − y′/2,
y = x′/2 +

√
3y′/2 and obtain (x′)2/16 − (y′)2/4 = 1; hyperbola, a = 4, b = 2, c =

√
20 = 2

√
5. In x′y′-

coordinates: foci (±2
√

5, 0), vertices (±4, 0), asymptotes y′ = ±x′/2. In xy-coordinates: foci ±(
√

15,
√

5), vertices

±(2
√

3, 2), asymptotes y =
5
√

3± 8

11
x.

28. cot 2θ = (17 − 108)/(−312) = 7/24; proceed as in Exercise 21 to obtain cos θ = 4/5, sin θ = 3/5. Set x =
(4x′− 3y′)/5, y = (3x′+ 4y′)/5 to get (y′)2/4− (x′)2/9 = 1; hyperbola, a = 2, b = 3, c =

√
13. In x′y′-coordinates:

foci (0,±
√

13), vertices (0,±2), asymptotes y = ±2x/3. In xy-coordinates: foci ±(−3
√

13

5
,

4
√

13

5
), vertices

±(−6

5
,

8

5
), asymptotes y =

x

18
and y =

17x

6
.

29. cot 2θ = ((−7) − 32)/(−52) = 3/4; proceed as in Example 4 to obtain cos 2θ = 3/5, cos θ =

√
1 + cos 2θ

2
=

2√
5

,

sin θ =
1√
5

. Set x =
2x′ − y′√

5
, y =

x′ + 2y′√
5

and the equation becomes
(x′)2

9
− (y′ − 4)2

4
= 1; hyperbola,

a = 3, b = 2, c =
√

13. In x′y′-coordinates: foci (±
√

13, 4), vertices (±3, 4), asymptotes y′ = 4 ± 2x′/3. In

xy-coordinates: foci

(−4 + 2
√

13√
5

,
8 +
√

13√
5

)
and

(−4− 2
√

13√
5

,
8−
√

13√
5

)
, vertices

(
2√
5
,

11√
5

)
and (−2

√
5,
√

5),

asymptotes y =
7x

4
+ 3
√

5 and y = −x
8

+
3
√

5

2
.

30. cot 2θ = 0, 2θ = π/2, θ = π/4, cos θ = sin θ = 1/
√

2. Set x = (x′ − y′)/
√

2, y = (x′ + y′)/
√

2 and the equation
becomes (y′)2/36 − (x′ + 2)2/4 = 1; hyperbola, a = 6, b = 2,c =

√
36 + 4 = 2

√
10. In x′y′-coordinates: foci

(−2,±2
√

10), vertices (−2,±6), asymptotes y′ = ±3(x′+2). In xy-coordinates: foci (−
√

2−2
√

5,−
√

2+2
√

5) and

(−
√

2+2
√

5,−
√

2−2
√

5), vertices (−4
√

2, 2
√

2) and (2
√

2,−4
√

2), asymptotes y = −2x−3
√

2 and y = −x
2
− 3√

2
.

31. (
√
x+
√
y)2 = 1 = x+y+2

√
xy, (1−x−y)2 = x2 +y2 +1−2x−2y+2xy = 4xy, so x2−2xy+y2−2x−2y+1 = 0.

Set cot 2θ = 0, then θ = π/4. Change variables by the Rotation Equations to obtain 2(y′)2−2
√

2x′+ 1 = 0, which
is the equation of a parabola. The original equation implies that x and y are in the interval [0, 1], so we only get
part of the parabola.
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32. When (5) is substituted into (7), the term x′y′ will occur in the terms A(x′ cos θ − y′ sin θ)2 + B(x′ cos θ −
y′ sin θ)(x′ sin θ+y′ cos θ)+C(x′ sin θ+y′ cos θ)2 = (x′)2(. . .)+x′y′(−2A cos θ sin θ+B(cos2 θ−sin2 θ)+2C cos θ sin θ)+
(y′)2(. . .) + . . ., so the coefficient of x′y′ is B′ = B(cos2 θ − sin2 θ) + 2(C −A) sin θ cos θ.

33. It suffiices to show that the expression B′2 − 4A′C ′ is independent of θ. Set g = B′ = B(cos2 θ − sin2 θ) + 2(C −
A) sin θ cos θ, f = A′ = (A cos2 θ+B cos θ sin θ+C sin2 θ), h = C ′ = (A sin2 θ−B sin θ cos θ+C cos2 θ). It is easy to
show that g′(θ) = −2B sin 2θ+ 2(C−A) cos 2θ, f ′(θ) = (C−A) sin 2θ+B cos 2θ, h′(θ) = (A−C) sin 2θ−B cos 2θ

and it is a bit more tedious to show that
d

dθ
(g2 − 4fh) = 0. It follows that B′2 − 4A′C ′ is independent of θ and

by taking θ = 0, we have B′2 − 4A′C ′ = B2 − 4AC.

34. From equations (9), A′ + C ′ = A(sin2 θ + cos2 θ) + C(sin2 θ + cos2 θ) = A+ C.

35. If A = C then cot 2θ = (A− C)B = 0, so 2θ = π/2, and θ = π/4.

36. If F = 0 then x2 + Bxy = 0, x(x + By) = 0 so x = 0 or x + By = 0 which are lines that intersect at
(0, 0). Suppose F 6= 0, rotate through an angle θ where cot 2θ = 1/B eliminating the cross product term to
get A′(x′)2 + C ′(y′)2 + F ′ = 0, and note that F ′ = F so F ′ 6= 0. From (9), A′ = cos2 θ + B cos θ sin θ =
cos θ(cos θ + B sin θ) and C ′ = sin2 θ − B sin θ cos θ = sin θ(sin θ − B cos θ), so A′C ′ = sin θ cos θ[sin θ cos θ −
B(cos2 θ − sin2 θ) − B2 sin θ cos θ] =

1

2
sin 2θ

[
1

2
sin 2θ −B cos 2θ − 1

2
B2 sin 2θ

]
=

1

4
sin2 2θ[1 − 2B cot 2θ − B2] =

1

4
sin2 2θ[1−2B(1/B)−B2] = −1

4
sin2 2θ(1+B2) < 0, thus A′ and C ′ have unlike signs so the graph is a hyperbola.

Exercise Set 10.6

1. (a) r =
3/2

1− cos θ
, e = 1, d = 3/2.

0

c/2

–2

–2

2

2

(b) r =
3/2

1 + 1
2 sin θ

, e = 1/2, d = 3.

0

c/2

–2

–2 2

2. (a) r =
2

1 + 3
2 cos θ

, e = 3/2, d = 4/3.
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0

c/2

–5 10

–7

7

(b) r =
5/3

1 + sin θ
, e = 1, d = 5/3.

0

c/2

–11

3

–7 7

3. (a) e = 1, d = 8, parabola, opens up.

0

! /2

-12 12

-6

9

(b) r =
4

1 + 3
4 sin θ

, e = 3/4, d = 16/3, ellipse, directrix 16/3 units above the pole.

0

! /2

6

-18

4

-6

4. (a) r =
2

1− 3
2 sin θ

, e = 3/2, d = 4/3, hyperbola, directrix 4/3 units below the pole.

0

! /2

-6 6

-8

4
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(b) r =
3

1 + 1
4 cos θ

, e = 1/4, d = 12, ellipse, directrix 12 units to the right of the pole.

0

! /2

3-4

-3

3

5. (a) d = 2, r =
ed

1 + e cos θ
=

3/2

1 + 3
4 cos θ

=
6

4 + 3 cos θ
.

(b) e = 1, d = 1, r =
ed

1 + e cos θ
=

1

1 + cos θ
.

(c) e = 4/3, d = 3, r =
ed

1 + e sin θ
=

4

1 + 4
3 sin θ

=
12

3 + 4 sin θ
.

6. (a) r =
ed

1± e sin θ
, 2 =

ed

1± e , 6 =
ed

1∓ e , 2 ± 2e = 6 ∓ 6e, upper sign yields e = 1/2, d = 6, r =
3

1 + 1
2 sin θ

=

6

2 + sin θ
.

(b) e = 1, r =
d

1− cos θ
, 2 =

d

2
, d = 4, r =

4

1− cos θ
.

(c) e =
√

2, r =

√
2d

1 +
√

2 cos θ
; r = 2 when θ = 0, so d = 2 +

√
2, r =

2 + 2
√

2

1 +
√

2 cos θ
.

7. (a) r =
3

1 + 1
2 sin θ

, e = 1/2, d = 6, directrix 6 units above pole; if θ = π/2 : r0 = 2; if θ = 3π/2 : r1 = 6, a =

(r0 + r1)/2 = 4, b =
√
r0r1 = 2

√
3, center (0,−2) (rectangular coordinates),

x2

12
+

(y + 2)2

16
= 1.

(b) r =
1/2

1− 1
2 cos θ

, e = 1/2, d = 1, directrix 1 unit left of pole; if θ = π : r0 =
1/2

3/2
= 1/3; if θ = 0 : r1 = 1, a =

2/3, b = 1/
√

3, center = (1/3, 0) (rectangular coordinates),
9

4
(x− 1/3)2 + 3y2 = 1.

8. (a) r =
6/5

1 + 2
5 cos θ

, e = 2/5, d = 3, directrix 3 units right of pole, if θ = 0 : r0 = 6/7, if θ = π : r1 = 2, a =

10/7, b = 2
√

3/
√

7, center (−4/7, 0) (rectangular coordinates),
49

100
(x+ 4/7)2 +

7

12
y2 = 1.

(b) r =
2

1− 3
4 sin θ

, e = 3/4, d = 8/3, directrix 8/3 units below pole, if θ = 3π/2 : r0 = 8/7, if θ = π/2 : r1 =

8, a = 32/7, b = 8/
√

7, center: (0, 24/7) (rectangular coordinates),
7

64
x2 +

49

1024

(
y − 24

7

)2

= 1.

9. (a) r =
3

1 + 2 sin θ
, e = 2, d = 3/2, hyperbola, directrix 3/2 units above pole, if θ = π/2 : r0 = 1; θ = 3π/2 : r =

−3, so r1 = 3, center (0, 2), a = 1, b =
√

3, −x
2

3
+ (y − 2)2 = 1.
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(b) r =
5/2

1− 3
2 cos θ

, e = 3/2, d = 5/3, hyperbola, directrix 5/3 units left of pole, if θ = π : r0 = 1; θ = 0 : r =

−5, r1 = 5, center (−3, 0), a = 2, b =
√

5,
1

4
(x+ 3)2 − 1

5
y2 = 1.

10. (a) r =
4

1− 2 sin θ
, e = 2, d = 2, hyperbola, directrix 2 units below pole, if θ = 3π/2 : r0 = 4/3; θ = π/2 : r1 =

∣∣∣∣
4

1− 2

∣∣∣∣ = 4, center (0,−8/3), a = 4/3, b = 4/
√

3,
9

16

(
y +

8

3

)2

− 3

16
x2 = 1.

(b) r =
15/2

1 + 4 cos θ
, e = 4, d = 15/8, hyperbola, directrix 15/8 units right of pole, if θ = 0 : r0 = 3/2; θ = π :

r1 =

∣∣∣∣−
5

2

∣∣∣∣ = 5/2, a = 1/2, b =

√
15

2
, center (2, 0), 4(x− 2)2 − 4

15
y2 = 1.

11. (a) r =
1
2d

1 + 1
2 cos θ

=
d

2 + cos θ
, if θ = 0 : r0 = d/3; θ = π, r1 = d, 8 = a =

1

2
(r1 + r0) =

2

3
d, d = 12, r =

12

2 + cos θ
.

(b) r =
3
5d

1− 3
5 sin θ

=
3d

5− 3 sin θ
, if θ = 3π/2 : r0 =

3

8
d; θ = π/2, r1 =

3

2
d, 4 = a =

1

2
(r1 + r0) =

15

16
d, d =

64

15
, r =

3(64/15)

5− 3 sin θ
=

64

25− 15 sin θ
.

12. (a) r =
3
5d

1− 3
5 cos θ

=
3d

5− 3 cos θ
, if θ = π : r0 =

3

8
d; θ = 0, r1 =

3

2
d, 4 = b =

3

4
d, d = 16/3, r =

16

5− 3 cos θ
.

(b) r =
1
5d

1 + 1
5 sin θ

=
d

5 + sin θ
, if θ = π/2 : r0 = d/6; θ = 3π/2, r1 = d/4, 5 = c =

1

2
d

(
1

4
− 1

6

)
=

1

24
d, d =

120, r =
120

5 + sin θ
.

13. For a hyperbola, both vertices and the directrix lie between the foci. So if one focus is at the origin and one vertex
is at (5,0), then the directrix must lie to the right of the origin. By Theorem 10.6.2, the equation of the hyperbola

has the form r =
ed

1 + e cos θ
. Since the hyperbola is equilateral, a = b, so c =

√
2a and e = c/a =

√
2. Since

(5, 0) lies on the hyperbola, either r(0) = 5 or r(π) = −5. In the first case the equation is r =
5
√

2 + 5

1 +
√

2 cos θ
; in the

second case it is r =
5
√

2− 5

1 +
√

2 cos θ
.

14. If a hyperbola is equilateral, then a = b, but then c =
√
a2 + b2 =

√
2a2 = a

√
2 and then e = c/a =

√
2. Now let

e =
√

2, then c = a
√

2 and c2 = 2a2, but c2 = a2 + b2, so a2 = b2 and then a = b, so the hyperbola is equilateral.

15. (a) From Figure 10.4.22,
x2

a2
− y2

b2
= 1,

x2

a2
− y2

c2 − a2
= 1,

(
1− c2

a2

)
x2 + y2 = a2 − c2, c2 + x2 + y2 =

( c
a
x
)2

+

a2, (x− c)2 + y2 =
( c
a
x− a

)2

,
√

(x− c)2 + y2 =
c

a
x− a for x > a2/c.

(b) From part (a) and Figure 10.6.1, PF =
c

a
PD,

PF

PD
=
c

a
.

16. (a) e = c/a =
1
2 (r1 − r0)
1
2 (r1 + r0)

=
r1 − r0

r1 + r0
.
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(b) e =
r1/r0 − 1

r1/r0 + 1
, e(r1/r0 + 1) = r1/r0 − 1,

r1

r0
=

1 + e

1− e .

17. (a) e = c/a =
1
2 (r1 + r0)
1
2 (r1 − r0)

=
r1 + r0

r1 − r0
.

(b) e =
r1/r0 + 1

r1/r0 − 1
, e(r1/r0 − 1) = r1/r0 + 1,

r1

r0
=
e+ 1

e− 1
.

18. (a)

–5 5

–5

5

0

c/2

(b) θ = π/2, 3π/2, r = 1.

(c) dy/dx =
r cos θ + (dr/dθ) sin θ

−r sin θ + (dr/dθ) cos θ
; at θ = π/2,m1 = −1,m2 = 1,m1m2 = −1; and at θ = 3π/2,m1 = 1,m2 =

−1,m1m2 = −1.

19. True. A non-circular ellipse can be described by the focus-directrix characterization as shown in Figure 10.6.1, so
its eccentricity satisfies 0 < e < 1 by part (b) of Theorem 10.6.1.

20. False. The eccentricity of a parabola equals 1.

21. False. The eccentricity is determined by the ellipse’s shape, not its size.

22. True. For a parabola e = 1, so equation (3) reduces to r =
d

1 + cos θ
.

23. (a) T = a3/2 = 39.51.5 ≈ 248 yr.

(b) r0 = a(1− e) = 39.5(1− 0.249) = 29.6645 AU ≈ 4,449,675,000 km, r1 = a(1 + e) = 39.5(1 + 0.249) = 49.3355
AU ≈ 7,400,325,000 km.

(c) r =
a(1− e2)

1 + e cos θ
≈ 39.5(1− (0.249)2)

1 + 0.249 cos θ
≈ 37.05

1 + 0.249 cos θ
AU.

(d)

0

! /2

-30 20

-50

50

24. (a) In yr and AU, T = a3/2; in days and km,
T

365
=

(
a

150× 106

)3/2

, so T = 365× 10−9
( a

150

)3/2

days.

(b) T = 365× 10−9

(
57.95× 106

150

)3/2

≈ 87.6 days.
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(c) From (17) the polar equation of the orbit has the form r =
a(1− e2)

1 + e cos θ
=

55490833.8

1 + 0.206 cos θ
km, or r =

0.3699

1 + 0.206 cos θ
AU.

(d)

0

c/2

0.2–0.2

–0.4

0.4

25. (a) a = T 2/3 = 23802/3 ≈ 178.26 AU.

(b) r0 = a(1− e) ≈ 0.8735 AU, r1 = a(1 + e) ≈ 355.64 AU.

(c) r =
a(1− e2)

1 + e cos θ
≈ 1.74

1 + 0.9951 cos θ
AU.

(d)

0

! /2

-300 -200 -100

-20

20

26. (a) By Exercise 15(a), e =
r1 − r0

r1 + r0
≈ 0.092635.

(b) a =
1

2
(r0 + r1) = 225,400,000 km ≈ 1.503 AU, so T = a3/2 ≈ 1.84 yr.

(c) r =
a(1− e2)

1 + e cos θ
≈ 223465774.6

1 + 0.092635 cos θ
km, or ≈ 1.48977

1 + 0.092635 cos θ
AU.

(d)

0

c/2

1.3635

1.49

1.49

1.6419

27. r0 = a(1− e) ≈ 7003 km, hmin ≈ 7003− 6440 = 563 km, r1 = a(1 + e) ≈ 10,726 km, hmax ≈ 10,726− 6440 = 4286
km.

28. r0 = a(1− e) ≈ 651,736 km, hmin ≈ 581,736 km; r1 = a(1 + e) ≈ 6,378,102 km, hmax ≈ 6,308,102 km.
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29. Position the hyperbola so that its foci are on a horizontal line. As e → 1+, the hyperbola becomes ‘pointier’,
squeezed between almost horizontal asymptotes. As e → +∞, it becomes more like a pair of parallel lines, with
almost vertical asymptotes.

e = 1.1 e =
√

2 e = 5

30. Let x be the distance between the foci and z the distance between the center and the directrix. From Figure

10.6.11, x = 2ae and z =
a

e
, so z =

x

2e2
. If x is fixed, then z → +∞ as e→ 0+.

Chapter 10 Review Exercises

1. x(t) =
√

2 cos t, y(t) = −
√

2 sin t, 0 ≤ t ≤ 3π/2.

2. (a) x = f(1− t), y = g(1− t).

3. (a) dy/dx =
1/2

2t
= 1/(4t); dy/dx

∣∣
t=−1

= −1/4; dy/dx
∣∣
t=1

= 1/4.

(b) x = (2y)2 + 1, dx/dy = 8y, dy/dx
∣∣
y=±(1/2)

= ±1/4.

4.
dy

dx
=
t2

t
= t,

d2y

dx2
=

d

dt

(
dy

dx

)/
dx

dt
=

1

t
,
dy

dx

∣∣∣∣
t=2

= 2,
d2y

dx2

∣∣∣∣
t=2

=
1

2
.

5. dy/dx =
4 cos t

−2 sin t
= −2 cot t.

(a) dy/dx = 0 if cot t = 0, t = π/2 + nπ for n = 0,±1, . . .

(b) dx/dy = −1

2
tan t = 0 if tan t = 0, t = nπ for n = 0,±1, . . .

6. We have dx/dt = −20t3 and dy/dt = 20t4, so, by Formula (9) of Section 10.1, L =

∫ 1

0

√
(−20t3)2 + (20t4)2 dt =

20

∫ 1

0

t3
√

1 + t2 dt. Let u = 1 + t2, du = 2t dt. Then L = 20

∫ 2

1

(u − 1)
√
u

1

2
du = 10

∫ 2

1

(u3/2 − u1/2) du =

10

[
2

5
u5/2 − 2

3
u3/2

]2

1

=
8

3
(
√

2 + 1).

7. (a) (−4
√

2,−4
√

2) (b) (7/
√

2,−7/
√

2) (c) (4
√

2, 4
√

2) (d) (5, 0) (e) (0,−2) (f) (0, 0)

8. (a) (
√

2, 3π/4) (b) (−
√

2, 7π/4) (c) (
√

2, 3π/4) (d) (−
√

2,−π/4)

9. (a) (5, 0.6435) (b) (
√

29, 5.0929) (c) (1.2716, 0.6658)
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10. (a) circle (b) rose (c) line (d) limaçon (e) limaçon (f) none (g) none (h) spiral

11. (a) r = 2a/(1 + cos θ), r + x = 2a, x2 + y2 = (2a− x)2, y2 = −4ax+ 4a2, parabola.

(b) r2(cos2 θ − sin2 θ) = x2 − y2 = a2, hyperbola.

(c) r sin(θ − π/4) = (
√

2/2)r(sin θ − cos θ) = 4, y − x = 4
√

2, line.

(d) r2 = 4r cos θ + 8r sin θ, x2 + y2 = 4x+ 8y, (x− 2)2 + (y − 4)2 = 20, circle.

12. (a) r cos θ = 7.

(b) r = 3.

(c) r2 − 6r sin θ = 0, r = 6 sin θ.

(d) 4(r cos θ)(r sin θ) = 9, 4r2 sin θ cos θ = 9, r2 sin 2θ = 9/2.

13. Line

2

14.

6

Circle 15. Cardioid

3

6

16.

1

Lemniscate 17.

4 2

3

Limaçon

18. (a) y = r sin θ = (sin θ)/
√
θ, dy/dθ =

2θ cos θ − sin θ

2θ3/2
= 0 if 2θ cos θ = sin θ, tan θ = 2θ which only happens once

on (0, π]. Since lim
θ→0+

y = 0 and y = 0 at θ = π, y has a maximum when tan θ = 2θ.

(b) θ ≈ 1.16556.

(c) ymax = (sin θ)/
√
θ ≈ 0.85124.

19. (a) x = r cos θ = cos θ − cos2 θ, dx/dθ = − sin θ + 2 sin θ cos θ = sin θ(2 cos θ − 1) = 0 if sin θ = 0 or cos θ = 1/2,
so θ = 0, π, π/3, 5π/3; maximum x = 1/4 at θ = π/3, 5π/3, minimum x = −2 at θ = π.

(b) y = r sin θ = sin θ − sin θ cos θ, dy/dθ = cos θ + 1 − 2 cos2 θ = 0 at cos θ = 1,−1/2, so θ = 0, 2π/3, 4π/3;
maximum y = 3

√
3/4 at θ = 2π/3, minimum y = −3

√
3/4 at θ = 4π/3.

20. Use equation (2) of Section 10.3:
dy

dx
=
dy/dθ

dx/dθ
=

r cos θ + sin θ drdθ
−r sin θ + cos θ drdθ

, then set θ = π/4, dr/dθ =
√

2/2, r = 1+
√

2/2,

m = −1−
√

2.

21. (a) As t runs from 0 to π, the upper portion of the curve is traced out from right to left; as t runs from π to 2π
the bottom portion is traced out from right to left, except for the bottom part of the loop. The loop is traced out

counterclockwise for π + sin−1 1

4
< t < 2π − sin−1 1

4
.

(b) lim
t→0+

x = +∞, lim
t→0+

y = 1; lim
t→π−

x = −∞, lim
t→π−

y = 1; lim
t→π+

x = +∞, lim
t→π+

y = 1; lim
t→2π−

x = −∞, lim
t→2π−

y = 1;

the horizontal asymptote is y = 1.

(c) Horizontal tangent line when dy/dx = 0, or dy/dt = 0, so cos t = 0, t = π/2, 3π/2; vertical tangent line when

dx/dt = 0, so − csc2 t− 4 sin t = 0, t = π + sin−1 1
3
√

4
, 2π − sin−1 1

3
√

4
, t ≈ 3.823, 5.602.
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(d) Since tan θ =
y

x
= tan t, we may take θ = t. r2 = x2+y2 = x2(1+tan2 t) = x2 sec2 t = (4+csc t)2 = (4+csc θ)2,

so r = 4 + csc θ. r = 0 when csc θ = −4, sin θ = −1

4
. The tangent lines at the pole are θ = π + sin−1 1

4
and

θ = 2π − sin−1 1

4
.

22. (a) r = 1/θ, dr/dθ = −1/θ2, r2 + (dr/dθ)2 = 1/θ2 + 1/θ4, L =

∫ π/2

π/4

1

θ2

√
1 + θ2 dθ =

=

[
−
√

1 + θ2

θ
+ ln(θ +

√
1 + θ2)

]π/2

π/4

≈ 0.9457 by Endpaper Integral Table Formula 93.

(b) The integral

∫ +∞

1

1

θ2

√
1 + θ2 dθ diverges by the comparison test (with 1/θ), and thus the arc length is

infinite.

23. A = 2

∫ π

0

1

2
(2 + 2 cos θ)2dθ = 6π.

24. A =

∫ π/2

0

1

2
(1 + sin θ)2dθ =

3π

8
+ 1.

25. A =

∫ π/6

0

1

2
(2 sin θ)2 dθ+

∫ π/3

π/6

1

2
·12 dθ+

∫ π/2

π/3

1

2
(2 cos θ)2 dθ. The first and third integrals are equal, by symmetry,

so A =

∫ π/6

0

4 sin2 θ dθ +
1

2

(π
3
− π

6

)
=

∫ π/6

0

2(1 − cos 2θ) dθ +
π

12
= (2θ − sin 2θ)

]π/6

0

+
π

12
=
π

3
−
√

3

2
+

π

12
=

5π

12
−
√

3

2
.

1 2

1

2

0

! /2

r=1

r=2cos"

r=2sin"

(1,!/6)

(1,!/3)

26. The circle has radius a/2 and lies entirely inside the cardioid, so A =

∫ 2π

0

1

2
a2(1+sin θ)2 dθ−πa2/4 =

3a2

2
π−a

2

4
π =

5a2

4
π.

27.

–3 3

–3

3

3
2

F( , 0)
x

y

3
2

x = –
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28.

x

y

9
4F (0, –   )

9
4

y = 

–5 5

–5

5

29.

23
4

x =

x

y

9
4

F(  , –1)
V(4, –1)

30.

1
2

y =

F(  ,   )1
2

3
2

V(  , 1)1
2

x

y

31. c2 = 25− 4 = 21, c =
√

21.

(0, 5)

(0, –5)

(–2, 0) (2, 0)

x

y

(0, –√21)

(0, √21)

32.
x2

9
+
y2

4
= 1, c2 = 9− 4 = 5, c =

√
5.

(0, 2)

(0, –2)

(–3, 0)

(3, 0)

x

y

(–√5, 0)

(√5, 0)

33.
(x− 1)2

16
+

(y − 3)2

9
= 1, c2 = 16− 9 = 7, c =

√
7.
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(1, 6)

(1, 0)

x

y

(1 – √7, 3) (1 + √7, 3)

(5, 3)(–3, 3)

34.
(x+ 2)2

4
+

(y + 1)2

3
= 1, c2 = 4− 3 = 1, c = 1.

(–4, –1)
(–3, –1)

(–1, –1)
(0, –1)

x

y

(–2, –1 + √3)

(–2, –1 – √3)

35. c2 = a2 + b2 = 16 + 4 = 20, c = 2
√

5.

(–4, 0) (4, 0)

x

y

1
2

y = –   x 1
2

y =    x

(–2√5, 0) (2√5, 0)

36. y2/4− x2/9 = 1, c2 = 4 + 9 = 13, c =
√

13.

(0, –2)

(0, 2)

x

y

2
3

y = –   x 2
3

y =    x

(0, √13)

(0, –√13)

37. c2 = 9 + 4 = 13, c =
√

13.

(5, 4)

x

y

(2 – √13, 4) (2 + √13, 4)

(–1, 4)

y – 4 = –   (x – 2)2
3

y – 4 =    (x – 2)2
3
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38. (a)

–4 8

–10

2
x

y

(b)

2 10

–3

4

x

y

(c)

–8 8

–12

4
x

y

39. x2 = −4py, p = 4, x2 = −16y.

40. x2 + y2/5 = 1.

41. a = 3, a/b = 1, b = 3; y2/9− x2/9 = 1.

42. (a) The equation of the parabola is y = ax2 and it passes through (2100, 470), thus a =
470

21002
, y =

470

21002
x2.

(b) L = 2

∫ 2100

0

√
1 +

(
2

470

21002
x

)2

dx =
x

220500

√
48620250000 + 2209x2 +

220500

47
sinh−1

(
47

220500
x

)
≈

≈ 4336.3 ft.

43. (a) y = y0 + (v0 sinα)
x

v0 cosα
− g

2

(
x

v0 cosα

)2

= y0 + x tanα− g

2v2
0 cos2 α

x2.

(b)
dy

dx
= tanα− g

v2
0 cos2 α

x, dy/dx = 0 at x =
v2

0

g
sinα cosα, y = y0 +

v2
0

g
sin2 α− g

2v2
0 cos2 α

(
v2

0 sinα cosα

g

)2

=

y0 +
v2

0

2g
sin2 α.

44. α = π/4, y0 = 3, x = v0t/
√

2, y = 3 + v0t/
√

2− 16t2.

(a) Assume the ball passes through x = 391, y = 50, then 391 = v0t/
√

2, 50 = 3 + 391 − 16t2, 16t2 = 344, t =√
21.5, v0 =

√
2x/t ≈ 119.2538820 ft/s.

(b)
dy

dt
=

v0√
2
− 32t = 0 at t =

v0

32
√

2
, ymax = 3 +

v0√
2

v0

32
√

2
− 16

v2
0

211
= 3 +

v2
0

128
≈ 114.1053779 ft.

(c) y = 0 when t =
−v0/

√
2±

√
v2

0/2 + 192

−32
, t ≈ −0.035339577 (discard) and 5.305666365, dist = 447.4015292

ft.

45. cot 2θ =
A− C
B

= 0, 2θ = π/2, θ = π/4, cos θ = sin θ =
√

2/2, so x = (
√

2/2)(x′ − y′), y = (
√

2/2)(x′ + y′),

5(y′)2 − (x′)2 = 6, hyperbola.

46. cot 2θ = (7 − 5)/(2
√

3) = 1/
√

3, 2θ = π/3, θ = π/6 then the transformed equation is 8(x′)2 + 4(y′)2 − 4 = 0,
2(x′)2 + (y′)2 = 1, ellipse.

47. cot 2θ = (4
√

5 −
√

5)/(4
√

5) = 3/4, so cos 2θ = 3/5 and thus cos θ =
√

(1 + cos 2θ)/2 = 2/
√

5 and sin θ =√
(1− cos 2θ)/2 = 1/

√
5. Hence the transformed equation is 5

√
5(x′)2 − 5

√
5y′ = 0, y′ = (x′)2, parabola.

48. cot 2θ = (17−108)/(−312) = 7/24. Use the methods of Example 4 of Section 10.5 to obtain cos θ = 4/5, sin θ = 3/5,
and the new equation is −100(x′)2 + 225(y′)2 − 1800y′ + 4500 = 0, which, upon completing the square, becomes
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−4

9
(x′)2 + (y′− 4)2 + 4 = 0, or

1

9
(x′)2− 1

4
(y′− 4)2 = 1. Thus center at (0, 4), c2 = 9 + 4 = 13, c =

√
13, so vertices

at (−3, 4) and (3, 4); foci at (±
√

13, 4) and asymptotes y′ − 4 =
2

3
x′.

49. (a) r =
1/3

1 + 1
3 cos θ

, ellipse, right of pole, distance = 1.

(b) Hyperbola, left of pole, distance = 1/3.

(c) r =
1/3

1 + sin θ
, parabola, above pole, distance = 1/3.

(d) Parabola, below pole, distance = 3.

50. (a)
c

a
= e =

2

7
and 2b = 6, b = 3, a2 = b2 + c2 = 9 +

4

49
a2,

45

49
a2 = 9, a =

7√
5
,

5

49
x2 +

1

9
y2 = 1.

(b) x2 = −4py, directrix y = 4, focus (−4, 0), 2p = 8, x2 = −16y.

(c) For the ellipse, a = 4, b =
√

3, c2 = a2 − b2 = 16− 3 = 13, foci (±
√

13, 0); for the hyperbola, c =
√

13, b/a =

2/3, b = 2a/3, 13 = c2 = a2 + b2 = a2 +
4

9
a2 =

13

9
a2, a = 3, b = 2,

x2

9
− y2

4
= 1.

51. (a) e = 4/5 = c/a, c = 4a/5, but a = 5 so c = 4, b = 3,
(x+ 3)2

25
+

(y − 2)2

9
= 1.

(b) Directrix y = 2, p = 2, (x+ 2)2 = −8y.

(c) Center (−1, 5), vertices (−1, 7) and (−1, 3), a = 2, a/b = 8, b = 1/4,
(y − 5)2

4
− 16(x+ 1)2 = 1.

52. C = 4

∫ π/2

0

[(
dx

dt

)2

+

(
dy

dt

)2
]1/2

dt = 4

∫ π/2

0

(a2 sin2 t+b2 cos2 t)1/2 dt= 4

∫ π/2

0

(a2 sin2 t+(a2−c2) cos2 t)1/2 dt =

4a

∫ π/2

0

(1− e2 cos2 t)1/2 dt. Set u =
π

2
− t, C = 4a

∫ π/2

0

(1− e2 sin2 t)1/2 dt.

53. a = 3, b = 2, c =
√

5, C = 4(3)

∫ π/2

0

√
1− (5/9) cos2 u du ≈ 15.86543959.

54. (a)
r0

r1
=

59

61
=

1− e
1 + e

, e =
1

60
.

(b) a = 93× 106, r0 = a(1− e) =
59

60

(
93× 106

)
= 91,450,000 mi.

(c) C = 4× 93× 106

∫ π/2

0

[
1−

(
cos θ

60

)2
]1/2

dθ ≈ 584,295,652.5 mi.
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Chapter 10 Making Connections

1. (a)

x

y

–1 1

–1

1

(b) As t→ +∞, the curve spirals in toward a point P in the first quadrant. As t→ −∞, it spirals in toward the
reflection of P through the origin. (It can be shown that P = (1/2, 1/2).)

(c) L =

∫ 1

−1

√
cos2

(
πt2

2

)
+ sin2

(
πt2

2

)
dt = 2.

2. (a) P : (b cos t, b sin t); Q : (a cos t, a sin t); R : (a cos t, b sin t).

(b) For a circle, t measures the angle between the positive x-axis and the line segment joining the origin to the
point. For an ellipse, t measures the angle between the x-axis and OPQ, not OR.

3. Let P denote the pencil tip, and let R(x, 0) be the point below Q and P which lies on the line L. Then QP +PF
is the length of the string and QR = QP + PR is the length of the side of the triangle. These two are equal, so
PF = PR. But this is the definition of a parabola according to Definition 10.4.1.

4. Let P denote the pencil tip, and let k be the difference between the length of the ruler and that of the string.
Then QP + PF2 + k = QF1, and hence PF2 + k = PF1, PF1 − PF2 = k. But this is the definition of a hyperbola
according to Definition 10.4.3.

5. (a) Position the ellipse so its equation is
x2

a2
+
y2

b2
= 1. Then y =

b

a

√
a2 − x2, so

V = 2

∫ a

0

πy2 dx = 2

∫ a

0

π
b2

a2
(a2−x2) dx =

4

3
πab2. Also,

dy

dx
= − bx

a
√
a2 − x2

so 1 +

(
dy

dx

)2

=
a4 − (a2 − b2)x2

a2(a2 − x2)
=

a4 − c2x2

a2(a2 − x2)
, where c =

√
a2 − b2. Then S = 2

∫ a

0

2πy
√

1 + (dy/dx)2 dx =
4πb

a

∫ a

0

√
a2 − x2

√
a4 − c2x2

a2(a2 − x2)
dx

=
4πbc

a2

∫ a

0

√
a4

c2
− x2 dx =

4πbc

a2

[
x

2

√
a4

c2
− x2 +

a4

2c2
sin−1 cx

a2

]a

0

= 2πab

(
b

a
+
a

c
sin−1 c

a

)
, by Endpaper Integral

Table Formula 74.

(b) Position the ellipse so its equation is
x2

a2
+
y2

b2
= 1. Then x =

a

b

√
b2 − y2, so

V = 2

∫ b

0

πx2 dx = 2

∫ b

0

π
a2

b2
(b2 − y2) dy =

4

3
πa2b. Also,

dx

dy
= − ay

b
√
b2 − y2

so 1 +

(
dx

dy

)2

=
b4 + (a2 − b2)y2

b2(b2 − y2)
=

b4 + c2y2

b2(b2 − y2)
, where c =

√
a2 − b2. Then S = 2

∫ b

0

2πx
√

1 + (dx/dy)2 dy =
4πa

b

∫ b

0

√
b2 − y2

√
b4 + c2y2

b2(b2 − y2)
dy

=
4πac

b2

∫ b

0

√
b4

c2
+ y2 dy = 2πab

(
a

b
+
b

c
ln
a+ c

b

)
.
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Three-Dimensional Space; Vectors

Exercise Set 11.1

1. (a) (0, 0, 0), (3, 0, 0), (3, 5, 0), (0, 5, 0), (0, 0, 4), (3, 0, 4), (3, 5, 4), (0, 5, 4).

(b) (0, 1, 0), (4, 1, 0), (4, 6, 0), (0, 6, 0), (0, 1,−2), (4, 1,−2), (4, 6,−2), (0, 6,−2).

2. Corners: (2, 2,±2), (2,−2,±2), (−2, 2,±2), (−2,−2,±2).

y

x

z

(–2, –2, 2) (–2, 2, 2)

(–2, 2, –2)(–2, –2, –2)

(2, 2, –2)(2, –2, –2)

(2, –2, 2) (2, 2, 2)

3. Corners: (4, 2,−2), (4,2,1), (4,1,1), (4, 1,−2), (−6, 1, 1), (−6, 2, 1), (−6, 2,−2), (−6, 1,−2).

(–6, 2, 1)

(–6, 2, –2)

y

x

z

(–6, 1, –2)

(4, 1, 1)

(4, 1, –2)

(4, 2, 1)

4. (a) (x2, y1, z1), (x2, y2, z1), (x1, y2, z1)(x1, y1, z2), (x2, y1, z2), (x1, y2, z2).

(b) The midpoint of the diagonal has coordinates which are the coordinates of the midpoints of the edges. The

midpoint of the edge (x1, y1, z1) and (x2, y1, z1) is

(
1

2
(x1 + x2), y1, z1

)
; the midpoint of the edge (x2, y1, z1) and

(x2, y2, z1) is

(
x2,

1

2
(y1 + y2), z1

)
; the midpoint of the edge (x2, y2, z1) and (x2, y2, z2) is

(
x2, y2,

1

2
(z1 + z2)

)
.

Thus the coordinates of the midpoint of the diagonal are

(
1

2
(x1 + x2),

1

2
(y1 + y2),

1

2
(z1 + z2)

)
.

5. (a) A single point on that line. (b) A line in that plane. (c) A plane in 3−space.

6. (a) R(1, 4, 0) and Q lie on the same vertical line, and so does the side of the triangle which connects them.

545
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R(1, 4, 0) and P lie in the plane z = 0. Clearly the two sides are perpendicular, and the sum of the squares of the
two sides is |RQ|2 + |RP |2 = 42 + (22 + 32) = 29, so the distance from P to Q is

√
29.

y

x

z

P (3, 1, 0)

Q (1, 4, 4)

R (1, 4, 0)

(b) Clearly, SP is parallel to the y-axis. S(3, 4, 0) and Q lie in the plane y = 4, and so does SQ. Hence the two
sides |SP | and |SQ| are perpendicular, and |PQ| =

√
|PS|2 + |QS|2 =

√
32 + (22 + 42) =

√
29.

y

x

z

P (3, 1, 0)

Q (1, 4, 4)

S (3, 4, 0)

(c) T (1, 1, 4) and Q lie on a line through (1, 0, 4) and is thus parallel to the y-axis, and TQ lies on this line. T
and P lie in the same plane y = 1 which is perpendicular to any line which is parallel to the y-axis, thus TP ,
which lies on such a line, is perpendicular to TQ. Thus |PQ|2 = |PT |2 + |QT |2 = (4 + 16) + 9 = 29.

y

x

z

P (3, 1, 0)

Q (1, 4, 4)T (1, 1, 4)

7. (a) Let the base of the box have sides a and b and diagonal d1. Then a2 + b2 = d2
1, and d1 is the base of a

rectangular of height c and diagonal d, with d2 = d2
1 + c2 = a2 + b2 + c2.

(b) Two unequal points (x1, y1, z1) and (x2, y2, z2) form diagonally opposite corners of a rectangular box with
sides x1 − x2, y1 − y2, z1 − z2, and by Part (a) the diagonal has length

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

8. (a) The vertical plane that passes through (
1

2
, 0, 0) and is perpendicular to the x-axis.

(b) Equidistant: (x− 1

2
)2 + y2 + z2 = x2 + y2 + z2, or −2x+ 1 = 0 or x =

1

2
.

9. The diameter is d =
√

(1− 3)2 + (−2− 4)2 + (4 + 12)2 =
√

296, so the radius is
√

296/2 =
√

74. The midpoint
(2, 1,−4) of the endpoints of the diameter is the center of the sphere.

10. Each side has length
√

14 so the triangle is equilateral.

11. (a) The sides have lengths 7, 14, and 7
√

5; it is a right triangle because the sides satisfy the Pythagorean theorem,
(7
√

5)2 = 72 + 142.
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(b) (2,1,6) is the vertex of the 90◦ angle because it is opposite the longest side (the hypotenuse).

(c) Area = (1/2)(altitude)(base) = (1/2)(7)(14) = 49.

12. (a) 3 (b) 2 (c) 5 (d)
√

(2)2 + (−3)2 =
√

13. (e)
√

(−5)2 + (−3)2 =
√

34. (f)
√

(−5)2 + (2)2 =
√

29.

13. (a) (x− 7)2 + (y − 1)2 + (z − 1)2 = 16.

(b) (x− 1)2 + y2 + (z + 1)2 = 16.

(c) r =
√

(−1− 0)2 + (3− 0)2 + (2− 0)2 =
√

14, (x+ 1)2 + (y − 3)2 + (z − 2)2 = 14.

(d) r =
1

2

√
(−1− 0)2 + (2− 2)2 + (1− 3)2 =

1

2

√
5, center (−1/2, 2, 2), (x+ 1/2)2 + (y − 2)2 + (z − 2)2 = 5/4.

14. r = |[distance between (0,0,0) and (3,−2, 4)]± 1| =
√

29± 1, x2 + y2 + z2 = r2 =
(√

29± 1
)2

= 30± 2
√

29.

15. (x− 2)2 + (y + 1)2 + (z + 3)2 = r2, so

(a) (x−2)2 +(y+1)2 +(z+3)2 = 9. (b) (x−2)2 +(y+1)2 +(z+3)2 = 1. (c) (x−2)2 +(y+1)2 +(z+3)2 = 4.

16. (a) The sides have length 1, so the radius is
1

2
; hence (x+ 2)2 + (y − 1)2 + (z − 3)2 =

1

4
.

(b) The diagonal has length
√

1 + 1 + 1 =
√

3 and is a diameter, so (x+ 2)2 + (y − 1)2 + (z − 3)2 =
3

4
.

(c) Radius: (6− 2)/2 = 2, center: (
6 + 2

2
,

5 + 9

2
,

4 + 0

2
), so (x− 4)2 + (y − 7)2 + (z − 2)2 = 4.

(d) Center is the same, radius is half the diagonal, r = 2
√

3, so (x− 4)2 + (y − 7)2 + (z − 2)2 = 12.

17. Let the center of the sphere be (a, b, c). The height of the center over the x-y plane is measured along the radius
that is perpendicular to the plane. But this is the radius itself, so height = radius, i.e. c = r. Similarly a = r and
b = r.

18. If r is the radius of the sphere, then the center of the sphere has coordinates (r, r, r) (see Exercise 17). Thus the
distance from the origin to the center is

√
r2 + r2 + r2 =

√
3r, from which it follows that the distance from the

origin to the sphere is
√

3r − r. Equate that with 3−
√

3:
√

3r − r = 3−
√

3, r =
√

3. The sphere is given by the
equation (x−

√
3)2 + (y −

√
3)2 + (z −

√
3)2 = 3.

19. False; need be neither right nor circular, see “extrusion”.

20. False, it is a right circular cylinder.

21. True; y = z = 0.

22. False, the sphere satisfies the equality, not the inequality.

23. (x+ 5)2 + (y + 2)2 + (z + 1)2 = 49; sphere, C(−5,−2,−1), r = 7.

24. x2 + (y − 1/2)2 + z2 = 1/4; sphere, C(0, 1/2, 0), r = 1/2.

25. (x− 1/2)2 + (y − 3/4)2 + (z + 5/4)2 = 54/16; sphere, C(1/2, 3/4,−5/4), r = 3
√

6/4.

26. (x+ 1)2 + (y − 1)2 + (z + 1)2 = 0; the point (−1, 1,−1).
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27. (x− 3/2)2 + (y + 2)2 + (z − 4)2 = −11/4; no graph.

28. (x− 1)2 + (y − 3)2 + (z − 4)2 = 25; sphere, C(1, 3, 4), r = 5.

29. (a)

y

x

z

(b)

y

x

z

(c)

y

x

z

30. (a)

y

x

z

x = 1

(b)

y

x

z
y = 1

(c)

y

x

z

z = 1

31. (a)

5

y

x

z

(b)

5

y

x

z

(c)

5

y

x

z

32. (a)
y

x

z

(b)

y

x

z

(c)

y

x

z

33. (a) −2y + z = 0. (b) −2x+ z = 0. (c) (x− 1)2 + (y − 1)2 = 1. (d) (x− 1)2 + (z − 1)2 = 1.

34. (a) (x− a)2 + (z − a)2 = a2. (b) (x− a)2 + (y − a)2 = a2. (c) (y − a)2 + (z − a)2 = a2.
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35.

y

x

z

36.

y

x

z

37.

1

1

x

y

z

38.

y

x

z

39.

3

3
2

y

x

z

40.

2

3

y

x

z

41.

2
–3

3

x
y

z

42.

3

√3

y

x

z

43.

–2 2

x

y

z

44.

y

x

z

45. (a)

1.4–1.4

–1.4

1.4

(b)

z

yx

46. (a)

1

–1

–2 2

(b) yx

z

47. Complete the squares to get (x+ 1)2 + (y − 1)2 + (z − 2)2 = 9; center (−1, 1, 2), radius 3. The distance between
the origin and the center is

√
6 < 3 so the origin is inside the sphere. The largest distance is 3 +

√
6, the smallest

is 3−
√

6.

48. (x− 1)2 + y2 + (z + 4)2 ≤ 25; all points on and inside the sphere of radius 5 with center at (1, 0,−4).

49. (y + 3)2 + (z − 2)2 > 16; all points outside the circular cylinder (y + 3)2 + (z − 2)2 = 16.
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50.
√

(x− 1)2 + (y + 2)2 + z2 = 2
√
x2 + (y − 1)2 + (z − 1)2, square and simplify to get 3x2 + 3y2 + 3z2 + 2x− 12y−

8z+ 3 = 0, then complete the squares to get (x+ 1/3)2 + (y−2)2 + (z−4/3)2 = 44/9; center (−1/3, 2, 4/3), radius
2
√

11/3.

51. Let r be the radius of a styrofoam sphere. The distance from the origin to the center of the bowling ball is equal
to the sum of the distance from the origin to the center of the styrofoam sphere nearest the origin and the distance
between the center of this sphere and the center of the bowling ball so

√
3R =

√
3r+r+R, (

√
3+1)r = (

√
3−1)R,

r =

√
3− 1√
3 + 1

R = (2−
√

3)R.

52. (a) Complete the squares to get (x+G/2)2 + (y+H/2)2 + (z+ I/2)2 = K/4, so the equation represents a sphere
when K > 0, a point when K = 0, and no graph when K < 0.

(b) C(−G/2,−H/2,−I/2), r =
√
K/2.

53. (a) At x = c the trace of the surface is the circle y2 + z2 = [f(c)]2, so the surface is given by y2 + z2 = [f(x)]2.

(b) y2 + z2 = e2x.

(c) y2 + z2 = 4− 3

4
x2, so let f(x) =

√
4− 3

4
x2.

54. (a) Permute x and y in Exercise 53a: x2 + z2 = [f(y)]2.

(b) Permute x and z in Exercise 53a: x2 + y2 = [f(z)]2.

(c) Permute y and z in Exercise 53a: y2 + z2 = [f(x)]2.

55. (a sinφ cos θ)2 +(a sinφ sin θ)2 +(a cosφ)2 = a2 sin2 φ cos2 θ+a2 sin2 φ sin2 θ+a2 cos2 φ = a2 sin2 φ(cos2 θ+sin2 θ)+
a2 cos2 φ = a2 sin2 φ+ a2 cos2 φ = a2(sin2 φ+ cos2 φ) = a2.

Exercise Set 11.2

1. (a-c)

〈2, 5〉

〈–5, –4〉

〈2, 0〉

x

y

(d-f)

x

y

–5i + 3j

3i – 2j

–6j

2. (a-c)

〈0, – 8〉

〈6, –2〉

〈 –3, 7〉

x

y

(d-f)

–2 i – j

4 i + 2 j

4 i

x

y
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3. (a-b)

〈1, –2, 2〉

〈2, 2, –1〉

y

x

z

(c-d)

y

x

z –i + 2j + 3k

2i + 3j  – k

4. (a-b)

〈-1, 3, 2 〉

〈3, 4, 2 〉

y

x

z

(c-d)

i - j + 2k

2 j - k

y

x

z

5. (a) 〈4− 1, 1− 5〉 = 〈3, −4〉

x

y

3i – 4j

(b) 〈0− 2, 0− 3, 4− 0〉 = 〈−2, −3, 4〉

y

x

–2i – 3j + 4k
z

6. (a) 〈−3− 2, 3− 3〉 = 〈−5, 0〉
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–5 i

x

y

(b) 〈0− 3, 4− 0, 4− 4〉 = 〈−3, 4, 0〉

y

x

– 3i + 4j

z

7. (a) 〈2− 3, 8− 5〉 = 〈−1, 3〉 (b) 〈0− 7, 0− (−2)〉 = 〈−7, 2〉 (c) 〈−3, 6, 1〉

8. (a) 〈−4− (−6), −1− (−2)〉 = 〈2, 1〉 (b) 〈−1, 6, 1〉 (c) 〈5, 0, 0〉

9. (a) Let (x, y) be the terminal point, then x − 1 = 3, x = 4 and y − (−2) = −2, y = −4. The terminal point is
(4,−4).

(b) Let (x, y, z) be the initial point, then 5 − x = −3, −y = 1, and −1 − z = 2 so x = 8, y = −1, and z = −3.
The initial point is (8,−1,−3).

10. (a) Let (x, y) be the terminal point, then x− 2 = 7, x = 9 and y − (−1) = 6, y = 5. The terminal point is (9,5).

(b) Let (x, y, z) be the terminal point, then x+ 2 = 1, y − 1 = 2, and z − 4 = −3 so x = −1, y = 3, and z = 1.
The terminal point is (−1, 3, 1).

11. (a) −i+4j−2k (b) 18i+12j−6k (c) −i−5j−2k (d) 40i−4j−4k (e) −2i−16j−18k (f) −i+13j−2k

12. (a) 〈1,−2, 0〉 (b) 〈28, 0,−14〉+ 〈3, 3, 9〉 = 〈31, 3,−5〉 (c) 〈3,−1,−5〉

(d) 3(〈2,−1, 3〉 − 〈28, 0,−14〉) = 3〈−26,−1, 17〉 = 〈−78,−3, 51〉 (e) 〈−12, 0, 6〉 − 〈8, 8, 24〉 = 〈−20,−8,−18〉

(f) 〈8, 0,−4〉 − 〈3, 0, 6〉 = 〈5, 0,−10〉

13. (a) ‖v‖ =
√

1 + 1 =
√

2 (b) ‖v‖ =
√

1 + 49 = 5
√

2 (c) ‖v‖ =
√

21 (d) ‖v‖ =
√

14

14. (a) ‖v‖ =
√

9 + 16 = 5 (b) ‖v‖ =
√

2 + 7 = 3 (c) ‖v‖ = 3 (d) ‖v‖ =
√

3

15. (a) ‖u + v‖ = ‖2i− 2j + 2k‖ = 2
√

3 (b) ‖u‖+ ‖v‖ =
√

14 +
√

2 (c) ‖ − 2u‖+ 2‖v‖ = 2
√

14 + 2
√

2

(d) ‖3u− 5v + w‖ = ‖ − 12j + 2k‖ = 2
√

37 (e) (1/
√

6)i + (1/
√

6)j− (2/
√

6)k (f) 1

16. Yes, it is possible. Consider u = i and v = j.

17. False; only if one vector is a positive scalar multiple of the other. If one vector is a positive multiple of the other,
say u = αv with α > 0, then u,v and u + v are parallel and ‖u + v‖ = (1 + α)‖v‖ = ‖u‖+ ‖v‖.
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18. True.

19. True (assuming they have the same initial point), namely ±x/||x||.

20. True, a =
1

c
(d− b).

21. (a) ‖ − i + 4j‖ =
√

17 so the required vector is
(
−1/
√

17
)
i +
(
4/
√

17
)
j.

(b) ‖6i− 4j + 2k‖ = 2
√

14 so the required vector is (−3i + 2j− k)/
√

14.

(c)
−→
AB= 4i + j− k, ‖

−→
AB ‖ = 3

√
2 so the required vector is (4i + j− k)/

(
3
√

2
)
.

22. (a) ‖3i− 4j‖ = 5 so the required vector is −1

5
(3i− 4j) = −3

5
i +

4

5
j.

(b) ‖2i− j− 2k‖ = 3 so the required vector is
2

3
i− 1

3
j− 2

3
k.

(c)
−→
AB= 4i− 3j, ‖

−→
AB ‖ = 5 so the required vector is

4

5
i− 3

5
j.

23. (a) −1

2
v = 〈−3/2, 2〉. (b) ‖v‖ =

√
85, so

√
17√
85

v =
1√
5
〈7, 0,−6〉 has length

√
17.

24. (a) 3v = −6i + 9j. (b) − 2

‖v‖v =
6√
26

i− 8√
26

j− 2√
26

k.

25. (a) v = ‖v‖〈cos(π/4), sin(π/4)〉 = 〈3
√

2/2, 3
√

2/2〉. (b) v = ‖v‖〈cos 90◦, sin 90◦〉 = 〈0, 2〉.
(c) v = ‖v‖〈cos 120◦, sin 120◦〉 = 〈−5/2, 5

√
3/2〉. (d) v = ‖v‖〈cosπ, sinπ〉 = 〈−1, 0〉.

26. From (12), v = 〈cos(π/6), sin(π/6)〉 = 〈
√

3/2, 1/2〉 and w = 〈cos(3π/4), sin(3π/4)〉 = 〈−
√

2/2,
√

2/2〉, so
v + w = ((

√
3−
√

2)/2, (1 +
√

2)/2), v −w = ((
√

3 +
√

2)/2, (1−
√

2)/2).

27. From (12), v = 〈cos 30◦, sin 30◦〉 = 〈
√

3/2, 1/2〉 and w = 〈cos 135◦, sin 135◦〉 = 〈−
√

2/2,
√

2/2〉, so v + w =
((
√

3−
√

2)/2, (1 +
√

2)/2).

28. w = 〈1, 0〉, and from (12), v = 〈cos 120◦, sin 120◦〉 = 〈−1/2,
√

3/2〉, so v + w = 〈1/2,
√

3/2〉.

29. (a) The initial point of u + v + w is the origin and the endpoint is (−2, 5), so u + v + w = 〈−2, 5〉.

–5 5

–5

5

x

y–2i + 5j

(b) The initial point of u + v + w is (−5, 4) and the endpoint is (−2,−4), so u + v + w = 〈3,−8〉.
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–5 5

–8

2
x

y

3i – 8j

30. (a) v = 〈−10, 2〉 by inspection, so u− v + w = u + v + w − 2v = 〈−2, 5〉+ 〈20,−4〉 = 〈18, 1〉.

〈18, 1〉 x

y

(b) v = 〈−3, 8〉 by inspection, so u− v + w = u + v + w − 2v = 〈3,−8〉+ 〈6,−16〉 = 〈9,−24〉.

〈9, –24〉

x

y

31. 6x = 2u− v −w = 〈−4, 6〉,x = 〈−2/3, 1〉.

32. u− 2x = x−w + 3v, 3x = u + w − 3v, x =
1

3
(u + w − 3v) = 〈2/3, 2/3〉.

33. u =
5

7
i +

2

7
j +

1

7
k, v =

8

7
i− 1

7
j− 4

7
k.

34. 3u + 2v − 2(u + v) = u = 〈−5, 8〉,v = u + v − u = 〈7,−11〉.

35. ‖(i + j) + (i− 2j)‖ = ‖2i− j‖ =
√

5, ‖(i + j)− (i− 2j)‖ = ‖3j‖ = 3.

36. Let A, B, C be the vertices (0,0), (1,3), (2,4) and D the fourth vertex (x, y). For the parallelogram ABCD,
−→
AD=

−→
BC, 〈x, y〉 = 〈1, 1〉 so x = 1, y = 1 and D is at (1,1). For the parallelogram ACBD,

−→
AD=

−→
CB, 〈x, y〉 = 〈−1,−1〉

so x = −1, y = −1 and D is at (−1,−1). For the parallelogram ABDC,
−→
AC=

−→
BD, 〈x − 1, y − 3〉 = 〈2, 4〉, so

x = 3, y = 7 and D is at (3, 7).

37. (a) 5 = ‖kv‖ = |k|‖v‖ = ±3k, so k = ±5/3.

(b) 6 = ‖kv‖ = |k|‖v‖ = 2‖v‖, so ‖v‖ = 3.

38. If ‖kv‖ = 0 then |k|‖v‖ = 0 so either k = 0 or ‖v‖ = 0; in the latter case, by (9) or (10), v = 0.
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39. (a) Choose two points on the line, for example P1(0, 2) and P2(1, 5); then
−→
P1P2 = 〈1, 3〉 is parallel to the line,

‖〈1, 3〉‖ =
√

10, so 〈1/
√

10, 3/
√

10〉 and 〈−1/
√

10,−3/
√

10〉 are unit vectors parallel to the line.

(b) Choose two points on the line, for example P1(0, 4) and P2(1, 3); then
−→
P1P2 = 〈1,−1〉 is parallel to the line,

‖〈1,−1〉‖ =
√

2 so 〈1/
√

2,−1/
√

2〉 and 〈−1/
√

2, 1/
√

2〉 are unit vectors parallel to the line.

(c) Pick any line that is perpendicular to the line y = −5x+ 1, for example y = x/5; then P1(0, 0) and P2(5, 1)

are on the line, so
−→
P1P2= 〈5, 1〉 is perpendicular to the line, so ± 1√

26
〈5, 1〉 are unit vectors perpendicular to the

line.

40. (a) ±k (b) ±j (c) ±i

41. (a) The circle of radius 1 about the origin.

(b) The closed disk of radius 1 about the origin.

(c) All points outside the closed disk of radius 1 about the origin.

42. (a) The circle of radius 1 about the tip of r0.

(b) The closed disk of radius 1 about the tip of r0.

(c) All points outside the closed disk of radius 1 about the tip of r0.

43. (a) The (hollow) sphere of radius 1 about the origin.

(b) The closed ball of radius 1 about the origin.

(c) All points outside the closed ball of radius 1 about the origin.

44. The sum of the distances between (x, y) and the points (x1, y1), (x2, y2) is the constant k, so the set consists of
all points on the ellipse with foci at (x1, y1) and (x2, y2), and major axis of length k.

45. Since φ = π/2, from (14) we get ‖F1 + F2‖2 = ‖F1‖2 + ‖F2‖2 = 3600 + 900, so ‖F1 + F2‖ = 30
√

5 lb, and

sinα =
‖F2‖

‖F1 + F2‖
sinφ =

30

30
√

5
, α ≈ 26.57◦, θ = α ≈ 26.57◦.

46. ‖F1 +F2‖2 = ‖F1‖2 +‖F2‖2 +2‖F1‖‖F2‖ cosφ = 14,400+10,000+2(120)(100)
1

2
= 36,400, so ‖F1 +F2‖ = 20

√
91

N, sinα =
‖F2‖

‖F1 + F2‖
sinφ =

100

20
√

91
sin 60◦ =

5
√

3

2
√

91
, α ≈ 27.00◦, θ = α ≈ 27.00◦.

47. ‖F1 +F2‖2 = ‖F1‖2 + ‖F2‖2 + 2‖F1‖‖F2‖ cosφ = 160,000 + 160,000− 2(400)(400)

√
3

2
, so ‖F1 +F2‖ ≈ 207.06 N,

and sinα =
‖F2‖

‖F1 + F2‖
sinφ ≈ 400

207.06

(
1

2

)
, α = 75.00◦, θ = α− 30◦ = 45.00◦.

48. ‖F1 + F2‖2 = ‖F1‖2 + ‖F2‖2 + 2‖F1‖‖F2‖ cosφ = 16 + 4 + 2(4)(2) cos 77◦, so ‖F1 + F2‖ ≈ 4.86 lb, and sinα =
‖F2‖

‖F1 + F2‖
sinφ =

2

4.86
sin 77◦, α ≈ 23.64◦, θ = α− 27◦ ≈ −3.36◦.

49. Let F1,F2,F3 be the forces in the diagram with magnitudes 40, 50, 75 respectively. Then F1 + F2 + F3 =
(F1 + F2) + F3. Following the examples, F1 + F2 has magnitude 45.83 N and makes an angle 79.11◦ with the
positive x-axis. Then ‖(F1 +F2) +F3‖2 ≈ 45.832 + 752 + 2(45.83)(75) cos 79.11◦, so F1 +F2 +F3 has magnitude
≈ 94.995 N and makes an angle θ = α ≈ 28.28◦ with the positive x-axis.
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50. Let F1,F2,F3 be the forces in the diagram with magnitudes 150, 200, 100 respectively. Then F1 + F2 + F3 =
(F1 + F2) + F3. Following the examples, F1 + F2 has magnitude 279.34 N and makes an angle 91.24◦ with the
positive x-axis. Then ‖F1 +F2 +F3‖2 ≈ 279.342 + 1002 + 2(279.34)(100) cos(270− 91.24)◦, and F1 +F2 +F3 has
magnitude ≈ 179.37 N and makes an angle 91.94◦ with the positive x-axis.

51. Let F1,F2 be the forces in the diagram with magnitudes 8, 10 respectively. Then ‖F1 + F2‖ has magnitude
√

82 + 102 + 2 · 8 · 10 cos 120◦ = 2
√

21 ≈ 9.165 lb, and makes an angle 60◦ + sin−1 ‖F1‖
‖F1 + F2‖

sin 120 ≈ 109.11◦

with the positive x-axis, so F has magnitude 9.165 lb and makes an angle −70.89◦ with the positive x-axis.

52. ‖F1 + F2‖ =
√

1202 + 1502 + 2 · 120 · 150 cos 75◦ = 214.98 N and makes an angle 92.63◦ with the positive x-axis,
and ‖F1 + F2 + F3‖ = 232.90 N and makes an angle 67.23◦ with the positive x-axis, hence F has magnitude
232.90 N and makes an angle −112.77◦ with the positive x-axis.

53. F1+F2+F = 0, where F has magnitude 250 and makes an angle −90◦ with the positive x-axis. Thus ‖F1+F2‖2 =

‖F1‖2 +‖F2‖2 + 2‖F1‖‖F2‖ cos 105◦ = 2502 and 45◦ = α = sin−1

(‖F2‖
250

sin 105◦
)

, so

√
2

2
≈ ‖F2‖

250
0.9659, ‖F2‖ ≈

183.02 lb, ‖F1‖2 + 2(183.02)(−0.2588)‖F1‖+ (183.02)2 = 62,500, ‖F1‖ = 224.13 lb.

54. Similar to Exercise 53, ‖F1‖ = 100
√

3 N, ‖F2‖ = 100 N.

55. Three forces act on the block: its weight −300j; the tension in cable A, which has the form a(−i + j); and the
tension in cable B, which has the form b(

√
3i + j), where a, b are positive constants. The sum of these forces is

zero, which yields a = 450 − 150
√

3, b = 150
√

3 − 150. Thus the forces along cables A and B are, respectively,
‖150(3−

√
3)(i− j)‖ = 450

√
2− 150

√
6 lb, and ‖150(

√
3− 1)(

√
3i− j)‖ = 300

√
3− 300 lb.

56. (a) Let TA and TB be the forces exerted on the block by cables A and B. Then TA = a(−10i + dj) and TB =

b(20i+dj) for some positive a, b. Since TA+TB−100j = 0, we find that a =
200

3d
, b =

100

3d
, TA = −2000

3d
i+

200

3
j,

and TB =
2000

3d
i +

100

3
j. Thus TA =

200

3

√
1 +

100

d2
, TB =

100

3

√
1 +

400

d2
, and the graphs are:
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32. Three forces act on the block: its weight −300j; the tension in cable A, which has the form
a(−i + j); and the tension in cable B, which has the form b(

√
3i + j), where a, b are positive

constants. The sum of these forces is zero, which yields a = 450 + 150
√

3, b = 150 + 150
√

3. Thus
the forces along cables A and B are, respectively,
‖150(3 +

√
3)(i − j)‖ = 450

√
2 + 150

√
6 lb, and ‖150(

√
3 + 1)(

√
3i − j)‖ = 300 + 300

√
3 lb.

33. (a) Let TA and TB be the forces exerted on the block by cables A and B. Then

TA = a(−10i + dj) and TB = b(20i + dj) for some positive a, b. Since TA + TB − 100j = 0, we

find a =
200

3d
, b =

100

3d
,TA = −2000

3d
i +

200

3
j, and TB =

2000

3d
i +

100

3
j. Thus

TA =
200

3

√
1 +

100

d2
,TB =

100

3

√
1 +

400

d2
, and the graphs are:

500

–100

–20 100

500

–100

–20 100

(b) An increase in d will decrease both forces.

(c) The inequality ‖TA‖ ≤ 150 is equivalent to d ≥ 40√
65

, and ‖TB‖ ≤ 150 is equivalent to

d ≥ 40√
77

. Hence we must have d ≥ 40

65
.

34. Let P and Q be the points (1,3) and (4,7) then
−→
PQ= 3i + 4j so W = F ·

−→
PQ= −12 ft · lb.

35. W = F ·(15/
√

3)(i + j + k) = −15/
√

3 N · m = −5
√

3 J

36. W = F ·
−→
PQ= ‖F‖ ‖

−→
PQ‖ cos 45◦ = (500)(100)

(√
2/2

)
= 25,000

√
2 N · m = 25,000

√
2 J

37. W = F ·15i = 15 · 50 cos 60◦ = 375 ft · lb.

38. F1 = 250 cos 38◦i + 250 sin 38◦j,F = 1000i,F2 = F − F1 = (1000 − 250 cos 38◦)i − 250 sin 38◦j;

‖F2‖ = 1000

√
17

16
− 1

2
cos 38◦ ≈ 817.62 N, θ = tan−1 250 sin 38◦

250 cos 38◦ − 1000
≈ −11◦

39. u + v and u − v are vectors along the diagonals,

(u + v) · (u − v) = u · u − u · v + v · u − v · v = ‖u‖2 − ‖v‖2 so (u + v) · (u − v) = 0

if and only if ‖u‖ = ‖v‖.

40. The diagonals have lengths ‖u + v‖ and ‖u − v‖ but

‖u + v‖2 = (u + v) · (u + v) = ‖u‖2 + 2u · v + ‖v‖2, and

‖u − v‖2 = (u − v) · (u − v) = ‖u‖2 − 2u · v + ‖v‖2. If the parallelogram is a rectangle then

u · v = 0 so ‖u + v‖2 = ‖u − v‖2; the diagonals are equal. If the diagonals are equal, then
4u · v = 0, u · v = 0 so u is perpendicular to v and hence the parallelogram is a rectangle.
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32. Three forces act on the block: its weight −300j; the tension in cable A, which has the form
a(−i + j); and the tension in cable B, which has the form b(

√
3i + j), where a, b are positive

constants. The sum of these forces is zero, which yields a = 450 + 150
√

3, b = 150 + 150
√

3. Thus
the forces along cables A and B are, respectively,
‖150(3 +

√
3)(i − j)‖ = 450

√
2 + 150

√
6 lb, and ‖150(

√
3 + 1)(

√
3i − j)‖ = 300 + 300

√
3 lb.

33. (a) Let TA and TB be the forces exerted on the block by cables A and B. Then

TA = a(−10i + dj) and TB = b(20i + dj) for some positive a, b. Since TA + TB − 100j = 0, we

find a =
200

3d
, b =

100

3d
,TA = −2000

3d
i +

200

3
j, and TB =

2000

3d
i +

100

3
j. Thus

TA =
200

3

√
1 +

100

d2
,TB =

100

3

√
1 +

400

d2
, and the graphs are:

500

–100

–20 100

500

–100

–20 100

(b) An increase in d will decrease both forces.

(c) The inequality ‖TA‖ ≤ 150 is equivalent to d ≥ 40√
65

, and ‖TB‖ ≤ 150 is equivalent to

d ≥ 40√
77

. Hence we must have d ≥ 40

65
.

34. Let P and Q be the points (1,3) and (4,7) then
−→
PQ= 3i + 4j so W = F ·

−→
PQ= −12 ft · lb.

35. W = F ·(15/
√

3)(i + j + k) = −15/
√

3 N · m = −5
√

3 J

36. W = F ·
−→
PQ= ‖F‖ ‖

−→
PQ‖ cos 45◦ = (500)(100)

(√
2/2

)
= 25,000

√
2 N · m = 25,000

√
2 J

37. W = F ·15i = 15 · 50 cos 60◦ = 375 ft · lb.

38. F1 = 250 cos 38◦i + 250 sin 38◦j,F = 1000i,F2 = F − F1 = (1000 − 250 cos 38◦)i − 250 sin 38◦j;

‖F2‖ = 1000

√
17

16
− 1

2
cos 38◦ ≈ 817.62 N, θ = tan−1 250 sin 38◦

250 cos 38◦ − 1000
≈ −11◦

39. u + v and u − v are vectors along the diagonals,

(u + v) · (u − v) = u · u − u · v + v · u − v · v = ‖u‖2 − ‖v‖2 so (u + v) · (u − v) = 0

if and only if ‖u‖ = ‖v‖.

40. The diagonals have lengths ‖u + v‖ and ‖u − v‖ but

‖u + v‖2 = (u + v) · (u + v) = ‖u‖2 + 2u · v + ‖v‖2, and

‖u − v‖2 = (u − v) · (u − v) = ‖u‖2 − 2u · v + ‖v‖2. If the parallelogram is a rectangle then

u · v = 0 so ‖u + v‖2 = ‖u − v‖2; the diagonals are equal. If the diagonals are equal, then
4u · v = 0, u · v = 0 so u is perpendicular to v and hence the parallelogram is a rectangle.

(b) An increase in d will decrease both forces.

(c) The inequality ‖TA‖ ≤ 150 is equivalent to d ≥ 40√
65

, and ‖TB‖ ≤ 150 is equivalent to d ≥ 40√
77

. Hence we

must have d ≥ 40√
65

.

57. (a) c1v1 + c2v2 = (2c1 + 4c2) i + (−c1 + 2c2) j = 4j, so 2c1 + 4c2 = 0 and −c1 + 2c2 = 4, which gives c1 = −2,
c2 = 1.

(b) c1v1 + c2v2 = 〈c1 − 2c2, −3c1 + 6c2〉 = 〈3, 5〉, so c1 − 2c2 = 3 and −3c1 + 6c2 = 5 which has no solution.

58. (a) Equate corresponding components to get the system of equations c1 +3c2 = −1, 2c2 + c3 = 1, and c1 + c3 = 5.
Solve to get c1 = 2, c2 = −1, and c3 = 3.
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(b) Equate corresponding components to get the system of equations c1 + 3c2 + 4c3 = 2, −c1 − c3 = 1, and
c2 + c3 = −1. From the second and third equations, c1 = −1− c3 and c2 = −1− c3; substitute these into the first
equation to get −4 = 2, which is false so the system has no solution.

59. Place u and v tip to tail so that u + v is the vector from the initial point of u to the terminal point of v. The
shortest distance between two points is along the line joining these points so ‖u + v‖ ≤ ‖u‖+ ‖v‖.

60. (a): u + v = (u1i + u2 j) + (v1i + v2 j) = (v1i + v2 j) + (u1i + u2 j) = v + u.

(c): u + 0 = (u1i + u2 j) + 0i + 0j = u1i + u2 j = u.

(e): k(lu) = k(l(u1i + u2 j)) = k(lu1i + lu2 j) = klu1i + klu2 j = (kl)u.

61. (d): u + (−u) = (u1i + u2 j) + (−u1i− u2 j) = (u1 − u1)i + (u1 − u1) j = 0.

(g): (k + l)u = (k + l)(u1i + u2 j) = ku1i + ku2 j + lu1i + lu2 j = ku + lu.

(h): 1u = 1(u1i + u2 j) = 1u1i + 1u2 j = u1i + u2 j = u.

62. Draw the triangles with sides formed by the vectors u, v, u + v and ku, kv, ku + kv. By similar triangles,
k(u + v) = ku + kv.

63. Let a, b, c be vectors along the sides of the triangle and A,B the midpoints of a and b, then u =
1

2
a − 1

2
b =

1

2
(a− b) =

1

2
c so u is parallel to c and half as long.

A

B

u

c

b

a

64. Let a, b, c, d be vectors along the sides of the quadrilateral and A, B, C, D the corresponding midpoints, then

u =
1

2
b +

1

2
c and v =

1

2
d− 1

2
a but d = a + b + c so v =

1

2
(a + b + c)− 1

2
a =

1

2
b +

1

2
c = u thus ABCD is a

parallelogram because sides AD and BC are equal and parallel.

v

a

b

c

d

u
A

B

C

D

Exercise Set 11.3

1. (a) (1)(6) + (2)(−8) = −10; cos θ = (−10)/[(
√

5)(10)] = −1/
√

5.

(b) (−7)(0) + (−3)(1) = −3; cos θ = (−3)/[(
√

58)(1)] = −3/
√

58.

(c) (1)(8) + (−3)(−2) + (7)(−2) = 0; cos θ = 0.

(d) (−3)(4) + (1)(2) + (2)(−5) = −20; cos θ = (−20)/[(
√

14)(
√

45)] = −20/(3
√

70).

2. (a) u · v = (1)(2) cos(π/6) =
√

3 (b) u · v = (2)(3) cos 135◦ = −3
√

2.

3. (a) u · v = −34 < 0, obtuse. (b) u · v = 6 > 0, acute. (c) u · v = −1 < 0, obtuse. (d) u · v = 0, orthogonal.
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4. Let the points be P,Q,R in order, then
−→
PQ= 〈2−(−1),−2−2, 0−3〉 = 〈3,−4,−3〉,

−→
QR= 〈3−2, 1−(−2),−4−0〉 =

〈1, 3,−4〉,
−→
RP= 〈−1− 3, 2− 1, 3− (−4)〉 = 〈−4, 1, 7〉; since

−→
QP ·

−→
QR= −3(1) + 4(3) + 3(−4) = −3 < 0, 6 PQR is

obtuse; since
−→
RP ·

−→
RQ= −4(−1)+(−3)+7(4) = 29 > 0, 6 PRQ is acute; since

−→
PR ·

−→
PQ= 4(3)−1(−4)−7(−3) =

37 > 0, 6 RPQ is acute.

5. Since v0 · vi = cosφi, the answers are, in order,
√

2/2, 0,−
√

2/2,−1,−
√

2/2, 0,
√

2/2.

6. Proceed as in Exercise 5; 25/2,−25/2,−25,−25/2, 25/2.

7. (a)
−→
AB= 〈1, 3,−2〉,

−→
BC = 〈4,−2,−1〉,

−→
AB ·

−→
BC = 0 so

−→
AB and

−→
BC are orthogonal; it is a right triangle with

the right angle at vertex B.

(b) Let A, B, and C be the vertices (−1, 0), (2,−1), and (1,4) with corresponding interior angles α, β, and γ,

then cosα =

−→
AB ·

−→
AC

‖
−→
AB ‖ ‖

−→
AC ‖

=
〈3,−1〉 · 〈2, 4〉√

10
√

20
= 1/(5

√
2), so α ≈ 82◦, cosβ =

−→
BA ·

−→
BC

‖
−→
BA‖ ‖

−→
BC ‖

=
〈−3, 1〉 · 〈−1, 5〉√

10
√

26
=

4/
√

65, so β ≈ 60◦, cos γ =

−→
CA ·

−→
CB

‖
−→
CA‖ ‖

−→
CB ‖

=
〈−2,−4〉 · 〈1,−5〉√

20
√

26
= 9/

√
130, so γ ≈ 38◦.

8. (a) v · v1 = −ab+ ba = 0; v · v2 = ab+ b(−a) = 0.

(b) Let v1 = 2i + 3j, v2 = −2i− 3j; take u1 =
v1

‖v1‖
=

2√
13

i +
3√
13

j, u2 = −u1.

–3 3

–3

3

x

y

v

v1

v2

9. (a) The dot product of a vector u and a scalar v · w is not defined.

(b) The sum of a scalar u · v and a vector w is not defined.

(c) u · v is not a vector.

(d) The dot product of a scalar k and a vector u + v is not defined.

10. (a) A scalar u · v times a vector w. (b) A scalar u · v times a scalar v ·w.

(c) A scalar u · v plus a scalar k. (d) A dot product of a vector ku with a vector v.

11. (b): u · (v + w) = (6i− j+ 2k) · ((2i+ 7j+ 4k) + (i + j− 3k)) = (6i− j+ 2k) · (3i+ 8j + k) = 12; u · v+u · w =
(6i− j+ 2k) · (2i+ 7j+ 4k) + (6i− j+ 2k) · (i + j− 3k) = 13− 1 = 12. (c): k(u · v) = −5(13) = −65; (ku) · v =
(−30i + 5j− 10k) · (2i + 7j + 4k) = −65; u · (kv) = (6i− j + 2k) · (−10i− 35j− 20k) = −65.

12. (a) 〈1, 2〉 · (〈28,−14〉+ 〈6, 0〉) = 〈1, 2〉 · 〈34,−14〉 = 6. (b) ‖6w‖ = 6‖w‖ = 36. (c) 24
√

5 (d) 24
√

5

13.
−→
AB ·

−→
AP= [2i + j + 2k] · [(r − 1)i + (r + 1)j + (r − 3)k] = 2(r − 1) + (r + 1) + 2(r − 3) = 5r − 7 = 0, r = 7/5.
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14. By inspection, 3i − 4j is orthogonal to and has the same length as 4i + 3j, so u1 = (4i + 3j) + (3i − 4j) = 7i − j
and u2 = (4i + 3j) + (−1)(3i− 4j) = i + 7j each make an angle of 45◦ with 4i + 3j; unit vectors in the directions
of u1 and u2 are (7i− j)/

√
50 and (i + 7j)/

√
50.

15. (a) ‖v‖ =
√

3, so cosα = cosβ = 1/
√

3, cos γ = −1/
√

3, α = β ≈ 55◦, γ ≈ 125◦.

(b) ‖v‖ = 3, so cosα = 2/3, cosβ = −2/3, cos γ = 1/3, α ≈ 48◦, β ≈ 132◦, γ ≈ 71◦.

16. (a) ‖v‖ = 7, so cosα = 3/7, cosβ = −2/7, cos γ = −6/7, α ≈ 65◦, β ≈ 107◦, γ ≈ 149◦.

(b) ‖v‖ = 5, so cosα = 3/5, cosβ = 0, cos γ = −4/5, α ≈ 53◦, β = 90◦, γ ≈ 143◦.

17. cos2 α+ cos2 β + cos2 γ =
v2

1

‖v‖2 +
v2

2

‖v‖2 +
v2

3

‖v‖2 =
(
v2

1 + v2
2 + v2

3

)
/‖v‖2 = ‖v‖2/‖v‖2 = 1.

18. Let v = 〈x, y, z〉, then x =
√
x2 + y2 cos θ, y =

√
x2 + y2 sin θ,

√
x2 + y2 = ‖v‖ cosλ, and z = ‖v‖ sinλ, so

x/‖v‖ = cos θ cosλ, y/‖v‖ = sin θ cosλ, and z/‖v‖ = sinλ.

19. (a) Let k be the length of an edge and introduce a coordinate system as shown in the figure, then d = 〈k, k, k〉,
u = 〈k, k, 0〉, cos θ =

d · u
‖d‖ ‖u‖ =

2k2

(
k
√

3
) (
k
√

2
) = 2/

√
6, so θ = cos−1(2/

√
6) ≈ 35◦.

d

u

θ y

x

z

(b) v = 〈−k, 0, k〉, cos θ =
d · v
‖d‖ ‖v‖ = 0, so θ = π/2 radians.

20. Let u1 = ‖u1‖〈cosα1, cosβ1, cos γ1〉,u2 = ‖u2‖〈cosα2, cosβ2, cos γ2〉, u1 and u2 are perpendicular if and only if
u1 · u2 = 0 so ‖u1‖ ‖u2‖(cosα1 cosα2+cosβ1 cosβ2+cos γ1 cos γ2) = 0, cosα1 cosα2+cosβ1 cosβ2+cos γ1 cos γ2 =
0.

21. cosα =

√
3

2

1

2
=

√
3

4
, cosβ =

√
3

2

√
3

2
=

3

4
, cos γ =

1

2
; α ≈ 64◦, β ≈ 41◦, γ = 60◦.

22. With the cube as shown in the diagram, and a the length of each edge, d1 = ai + aj + ak,d2 = ai + aj − ak,
cos θ = (d1 · d2) / (‖d1‖ ‖d2‖) = 1/3, θ ≈ 71◦.

d1

d2

y

x

z
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23. Take i, j, and k along adjacent edges of the box, then 10i+ 15j+ 25k is along a diagonal, and a unit vector in this

direction is
2√
38

i +
3√
38

j +
5√
38

k. The direction cosines are cosα = 2/
√

38, cosβ = 3/
√

38, and cos γ = 5/
√

38

so α ≈ 71◦, β ≈ 61◦, and γ ≈ 36◦.

24. (a)
b

‖b‖ = 〈3/5, 4/5〉, so projbv = 〈6/25, 8/25〉 and v − projbv = 〈44/25,−33/25〉.

2–2

–2

2

x

y

v

v – projbv

projbv

(b)
b

‖b‖ = 〈1/
√

5,−2/
√

5〉, so projbv = 〈−6/5, 12/5〉 and v − projbv = 〈26/5, 13/5〉.

x

y

–5 5

–5

5
v

v – projbv

projbv

(c)
b

‖b‖ = 〈2/
√

5, 1/
√

5〉, so projbv = 〈−16/5,−8/5〉 and v − projbv = 〈1/5,−2/5〉.

x

y

–4

–4

v

v – projbvprojbv

25. (a)
b

‖b‖ = 〈1/3, 2/3, 2/3〉, so projbv = 〈2/3, 4/3, 4/3〉 and v − projbv = 〈4/3,−7/3, 5/3〉.

(b)
b

‖b‖ = 〈2/7, 3/7,−6/7〉, so projbv = 〈−74/49,−111/49, 222/49〉 and v − projbv = 〈270/49, 62/49, 121/49〉.

26. (a) projbv = 〈−1,−1〉, so v = 〈−1,−1〉+ 〈3,−3〉.

(b) projbv = 〈16/5, 0,−8/5〉, so v = 〈16/5, 0,−8/5〉+ 〈−1/5, 1,−2/5〉.

(c) v = −2b + 0.

27. (a) projbv = 〈1, 1〉, so v = 〈1, 1〉+ 〈−4, 4〉.
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(b) projbv = 〈0,−8/5, 4/5〉, so v = 〈0,−8/5, 4/5〉+ 〈−2, 13/5, 26/5〉.

(c) v· b = 0, hence projbv = 0,v = 0 + v.

28. False, for example a = 〈1, 2〉,b = 〈−1, 0〉, c = 〈5,−3〉.

29. True, because (v + w) · (v + w) = ‖v‖2 + ‖w‖2 6= 0.

30. True, by Theorem 11.3.3, u · v = ‖u‖‖v‖ cos θ = 1 · ‖v‖ · (±1) = ±‖v‖.

31. True, projb(v) =
v · b
‖b‖2b is a scalar multiple of the vector b and is therefore parallel to b.

32.
−→
AP= −i + 3j,

−→
AB= 3i + 4j, ‖proj−→

AB

−→
AP ‖ = |

−→
AP ·

−→
AB |/‖

−→
AB ‖ = 9/5, ‖

−→
AP ‖ =

√
10,
√

10− 81/25 = 13/5.

33.
−→
AP = −4i + 2k,

−→
AB= −3i + 2j − 4k, ‖proj−→

AB

−→
AP ‖ = |

−→
AP ·

−→
AB |/‖

−→
AB ‖ = 4/

√
29. ‖

−→
AP ‖ =

√
20,√

20− 16/29 =
√

564/29.

34. Let e1 = −〈cos 27◦, sin 27◦〉 and e2 = 〈sin 27◦,− cos 27◦〉 be the forces parallel to and perpendicular to the slide,
and let F be the downward force of gravity on the child. Then ‖F‖ = 34(9.8) = 333.2 N, and F = F1 + F2 =
(F · e1)e1 + (F · e2)e2. The force parallel to the slide is therefore ‖F‖ cos 63◦ ≈ 151.27 N, and the force against
the slide is ‖F‖ cos 27◦ ≈ 296.88 N, so it takes a force of 151.27 N to prevent the child from sliding.

35. Let x denote the magnitude of the force in the direction of Q. Then the force F acting on the child is F = xi−333.2j.
Let e1 = −〈cos 27◦, sin 27◦〉 and e2 = 〈sin 27◦,− cos 27◦〉 be the unit vectors in the directions along and against
the slide. Then the component of F in the direction of e1 is F · e1 = −x cos 27◦ + 333.2 sin 27◦ and the child is
prevented from sliding down if this quantity is negative, i.e. x > 333.2 tan 27◦ ≈ 169.77 N.

36. We will obtain the work in two different ways. First, it is simply 4 · 151.27 = 605.08 J. (Force times displacement.)
Second, it is the same as the change in potential energy, so it is mgh = 34 · 9.8 · 4 sin(27◦) = 605.08 J.

37. W = F ·15i = 15 · 50 cos 60◦ = 375 ft · lb.

38. Let P and Q be the points (1,3) and (4,7) then
−→
PQ= 3i + 4j so W = F ·

−→
PQ= −12 ft · lb.

39. W = F ·(15/
√

3)(i + j + k) = −15/
√

3 N · m = −5
√

3 J.

40. W = F ·
−→
PQ= ‖F‖ ‖

−→
PQ‖ cos 45◦ = (500)(100)

(√
2/2
)

= 25,000
√

2 N · m = 25,000
√

2 J.

41. u + v and u− v are vectors along the diagonals, (u + v) · (u− v) = u · u− u · v + v · u− v · v = ‖u‖2 − ‖v‖2
so (u + v) · (u− v) = 0 if and only if ‖u‖ = ‖v‖.

42. The diagonals have lengths ‖u + v‖ and ‖u− v‖ but ‖u + v‖2 = (u + v) · (u + v) = ‖u‖2 + 2u · v + ‖v‖2, and
‖u− v‖2 = (u− v) · (u− v) = ‖u‖2 − 2u · v + ‖v‖2. If the parallelogram is a rectangle then u · v = 0 so
‖u + v‖2 = ‖u− v‖2; the diagonals are equal. If the diagonals are equal, then 4u · v = 0, u · v = 0 so u is
perpendicular to v and hence the parallelogram is a rectangle.

43. ‖u + v‖2 = (u + v) · (u + v) = ‖u‖2 + 2u · v + ‖v‖2 and ‖u− v‖2 = (u− v) · (u− v) = ‖u‖2 − 2u · v + ‖v‖2,
add to get ‖u + v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2. The sum of the squares of the lengths of the diagonals of a
parallelogram is equal to twice the sum of the squares of the lengths of the sides.

44. ‖u + v‖2 = (u + v) · (u + v) = ‖u‖2 + 2u · v + ‖v‖2 and ‖u− v‖2 = (u− v) · (u− v) = ‖u‖2 − 2u · v + ‖v‖2,
subtract to get ‖u + v‖2 − ‖u− v‖2 = 4u · v, the result follows by dividing both sides by 4.
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45. v = c1v1 + c2v2 + c3v3 so v · vi = civi · vi because vi · vj = 0 if i 6= j, thus v · vi = ci‖vi‖2, ci = v · vi/‖vi‖2
for i = 1, 2, 3.

46. v1 · v2 = v1 · v3 = v2 · v3 = 0 so they are mutually perpendicular. Let v = i− j + k, then c1 =
v · v1

‖v1‖2
=

3

7
,

c2 =
v · v2

‖v2‖2
= −1

3
, and c3 =

v · v3

‖v3‖2
=

1

21
.

47. (a) u = xi + (x2 + 1)j,v = xi − (x + 1)j, θ = cos−1[(u · v)/(‖u‖‖v‖)]. Use a CAS to solve dθ/dx = 0 to find
that the minimum value of θ occurs when x ≈ −0.53567 so the minimum angle is about 40◦. NB: Since cos−1 u is
a decreasing function of u, it suffices to maximize (u · v)/(‖u‖‖v‖), or, what is easier, its square.

(b) Solve u · v = 0 for x to get x ≈ −0.682328.

48. (a) u = cos θ1i± sin θ1j,v = ± sin θ2j + cos θ2k, cos θ = u · v = ± sin θ1 sin θ2.

(b) cos θ = ± sin2 45◦ = ±1/2, θ = 60◦.

(c) Let θ(t) = cos−1(sin t sin 2t); solve θ′(t) = 0 for t to find that θmax ≈ 140◦ (reject, since θ is acute) when
t ≈ 2.186276 and that θmin ≈ 40◦ when t ≈ 0.955317; for θmax check the endpoints t = 0, π/2 to obtain θmax =
cos−1(0) = π/2.

49. Let u = 〈u1, u2, u3〉,v = 〈v1, v2, v3〉,w = 〈w1, w2, w3〉. Then u · (v+w) = u1(v1+w1)+u2(v2+w2)+u3(v3+w3) =
u1v1 + u1w1 + u2v2 + u2w2 + u3v3 + u3w3 = u1v1 + u2v2 + u3v3 + u1w1 + u2w2 + u3w3 = u · v + u · w, also
0 · v = 0 · v1 + 0 · v2 + 0 · v3 = 0.

Exercise Set 11.4

1. (a) i× (i + j + k) =

∣∣∣∣∣∣

i j k
1 0 0
1 1 1

∣∣∣∣∣∣
= −j + k.

(b) i× (i + j + k) = (i× i) + (i× j) + (i× k) = −j + k.

2. (a) j× (i + j + k) =

∣∣∣∣∣∣

i j k
0 1 0
1 1 1

∣∣∣∣∣∣
= i− k; j× (i + j + k) = (j× i) + (j× j) + (j× k) = i− k.

(b) k× (i + j + k) =

∣∣∣∣∣∣

i j k
0 0 1
1 1 1

∣∣∣∣∣∣
= −i + j; k× (i + j + k) = (k× i) + (k× j) + (k× k) = j− i + 0 = −i + j.

3. 〈7, 10, 9〉

4. −i− 2j− 7k

5. 〈−4,−6,−3〉

6. i + 2j− 4k

7. (a) v ×w = 〈−23, 7,−1〉,u× (v ×w) = 〈−20,−67,−9〉.

(b) u× v = 〈−10,−14, 2〉, (u× v)×w = 〈−78, 52,−26〉.

(c) (u× v)× (v ×w) = 〈−10,−14, 2〉 × 〈−23, 7,−1〉 = 〈0,−56,−392〉.
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(d) (v ×w)× (u× v) = 〈0, 56, 392〉.

9. u× v = (i + j)× (i + j + k) = k− j− k + i = i− j, the direction cosines are
1√
2
,− 1√

2
, 0.

10. u× v = 12i + 30j− 6k, so ±
(

2√
30

i +

√
5√
6
j− 1√

30
k

)
.

11. n =
−→
AB ×

−→
AC = 〈1, 1,−3〉 × 〈−1, 3,−1〉 = 〈8, 4, 4〉, unit vectors are ± 1√

6
〈2, 1, 1〉.

12. A vector parallel to the yz-plane must be perpendicular to i; i× (3i− j + 2k) = −2j− k, ‖ − 2j− k‖ =
√

5, the
unit vectors are ±(2j + k)/

√
5.

13. True.

14. False; (i× j)× j = −k× j = i, i× (j× j) = 0.

15. False; let v = 〈2, 1,−1〉,u = 〈1, 3,−1〉,w = 〈−5, 0, 2〉, then v × u = v ×w = 〈2, 1, 5〉, but u 6= w.

16. True; by Theorem 11.4.6(b); if one row of a determinant is a linear combination of the other two rows, then the
determinant is zero. Equivalently, if u = av + bw then u lies in the plane of v and w and is thus perpendicular
to their cross product.

17. A = ‖u× v‖ = ‖ − 7i− j + 3k‖ =
√

59.

18. A = ‖u× v‖ = ‖ − 6i + 4j + 7k‖ =
√

101.

19. A =
1

2
‖
−→
PQ ×

−→
PR‖ =

1

2
‖〈−1,−5, 2〉 × 〈2, 0, 3〉‖ =

1

2
‖〈−15, 7, 10〉‖ =

√
374/2.

20. A =
1

2
‖
−→
PQ ×

−→
PR‖ =

1

2
‖〈−1, 4, 8〉 × 〈5, 2, 12〉‖ =

1

2
‖〈32, 52,−22〉‖ = 9

√
13.

21. (2i− 3j + k) · (8i− 20j + 4k) = 80.

22. 〈1,−2, 2〉 · 〈−11,−8, 12〉 = 29.

23. 〈2, 1, 0〉 · 〈−3, 3, 12〉 = −3.

24. i · (i− j) = 1.

25. V = |u · (v ×w)| = | − 16| = 16.

26. V = |u · (v ×w)| = |45| = 45.

27. (a) u · (v ×w) = 0, yes. (b) u · (v ×w) = 0, yes. (c) u · (v ×w) = 245, no.

28. (a) u · (w × v) = −u · (v ×w) = −3. (b) (v ×w) · u = u · (v ×w) = 3. (c) w · (u× v) = u · (v ×w) = 3.

(d) v · (u×w) = u · (w × v) = −3. (e) (u×w) · v = u · (w × v) = −3. (f) v · (w ×w) = v · 0 = 0.

29. (a) V = |u · (v ×w)| = | − 9| = 9.

(b) A = ‖u×w‖ = ‖3i− 8j + 7k‖ =
√

122.
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(c) v ×w = −3i − j + 2k is perpendicular to the plane determined by v and w; let θ be the angle between u

and v ×w, then cos θ =
u · (v ×w)

‖u‖ ‖v ×w‖ =
−9√

14
√

14
= −9/14, so the acute angle φ that u makes with the plane

determined by v and w is φ = θ − π/2 = sin−1(9/14).

30. From the diagram, d = ‖u‖ sin θ =
‖u‖‖v‖ sin θ

‖v‖ =
‖u× v‖
‖v‖ .

u

v

d

P

BA

θ

31. (a) u =
−→
AP = −4i+ 2k, v =

−→
AB= −3i+ 2j− 4k, u× v = −4i− 22j− 8k; distance = ‖u× v‖/‖v‖ = 2

√
141/29.

(b) u =
−→
AP = 2i + 2j, v =

−→
AB= −2i + j, u× v = 6k; distance = ‖u× v‖/‖v‖ = 6/

√
5.

32. Take v and w as sides of the (triangular) base, then area of base =
1

2
‖v ×w‖ and height = ‖projv×wu‖ =

|u · (v ×w)|
‖v ×w‖ so V =

1

3
(area of base) (height) =

1

6
|u · (v ×w)|.

33.
−→
PQ= 〈3,−1,−3〉,

−→
PR= 〈2,−2, 1〉,

−→
PS= 〈4,−4, 3〉, V =

1

6
|
−→
PQ · (

−→
PR ×

−→
PS)| = 1

6
|−4| = 2/3.

34. (a) cos θ =
u · v
‖u‖‖v‖ = −23

49
.

(b) sin θ =
‖u× v‖
‖u‖‖v‖ =

‖36i− 24j‖
49

=
12
√

13

49
.

(c)
232

492
+

144 · 13

492
=

2401

492
= 1.

35. Since
−→
AC · (

−→
AB ×

−→
AD) =

−→
AC · (

−→
AB ×

−→
CD)+

−→
AC · (

−→
AB ×

−→
AC) = 0 + 0 = 0, the volume of the parallelepiped

determined by
−→
AB,

−→
AC, and

−→
AD is zero, thus A,B,C, and D are coplanar (lie in the same plane). Since

−→
AB ×

−→
CD 6= 0, the lines are not parallel. Hence they must intersect.

36. The points P lie on the plane determined by A,B and C.

37. From Theorems 11.3.3 and 11.4.5a it follows that sin θ = cos θ, so θ = π/4.

38. ‖u× v‖2 = ‖u‖2‖v‖2 sin2 θ = ‖u‖2‖v‖2(1− cos2 θ) = ‖u‖2‖v‖2 − (u · v)2.

39. (a) F = 10j and
−→
PQ= i + j + k, so the vector moment of F about P is

−→
PQ ×F =

∣∣∣∣∣∣

i j k
1 1 1
0 10 0

∣∣∣∣∣∣
= −10i + 10k,

and the scalar moment is 10
√

2 lb·ft. The direction of rotation of the cube about P is counterclockwise looking

along
−→
PQ ×F = −10i + 10k toward its initial point.

(b) F = 10j and
−→
PQ= j + k, so the vector moment of F about P is

−→
PQ ×F =

∣∣∣∣∣∣

i j k
0 1 1
0 10 0

∣∣∣∣∣∣
= −10i, and the
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scalar moment is 10 lb·ft. The direction of rotation of the cube about P is counterclockwise looking along −10i
toward its initial point.

(c) F = 10j and
−→
PQ= j, so the vector moment of F about P is

−→
PQ ×F =

∣∣∣∣∣∣

i j k
0 1 0
0 10 0

∣∣∣∣∣∣
= 0, and the scalar

moment is 0 lb·ft. Since the force is parallel to the direction of motion, there is no rotation about P .

40. (a) F =
1000√

2
(−i + k) and

−→
PQ= 2j− k, so the vector moment of F about P is

−→
PQ ×F = 500

√
2

∣∣∣∣∣∣

i j k
0 2 −1
−1 0 1

∣∣∣∣∣∣
=

500
√

2(2i + j + 2k), and the scalar moment is 1500
√

2 N·m.

(b) The direction angles of the vector moment of F about the point P are cos−1(2/3) ≈ 48◦, cos−1(1/3) ≈ 71◦,
and cos−1(2/3) ≈ 48◦.

41. Take the center of the bolt as the origin of the plane. Then F makes an angle 72◦ with the positive x-axis, so F =

200 cos 72◦i+200 sin 72◦j and
−→
PQ = 0.2 i+0.03 j. The scalar moment is given by

∣∣∣∣∣∣

∣∣∣∣∣∣

i j k
0.2 0.03 0
200 cos 72◦ 200 sin 72◦ 0

∣∣∣∣∣∣

∣∣∣∣∣∣
=

∣∣∣∣40
1

4
(
√

5− 1)− 6
1

4

√
10 + 2

√
5

∣∣∣∣ ≈ 36.1882 N·m.

42. Part (b): let u = 〈u1, u2, u3〉 ,v = 〈v1, v2, v3〉, and w = 〈w1, w2, w3〉; show that u× (v + w) and (u× v) + (u×w)
are the same.

Part (c): (u + v)×w = −[w × (u + v)] (from Part (a)) = −[(w × u) + (w × v)] (from Part (b)) = (u×w) + (v ×w)
(from Part (a)).

43. Let u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉; show that k(u× v), (ku)× v, and u× (kv) are all the same; Part (e) is
proved in a similar fashion.

44. Suppose the first two rows are interchanged. Then by definition,

∣∣∣∣∣∣

b1 b2 b3
a1 a2 a3

c1 c2 c3

∣∣∣∣∣∣
= b1

∣∣∣∣
a2 a3

c2 c3

∣∣∣∣−b2
∣∣∣∣
a1 a3

c1 c3

∣∣∣∣+b3
∣∣∣∣
a1 a2

c1 c2

∣∣∣∣ = b1(a2c3−a3c2)−b2(a1c3−a3c1)+b3(a1c2−a2c1),

which is the negative of the right hand side of (2) after expansion. If two other rows were to be exchanged, a similar
proof would hold. Finally, suppose ∆ were a determinant with two identical rows. Then the value is unchanged if
we interchange those two rows, yet ∆ = −∆ by Part (b) of Theorem 12.4.1. Hence ∆ = −∆, ∆ = 0.

45. −8i − 8k,−8i − 20j + 2k. In the first triple, u is ’outer’ because it’s not inside the parentheses, v is ’adjacent’
because it lies next to u and w (typographically speaking), and w is ’remote’ because it’s inside the parentheses
far from u. In the second triple product, w is ’outer’, u is ’remote’ and v is ’adjacent’.

46. (a) From the first formula in Exercise 45, it follows that u× (v ×w) is a linear combination of v and w and
hence lies in the plane determined by them, and from the second formula it follows that (u × v) ×w is a linear
combination of u and v and hence lies in their plane.

(b) u× (v ×w) is orthogonal to v ×w and hence lies in the plane of v and w; similarly for (u× v)×w.

47. (a) Replace u with a× b, v with c, and w with d in the first formula of Exercise 41.

(b) From the second formula of Exercise 41, (a× b)×c+(b× c)×a+(c× a)×b = (c · a)b−(c · b)a+(a · b)c−
(a · c)b + (b · c)a− (b · a)c = 0.
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48. If a, b, c, and d lie in the same plane then a× b and c× d are parallel so (a× b)× (c× d) = 0.

49. Let u and v be the vectors from a point on the curve to the points (2,−1, 0) and (3, 2, 2), respectively. Then
u = (2−x)i+(−1− lnx)j and v = (3−x)i+(2− lnx)j+2k. The area of the triangle is given by A = (1/2)‖u×v‖;
solve dA/dx = 0 for x to get x = 2.091581. The minimum area is 1.887850.

50.
−→
PQ′ ×F =

−→
PQ ×F+

−→
QQ′ ×F =

−→
PQ ×F, since F and

−→
QQ′ are parallel.

Exercise Set 11.5

In many of the exercises in this section other answers are also possible.

1. (a) L1: P (1, 0),v = j, x = 1, y = t; L2: P (0, 1),v = i, x = t, y = 1; L3: P (0, 0),v = i + j, x = t, y = t.

(b) L1: P (1, 1, 0),v = k, x = 1, y = 1, z = t; L2: P (0, 1, 1),v = i, x = t, y = 1, z = 1; L3: P (1, 0, 1),v = j, x =
1, y = t, z = 1; L4: P (0, 0, 0),v = i + j + k, x = t, y = t, z = t.

2. (a) L1: x = t, y = 1, 0 ≤ t ≤ 1; L2: x = 1, y = t, 0 ≤ t ≤ 1; L3: x = t, y = t, 0 ≤ t ≤ 1.

(b) L1: x = 1, y = 1, z = t, 0 ≤ t ≤ 1; L2: x = t, y = 1, z = 1, 0 ≤ t ≤ 1; L3: x = 1, y = t, z = 1, 0 ≤ t ≤ 1; L4:
x = t, y = t, z = t, 0 ≤ t ≤ 1.

3. (a)
−→
P1P2 = 〈2, 3〉 so x = 3 + 2t, y = −2 + 3t for the line; for the line segment add the condition 0 ≤ t ≤ 1.

(b)
−→
P1P2 = 〈−3, 6, 1〉 so x = 5 − 3t, y = −2 + 6t, z = 1 + t for the line; for the line segment add the condition

0 ≤ t ≤ 1.

4. (a)
−→
P1P2 = 〈−3,−5〉 so x = −3t, y = 1− 5t for the line; for the line segment add the condition 0 ≤ t ≤ 1.

(b)
−→
P1P2 = 〈0, 0,−3〉 so x = −1, y = 3,z = 5− 3t for the line; for the line segment add the condition 0 ≤ t ≤ 1.

5. (a) x = 2 + t, y = −3− 4t. (b) x = t, y = −t, z = 1 + t.

6. (a) x = 3 + 2t, y = −4 + t. (b) x = −1− t, y = 3t, z = 2.

7. (a) r0 = 2i− j so P (2,−1) is on the line, and v = 4i− j is parallel to the line.

(b) At t = 0, P (−1, 2, 4) is on the line, and v = 5i + 7j− 8k is parallel to the line.

8. (a) At t = 0, P (−1, 5) is on the line, and v = 2i + 3j is parallel to the line.

(b) r0 = i + j− 2k so P (1, 1,−2) is on the line, and v = j is parallel to the line.

9. (a) 〈x, y〉 = 〈−3, 4〉+ t〈1, 5〉; r = −3i + 4j + t(i + 5j).

(b) 〈x, y, z〉 = 〈2,−3, 0〉+ t〈−1, 5, 1〉; r = 2i− 3j + t(−i + 5j + k).

10. (a) 〈x, y〉 = 〈0,−2〉+ t〈1, 1〉; r = −2j + t(i + j).

(b) 〈x, y, z〉 = 〈1,−7, 4〉+ t〈1, 3,−5〉; r = i− 7j + 4k + t(i + 3j− 5k).

11. False; x = t, y = 0, z = 0 is not parallel to x = 0, y = 1 + t, z = 0, nor do they intersect.
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12. True: v0 is parallel to L0 is parallel to L1 is parallel to v1, so v0 is parallel to v1. Since they are nonzero vectors,
each is a scalar multiple of the other.

13. False; if (x, y, z) is the point of intersection then there exists t0 such that x = x0 +a0t0, y = y0 + b0t0, z = z0 + c0t0
and there exists t1 such that x = x0 + a0t1, y = y0 + b0t1, z = z0 + c0t1, but it is not necessary that t0 = t1.

14. True; for some t0, 0 = x0 + a0t0, 0 = y0 + b0t0, 0 = z0 + c0t0, so 〈x0, y0, z0〉 = −t0〈a0, b0, c0〉.

15. x = −5 + 2t, y = 2− 3t.

16. x = t, y = 3− 2t.

17. 2x+ 2yy′ = 0, y′ = −x/y = −(3)/(−4) = 3/4, v = 4i + 3j; x = 3 + 4t, y = −4 + 3t.

18. y′ = 2x = 2(−2) = −4, v = i− 4j; x = −2 + t, y = 4− 4t.

19. x = −1 + 3t, y = 2− 4t, z = 4 + t.

20. x = 2− t, y = −1 + 2t, z = 5 + 7t.

21. The line is parallel to the vector 〈2,−1, 2〉 so x = −2 + 2t, y = −t, z = 5 + 2t.

22. The line is parallel to the vector 〈1, 1, 0〉 so x = t, y = t, z = 0.

23. (a) y = 0, 2− t = 0, t = 2, x = 7. (b) x = 0, 1 + 3t = 0, t = −1/3, y = 7/3.

(c) y = x2, 2− t = (1 + 3t)2, 9t2 + 7t− 1 = 0, t =
−7±

√
85

18
, x =

−1±
√

85

6
, y =

43∓
√

85

18
.

24. (4t)2 + (3t)2 = 25, 25t2 = 25, t = ±1, the line intersects the circle at ±〈4, 3〉.

25. (a) z = 0 when t = 3 so the point is (−2, 10, 0). (b) y = 0 when t = −2 so the point is (−2, 0,−5).

(c) x is always −2 so the line does not intersect the yz-plane.

26. (a) z = 0 when t = 4 so the point is (7, 7, 0). (b) y = 0 when t = −3 so the point is (−7, 0, 7).

(c) x = 0 when t = 1/2 so the point is (0, 7/2, 7/2).

27. (1 + t)2 + (3− t)2 = 16, t2 − 2t− 3 = 0, (t+ 1)(t− 3) = 0; t = −1, 3. The points of intersection are (0, 4,−2) and
(4, 0, 6).

28. 2(3t) + 3(−1 + 2t) = 6, 12t = 9; t = 3/4. The point of intersection is (5/4, 9/4, 1/2).

29. The lines intersect if we can find values of t1 and t2 that satisfy the equations 2 + t1 = 2 + t2, 2 + 3t1 = 3 + 4t2,
and 3 + t1 = 4 + 2t2. Solutions of the first two of these equations are t1 = −1, t2 = −1 which also satisfy the third
equation so the lines intersect at (1,−1, 2).

30. Solve the equations −1 + 4t1 = −13 + 12t2, 3 + t1 = 1 + 6t2, and 1 = 2 + 3t2. The third equation yields t2 = −1/3
which when substituted into the first and second equations gives t1 = −4 in both cases; the lines intersect at
(−17,−1, 1).

31. The lines are parallel, respectively, to the vectors 〈7, 1,−3〉 and 〈−1, 0, 2〉. These vectors are not parallel so the
lines are not parallel. The system of equations 1 + 7t1 = 4− t2, 3 + t1 = 6, and 5− 3t1 = 7 + 2t2 has no solution
so the lines do not intersect.
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32. The vectors 〈8,−8, 10〉 and 〈8,−3, 1〉 are not parallel so the lines are not parallel. The lines do not intersect
because the system of equations 2 + 8t1 = 3 + 8t2, 6− 8t1 = 5− 3t2, 10t1 = 6 + t2 has no solution.

33. The lines are parallel, respectively, to the vectors v1 = 〈−2, 1,−1〉 and v2 = 〈−4, 2,−2〉; v2 = 2v1, v1 and v2 are
parallel so the lines are parallel.

34. The lines are not parallel because the vectors 〈3,−2, 3〉 and 〈9,−6, 8〉 are not parallel.

35.
−→
P1P2 = 〈3,−7,−7〉,

−→
P2P3 = 〈−9,−7,−3〉; these vectors are not parallel so the points do not lie on the same line.

36.
−→
P1P2 = 〈2,−4,−4〉,

−→
P2P3 = 〈1,−2,−2〉;

−→
P1P2 = 2

−→
P2P3 so the vectors are parallel and the points lie on the same

line.

37. The point (3, 1) is on both lines (t = 0 for L1, t = 4/3 for L2), as well as the point (−1, 9) (t = 4 for L1, t = 0 for
L2). An alternative method: if t2 gives the point 〈−1 + 3t2, 9 − 6t2〉 on the second line, then t1 = 4 − 3t2 yields
the point 〈3− (4− 3t2), 1 + 2(4− 3t2)〉 = 〈−1 + 3t2, 9− 6t2〉 on the first line, so each point of L2 is a point of L1;
the converse is shown with t2 = (4− t1)/3.

38. The point (1,−2, 0) is on both lines (t = 0 for L1, t = 1/2 for L2), as well as the point (4,−1, 2) (t = 1 for L1,
t = 0 for L2). An alternative method: if t1 gives the point 〈1 + 3t1,−2 + t1, 2t1〉 on L1, then t2 = (1− t1)/2 gives
the point 〈4− 6(1− t1)/2,−1− 2(1− t1)/2, 2− 4(1− t1)/2〉 = 〈1 + 3t1,−2 + t1, 2t1〉 on L2, so each point of L1 is
a point of L2; the converse is shown with t1 = 1− 2t2.

39. L passes through the tips of the vectors. 〈x, y〉 = 〈−1, 2〉+ t〈1, 1〉.

x

y

r0

r0 + v
r0 + 2v r0 + 3v

v

L

40. It passes through the tips of the vectors. 〈x, y, z〉 = 〈0, 2, 1〉+ t〈1, 0, 1〉.

y

x

z

r0

r0 + v
r0 + 2v

r0 + 3v

v

L

41.
1

n
of the way from 〈−2, 0〉 to 〈1, 3〉.

x

y

r0

(1/3)r0 + (2/3)r1
(1/2)r0 + (1/2)r1

(2/3)r0 + (1/3)r1
r1

L

42.
1

n
of the way from 〈2, 0, 4〉 to 〈0, 4, 0〉.
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y

x

z

r0 (1/4)r0 + (3/4)r1

(1/2)r0 + (1/2)r1

(3/4)r0 + (1/4)r1

r1 L

43. The line segment joining the points (1,0) and (−3, 6).

44. The line segment joining the points (−2, 1, 4) and (7,1,1).

45. Let the desired point be P (x0, y0); then
−→
P1P = (2/5)

−→
P1P2, 〈x0 − 3, y0 − 6〉 = (2/5)〈5,−10〉 = 〈2,−4〉, so

x0 = 5, y0 = 2.

46. Let the desired point be P (x0, y0, z0), then
−→
P1P = (2/3)

−→
P1P2, 〈x0−1, y0−4, z0 +3〉 = (2/3)〈0, 1, 2〉 = 〈0, 2/3, 4/3〉;

equate corresponding components to get x0 = 1, y0 = 14/3, z0 = −5/3.

47. A(3, 0, 1) and B(2, 1, 3) are on the line, and (with the method of Exercise 11.3.32)
−→
AP= −5i + j,

−→
AB= −i + j +

2k, ‖proj−→
AB

−→
AP ‖ = |

−→
AP ·

−→
AB |/‖

−→
AB ‖ =

√
6 and ‖

−→
AP ‖ =

√
26, so distance =

√
26− 6 = 2

√
5. Using the

method of Exercise 11.4.30, distance =
‖
−→
AP ×

−→
AB ‖

‖
−→
AB ‖

= 2
√

5.

48. A(2,−1, 0) and B(3,−2, 3) are on the line, and (with the method of Exercise 11.3.32)
−→
AP= −i+5j−3k,

−→
AB= i−j+

3k, ‖proj−→
AB

−→
AP ‖ = |

−→
AP ·

−→
AB |/‖

−→
AB ‖ =

15√
11

and ‖
−→
AP ‖ =

√
35, so distance =

√
35− 225/11 = 4

√
10/11.

Using the method of Exercise 11.4.30, distance =
‖
−→
AP ×

−→
AB ‖

‖
−→
AB ‖

= 4
√

10/11.

49. The vectors v1 = −i + 2j + k and v2 = 2i − 4j − 2k are parallel to the lines, v2 = −2v1 so v1 and v2 are
parallel. Let t = 0 to get the points P (2, 0, 1) and Q(1, 3, 5) on the first and second lines, respectively. Let

u =
−→
PQ= −i + 3j + 4k, v = 1

2v2 = i− 2j− k; u× v = 5i + 3j− k; by the method of Exercise 30 of Section 11.4,

distance = ‖u× v‖/‖v‖ =
√

35/6.

50. The vectors v1 = 2i + 4j − 6k and v2 = 3i + 6j − 9k are parallel to the lines, v2 = (3/2)v1 so v1 and v2 are
parallel. Let t = 0 to get the points P (0, 3, 2) and Q(1, 0, 0) on the first and second lines, respectively. Let

u =
−→
PQ= i− 3j− 2k, v = 1

2v1 = i+ 2j− 3k; u× v = 13i+ j+ 5k, distance = ‖u× v‖/‖v‖ =
√

195/14 (Exercise
30, Section 11.4).

51. (a) The line is parallel to the vector 〈x1 − x0, y1 − y0, z1 − z0〉 so x = x0 + (x1 − x0) t, y = y0 + (y1 − y0) t,
z = z0 + (z1 − z0) t.

(b) The line is parallel to the vector 〈a, b, c〉 so x = x1 + at, y = y1 + bt, z = z1 + ct.

52. Solve each of the given parametric equations (2) for t to get t = (x− x0) /a, t = (y − y0) /b, t = (z − z0) /c, so
(x, y, z) is on the line if and only if (x− x0) /a = (y − y0) /b = (z − z0) /c.

53. (a) It passes through the point (1,−3, 5) and is parallel to v = 2i + 4j + k.
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(b) 〈x, y, z〉 = 〈1 + 2t,−3 + 4t, 5 + t〉.

54. (a) Perpendicular, since 〈2, 1, 2〉 · 〈−1,−2, 2〉 = 0.

(b) L1: 〈x, y, z〉 = 〈1 + 2t,−3

2
+ t,−1 + 2t〉; L2: 〈x, y, z〉 = 〈4− t, 3− 2t,−4 + 2t〉.

(c) Solve simultaneously 1 + 2t1 = 4 − t2,−
3

2
+ t1 = 3 − 2t2,−1 + 2t1 = −4 + 2t2, solution t1 =

1

2
, t2 = 2, x =

2, y = −1, z = 0.

55. (a) Let t = 3 and t = −2, respectively, in the equations for L1 and L2.

(b) u = 2i− j− 2k and v = i + 3j− k are parallel to L1 and L2, cos θ = u · v/(‖u‖ ‖v‖) = 1/(3
√

11), θ ≈ 84◦.

(c) u×v = 7i+ 7k is perpendicular to both L1 and L2, and hence so is i+k, thus x = 7 + t, y = −1, z = −2 + t.

56. (a) Let t = 1/2 and t = 1, respectively, in the equations for L1 and L2.

(b) u = 4i− 2j + 2k and v = i− j + 4k are parallel to L1 and L2, cos θ = u · v/(‖u‖ ‖v‖) = 14/
√

432, θ ≈ 48◦.

(c) u × v = −6i − 14j − 2k is perpendicular to both L1 and L2, and hence so is 3i + 7j + k, thus x = 2 + 3t,
y = 7t, z = 3 + t.

57. Q(0, 1, 2) lies on the line L (t = 0) so u = j− k is a vector from Q to the point P (0, 2, 1), v = 2i− j + k is parallel
to the given line (set t = 0, 1). Next, u× v = −2j− 2k, and hence w = j + k, are perpendicular to both lines, so
v ×w = −2i − 2j + 2k, and hence i + j− k, is parallel to the line we seek. Thus x = t, y = 2 + t, z = 1 − t are
parametric equations of the line. Q(−2/3, 4/3, 5/3) lies on both lines, so distance = |PQ| = 2

√
3/3.

58. (−2, 4, 2) is on the given line (t = 0) so u = 5i − 3j − 4k is a vector from this point to the point (3, 1,−2), and
v = 2i + 2j + k is parallel to the given line. Hence u × v = 5i − 13j + 16k is perpendicular to both lines so
v× (u× v) = 45i− 27j− 36k, and hence 5i− 3j− 4k is parallel to the line we seek. Thus x = 3 + 5t, y = 1− 3t,
z = −2 − 4t are parametric equations of the line. FInally Q(−2, 4, 2) lies on both lines, so the distance between
the lines is |PQ| = 5

√
2.

59. (a) When t = 0 the bugs are at (4, 1, 2) and (0, 1, 1) so the distance between them is
√

42 + 02 + 12 =
√

17 cm.

(b)
50

0

10

(c) The distance has a minimum value.

(d) Minimize D2 instead of D (the distance between the bugs). D2 = [t − (4 − t)]2 + [(1 + t) − (1 + 2t)]2 +
[(1 + 2t) − (2 + t)]2 = 6t2 − 18t + 17, d(D2)/dt = 12t − 18 = 0 when t = 3/2; the minimum distance is√

6(3/2)2 − 18(3/2) + 17 =
√

14/2 cm.

60. The line intersects the xz-plane when t = −1, the xy-plane when t = 3/2. Along the line, T = 25t2(1 + t)(3− 2t)
for −1 ≤ t ≤ 3/2. Solve dT/dt = 0 for t to find that the maximum value of T is about 50.96 when t ≈ 1.073590.
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Exercise Set 11.6

1. P1 : z = 5, P2 : x = 3, P3 : y = 4.

2. P1 : z = z0, P2 : x = x0, P3 : y = y0.

3. (x− 2) + 4(y − 6) + 2(z − 1) = 0, x+ 4y + 2z = 28.

4. −(x+ 1) + 7(y + 1) + 6(z − 2) = 0, −x+ 7y + 6z = 6.

5. 0(x− 1) + 0(y − 0) + 1(z − 0) = 0, i.e. z = 0.

6. 2x− 3y − 4z = 0.

7. n = i− j, P (0, 0, 0), x− y = 0.

8. n = i + j, P (1, 0, 0), (x− 1) + y = 0, x+ y = 1.

9. n = j + k, P (0, 1, 0), (y − 1) + z = 0, y + z = 1.

10. n = j− k, P (0, 0, 0), y − z = 0.

11.
−→
P1P2 ×

−→
P1P3= 〈2, 1, 2〉 × 〈3,−1,−2〉 = 〈0, 10,−5〉, for convenience choose 〈0, 2,−1〉 which is also normal to the

plane. Use any of the given points to get 2y − z = 1.

12.
−→
P1P2 ×

−→
P1P3= 〈−1,−1,−2〉 × 〈−4, 1, 1〉 = 〈1, 9,−5〉, x+ 9y − 5z = 16.

13. (a) Parallel, because 〈2,−8,−6〉 and 〈−1, 4, 3〉 are parallel.

(b) Perpendicular, because 〈3,−2, 1〉 and 〈4, 5,−2〉 are orthogonal.

(c) Neither, because 〈1,−1, 3〉 and 〈2, 0, 1〉 are neither parallel nor orthogonal.

14. (a) Neither, because 〈3,−2, 1〉 and 〈6,−4, 3〉 are neither parallel nor orthogonal.

(b) Parallel, because 〈4,−1,−2〉 and 〈1,−1/4,−1/2〉 are parallel.

(c) Perpendicular, because 〈1, 4, 7〉 and 〈5,−3, 1〉 are orthogonal.

15. (a) Parallel, because 〈2,−1,−4〉 and 〈3, 2, 1〉 are orthogonal.

(b) Neither, because 〈1, 2, 3〉 and 〈1,−1, 2〉 are neither parallel nor orthogonal.

(c) Perpendicular, because 〈2, 1,−1〉 and 〈4, 2,−2〉 are parallel.

16. (a) Parallel, because 〈−1, 1,−3〉 and 〈2, 2, 0〉 are orthogonal.

(b) Perpendicular, because 〈−2, 1,−1〉 and 〈6,−3, 3〉 are parallel.

(c) Neither, because 〈1,−1, 1〉 and 〈1, 1, 1〉 are neither parallel nor orthogonal.

17. (a) 3t− 2t+ t− 5 = 0, t = 5/2 so x = y = z = 5/2, the point of intersection is (5/2, 5/2, 5/2).

(b) 2(2− t) + (3 + t) + t = 1 has no solution so the line and plane do not intersect.
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18. (a) 2(3t)− 5t+ (−t) + 1 = 0, 1 = 0 has no solution so the line and the plane do not intersect.

(b) (1 + t) − (−1 + 3t) + 4(2 + 4t) = 7, t = −3/14 so x = 1 − 3/14 = 11/14, y = −1 − 9/14 = −23/14,
z = 2− 12/14 = 8/7, the point is (11/14,−23/14, 8/7).

19. n1 = 〈1, 0, 0〉,n2 = 〈2,−1, 1〉,n1 · n2 = 2, so cos θ =
n1 · n2

‖n1‖ ‖n2‖
=

2√
1
√

6
= 2/

√
6, θ = cos−1(2/

√
6) ≈ 35◦.

20. n1 = 〈1, 2,−2〉,n2 = 〈6,−3, 2〉,n1 · n2 = −4, so cos θ =
(−n1) · n2

‖ − n1‖ ‖n2‖
=

4

(3)(7)
= 4/21, θ = cos−1(4/21) ≈ 79◦.

(Note: −n1 is used instead of n1 to get a value of θ in the range [0, π/2].)

21. True. (±)

22. True.

23. True.

24. True, see Theorem 11.6.2.

25. 〈4,−2, 7〉 is normal to the desired plane and (0, 0, 0) is a point on it; 4x− 2y + 7z = 0.

26. v = 〈3, 2,−1〉 is parallel to the line and n = 〈1,−2, 1〉 is normal to the given plane so v × n = 〈0,−4,−8〉 is
normal to the desired plane. Let t = 0 in the line to get (−2, 4, 3) which is also a point on the desired plane, use
this point and (for convenience) the normal 〈0, 1, 2〉 to find that y + 2z = 10.

27. Find two points P1 and P2 on the line of intersection of the given planes and then find an equation of the plane
that contains P1, P2, and the given point P0(−1, 4, 2). Let (x0, y0, z0) be on the line of intersection of the given
planes; then 4x0 − y0 + z0 − 2 = 0 and 2x0 + y0 − 2z0 − 3 = 0, eliminate y0 by addition of the equations to get
6x0 − z0 − 5 = 0; if x0 = 0 then z0 = −5, if x0 = 1 then z0 = 1. Substitution of these values of x0 and z0 into
either of the equations of the planes gives the corresponding values y0 = −7 and y0 = 3 so P1(0,−7,−5) and

P2(1, 3, 1) are on the line of intersection of the planes.
−→
P0P1 ×

−→
P0P2= 〈4,−13, 21〉 is normal to the desired plane

whose equation is 4x− 13y + 21z = −14.

28. 〈1, 2,−1〉 is parallel to the line and hence normal to the plane x+ 2y − z = 10.

29. n1 = 〈2, 1, 1〉 and n2 = 〈1, 2, 1〉 are normals to the given planes, n1 × n2 = 〈−1,−1, 3〉 so 〈1, 1,−3〉 is normal to
the desired plane whose equation is x+ y − 3z = 6.

30. n = 〈4,−1, 3〉 is normal to the given plane,
−→
P1P2 = 〈3,−1,−1〉 is parallel to the line through the given points,

n ×
−→
P1P2 = 〈4, 13,−1〉 is normal to the desired plane whose equation is 4x+ 13y − z = 1.

31. n1 = 〈2,−1, 1〉 and n2 = 〈1, 1,−2〉 are normals to the given planes, n1 × n2 = 〈1, 5, 3〉 is normal to the desired
plane whose equation is x+ 5y + 3z = −6.

32. Let t = 0 and t = 1 to get the points P1(−1, 0,−4) and P2(0, 1,−2) that lie on the line. Denote the given point

by P0, then
−→
P0P1 ×

−→
P0P2 = 〈7,−1,−3〉 is normal to the desired plane whose equation is 7x− y − 3z = 5.

33. The plane is the perpendicular bisector of the line segment that joins P1(2,−1, 1) and P2(3, 1, 5). The midpoint

of the line segment is (5/2, 0, 3) and
−→
P1P2 = 〈1, 2, 4〉 is normal to the plane so an equation is x+ 2y + 4z = 29/2.

34. n1 = 〈2,−1, 1〉 and n2 = 〈0, 1, 1〉 are normals to the given planes, n1×n2 = 〈−2,−2, 2〉 so n = 〈1, 1,−1〉 is parallel
to the line of intersection of the planes. v = 〈3, 1, 2〉 is parallel to the given line, v × n = 〈−3, 5, 2〉 so 〈3,−5,−2〉
is normal to the desired plane. Let t = 0 to find the point (0, 1, 0) that lies on the given line and hence on the
desired plane. An equation of the plane is 3x− 5y − 2z = −5.
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35. The line is parallel to the line of intersection of the planes if it is parallel to both planes. Normals to the given
planes are n1 = 〈1,−4, 2〉 and n2 = 〈2, 3,−1〉 so n1 × n2 = 〈−2, 5, 11〉 is parallel to the line of intersection of the
planes and hence parallel to the desired line whose equations are x = 5− 2t, y = 5t, z = −2 + 11t.

36. (a) The equation of the plane is satisfied by the points on the line: 2(3t+ 1) + (−5t)− (t) = 2.

(b) The vector 〈3,−5, 1〉 is a direction vector for the line and 〈1, 1, 2〉 is a normal to the plane; 〈3,−5, 1〉 · 〈1, 1, 2〉 =
0, so the line is parallel to the plane. Fix t; then the point 〈3t+ 1,−5t, t〉 satisfies 3t+ 1− 5t+ 2t = 1, i.e. it lies
in the plane x+ y + 2z = 1 which in turn lies above the given plane.

37. v1 = 〈1, 2,−1〉 and v2 = 〈−1,−2, 1〉 are parallel, respectively, to the given lines and to each other so the lines
are parallel. Let t = 0 to find the points P1(−2, 3, 4) and P2(3, 4, 0) that lie, respectively, on the given lines.

v1×
−→
P1P2 = 〈−7,−1,−9〉 so 〈7, 1, 9〉 is normal to the desired plane whose equation is 7x+ y + 9z = 25.

38. The system 4t1 − 1 = 12t2 − 13, t1 + 3 = 6t2 + 1, 1 = 3t2 + 2 has the solution (Exercise 30, Section 11.5) t1 = −4,
t2 = −1/3 so (−17,−1, 1) is the point of intersection. v1 = 〈4, 1, 0〉 and v2 = 〈12, 6, 3〉 are (respectively) parallel
to the lines, v1×v2 = 〈3,−12, 12〉 so 〈1,−4, 4〉 is normal to the desired plane whose equation is x− 4y+ 4z = −9.

39. Denote the points by A, B, C, and D, respectively. The points lie in the same plane if
−→
AB ×

−→
AC and

−→
AB ×

−→
AD

are parallel (method 1).
−→
AB ×

−→
AC = 〈0,−10, 5〉,

−→
AB ×

−→
AD= 〈0, 16,−8〉, these vectors are parallel because

〈0,−10, 5〉 = (−10/16)〈0, 16,−8〉. The points lie in the same plane if D lies in the plane determined by A,B,C

(method 2), and since
−→
AB ×

−→
AC = 〈0,−10, 5〉, an equation of the plane is −2y + z + 1 = 0, 2y − z = 1 which is

satisfied by the coordinates of D.

40. The intercepts correspond to the points A(a, 0, 0), B(0, b, 0), and C(0, 0, c).
−→
AB ×

−→
AC = 〈bc, ac, ab〉 is normal to

the plane so bcx+ acy + abz = abc or x/a+ y/b+ z/c = 1.

41. n1 = 〈−2, 3, 7〉 and n2 = 〈1, 2,−3〉 are normals to the planes, n1 × n2 = 〈−23, 1,−7〉 is parallel to the line of
intersection. Let z = 0 in both equations and solve for x and y to get x = −11/7, y = −12/7 so (−11/7,−12/7, 0)
is on the line, a parametrization of which is x = −11/7− 23t, y = −12/7 + t, z = −7t.

42. Similar to Exercise 41 with n1 = 〈3,−5, 2〉, n2 = 〈0, 0, 1〉, n1 × n2 = 〈−5,−3, 0〉. z = 0 so 3x− 5y = 0, let x = 0
then y = 0 and (0, 0, 0) is on the line, a parametrization of which is x = −5t, y = −3t, z = 0.

43. D = |2(1)− 2(−2) + (3)− 4|/
√

4 + 4 + 1 = 5/3.

44. D = |3(0) + 6(1)− 2(5)− 5|/
√

9 + 36 + 4 = 9/7.

45. (0, 0, 0) is on the first plane so D = |6(0)− 3(0)− 3(0)− 5|/
√

36 + 9 + 9 = 5/
√

54.

46. (0, 0, 1) is on the first plane so D = |(0) + (0) + (1) + 1|/
√

1 + 1 + 1 = 2/
√

3.

47. (1, 3, 5) and (4, 6, 7) are on L1 and L2, respectively. v1 = 〈7, 1,−3〉 and v2 = 〈−1, 0, 2〉 are, respectively, parallel
to L1 and L2, v1 × v2 = 〈2,−11, 1〉 so the plane 2x − 11y + z + 51 = 0 contains L2 and is parallel to L1,
D = |2(1)− 11(3) + (5) + 51|/

√
4 + 121 + 1 = 25/

√
126.

48. (3, 4, 1) and (0, 3, 0) are on L1 and L2, respectively. v1 = 〈−1, 4, 2〉 and v2 = 〈1, 0, 2〉 are parallel to L1 and L2,
v1 × v2 = 〈8, 4,−4〉 = 4〈2, 1,−1〉 so 2x+ y − z − 3 = 0 contains L2 and is parallel to L1, D = |2(3) + (4)− (1)−
3|/
√

4 + 1 + 1 =
√

6.

49. The distance between (2, 1,−3) and the plane is |2− 3(1) + 2(−3)− 4|/
√

1 + 9 + 4 = 11/
√

14 which is the radius
of the sphere; an equation is (x− 2)2 + (y − 1)2 + (z + 3)2 = 121/14.



574 Chapter 11

50. The vector 2i + j− k is normal to the plane and hence parallel to the line so parametric equations of the line are
x = 3 + 2t, y = 1 + t, z = −t. Substitution into the equation of the plane yields 2(3 + 2t) + (1 + t) − (−t) = 0,
t = −7/6; the point of intersection is (2/3,−1/6, 7/6).

51. v = 〈1, 2,−1〉 is parallel to the line, n = 〈2,−2,−2〉 is normal to the plane, v · n = 0 so v is parallel to the plane
because v and n are perpendicular. (−1, 3, 0) is on the line so D = |2(−1)− 2(3)− 2(0) + 3|/

√
4 + 4 + 4 = 5/

√
12.

52. (a)

P(x0, y0) P(x, y)

n

r0

r – r0

r

O

(b) n · (r− r0) = a(x− x0) + b(y − y0) = 0.

(c) See the proof of Theorem 11.6.1. Since a and b are not both zero, there is at least one point (x0, y0)
that satisfies ax + by + c = 0, so ax0 + by0 + c = 0. If (x, y) also satisfies ax + by + c = 0 then, subtracting,
a(x− x0) + b(y − y0) = 0, which is the equation of a line with n = 〈a, b〉 as normal.

(d) Let Q(x1, y1) be a point on the line, and position the normal n = 〈a, b〉, with length
√
a2 + b2, so that

its initial point is at Q. The distance is the orthogonal projection of
−→
QP0= 〈x0 − x1, y0 − y1〉 onto n. Then

D = ‖projn
−→
QP 0‖ =

∥∥∥∥∥∥

−→
QP0 · n
‖n‖2 n

∥∥∥∥∥∥
=
|ax0 + by0 + c|√

a2 + b2
.

(e) D = |2(−3) + (5)− 1|/
√

4 + 1 = 2/
√

5.

53. (a) If 〈x0, y0, z0〉 lies on the second plane, so that ax0 + by0 + cz0 + d2 = 0, then by Theorem 11.6.2, the distance

between the planes is D =
|ax0 + by0 + cz0 + d1|√

a2 + b2 + c2
=
| − d2 + d1|√
a2 + b2 + c2

.

(b) The distance between the planes −2x+ y + z = 0 and −2x+ y + z +
5

3
= 0 is D =

|0− 5/3|√
4 + 1 + 1

=
5

3
√

6
.

Exercise Set 11.7

1. (a) Elliptic paraboloid, a = 2, b = 3. (b) Hyperbolic paraboloid, a = 1, b = 5.

(c) Hyperboloid of one sheet, a = b = c = 4. (d) Circular cone, a = b = 1.

(e) Elliptic paraboloid, a = 2, b = 1. (f) Hyperboloid of two sheets, a = b = c = 1.

2. (a) Ellipsoid, a =
√

2, b = 2, c =
√

3. (b) Hyperbolic paraboloid, a = b = 1.

(c) Hyperboloid of one sheet, a = 1, b = 3, c = 1. (d) Hyperboloid of two sheets, a = 1, b = 2, c = 1.

(e) Elliptic paraboloid, a =
√

2, b =
√

2/2. (f) Elliptic cone, a = 2, b =
√

3.
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3. (a) −z = x2 + y2, circular paraboloid opening down the negative z-axis.

z

y
x

(b,c,d) z = x2 + y2, circular paraboloid, no change. y
x

z

(e) x = y2 + z2, circular paraboloid opening along the positive x-axis.

z

y

x

(f) y = x2 + z2, circular paraboloid opening along the positive y-axis.

z

y

x
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4. (a,b,c,d) x2 + y2 − z2 = 1, no change.

z

y
x

(e) −x2 + y2 + z2 = 1, hyperboloid of one sheet with x-axis as axis.

z

y
x

(f) x2 − y2 + z2 = 1, hyperboloid of one sheet with y-axis as axis.

z

y
x

5. (a) Hyperboloid of one sheet, axis is y-axis. (b) Hyperboloid of two sheets separated by yz-plane.

(c) Elliptic paraboloid opening along the positive x-axis. (d) Elliptic cone with x-axis as axis.

(e) Hyperbolic paraboloid straddling the z-axis. (f) Paraboloid opening along the negative y-axis.

6. (a) Same. (b) Same. (c) Same. (d) Same. (e) y =
x2

a2
− z2

c2
. (f) y =

x2

a2
+
z2

c2
.

7. (a) x = 0 :
y2

25
+
z2

4
= 1; y = 0 :

x2

9
+
z2

4
= 1; z = 0 :

x2

9
+
y2

25
= 1.

y2

25
z2

4
+ = 1

x2

9
z2

4
+ = 1

x2

9
y2

25
+ = 1

y

x

z

(b) x = 0 : z = 4y2; y = 0 : z = x2; z = 0 : x = y = 0.
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x
y

z

z = x2

x2 + 4y2 = 0

z = 4y2

(0, 0, 0)

(c) x = 0 :
y2

16
− z2

4
= 1; y = 0 :

x2

9
− z2

4
= 1; z = 0 :

x2

9
+
y2

16
= 1.

y

x

z

y2

16
z2

4
– = 1

x2

9
z2

4
– = 1

x2

9
y2

16
+ = 1

8. (a) x = 0 : y = z = 0; y = 0 : x = 9z2; z = 0 : x = y2.

z

y

x

x = 9z2

x = y2

(b) x = 0 : −y2 + 4z2 = 4; y = 0 : x2 + z2 = 1; z = 0 : 4x2 − y2 = 4

z

yx

y = 0

x = 0

z = 0

(c) x = 0 : z = ±y
2

; y = 0 : z = ±x; z = 0 : x = y = 0



578 Chapter 11

z

y
x

x = 0

y = 0

z = 0

9. (a) 4x2 + z2 = 3; ellipse. (b) y2 + z2 = 3; circle. (c) y2 + z2 = 20; circle.

(d) 9x2 − y2 = 20; hyperbola. (e) z = 9x2 + 16; parabola. (f) 9x2 + 4y2 = 4; ellipse.

10. (a) y2 − 4z2 = 27; hyperbola. (b) 9x2 + 4z2 = 25; ellipse. (c) 9z2 − x2 = 4; hyperbola.

(d) x2 + 4y2 = 9; ellipse. (e) z = 1− 4y2; parabola. (f) x2 − 4y2 = 4; hyperbola.

11. False; ’quadric’ surfaces are of second degree.

12. False; (x− 1)2 + y2 + z2 = 1/4 has no solution if x = y = 0.

13. False.

14. True: y = ±(b/a)x.

15.

(0, 2, 0)

(0, 0, 3)

(1, 0, 0)

Ellipsoid

x y

z

16.

(0, 3, 0)

(0, 0, 2)

(6, 0, 0)

Ellipsoid

x y

z

17.

(0, 3, 0)(2, 0, 0)

Hyperboloid
of one sheet

yx

z

18.

(0, 3, 0)
(3, 0, 0)

Hyperboloid
of one sheet

x y

z

19. Elliptic cone

yx

z

20. Elliptic cone

x y

z

21.

(0, 0, 2) (0, 0, –2) 

Hyperboloid
of two sheets

x y

z

22.

z

yx

Hyperboloid
of two sheets
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23. Hyperbolic paraboloid

x

y

z

24.

z

y

x Hyperbolic
paraboloid 25. Elliptic paraboloid

x y

z

26. Circular paraboloid

x

z

y

27. Circular cone

x
y

z

28. Elliptic paraboloid

x
y

z

29.

(0, 0, 2)

(0, 2, 0)

Hyperboloid
of one sheet

x y

z

30.

(3, 0, 0)

Hyperboloid
of two sheets

( –3, 0, 0)

y
x

z

31.
Hyperbolic
paraboloid

y

x

z

32.

(0, 0, 2)

(2, 0, 0)

Hyperboloid
of one sheet

yx

z

33.

z

yx 34.

(0, 1, 0)

(0, 0, 1)

(1, 0, 0)

y

x

z

35. (1, 0, 0)

(0, 1, 0)

z

y
x 36.

(0, 0, 1)

x y

z

37. Circular paraboloid

z

y
x

(–2, 3, –9)
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38.
Hyperboloid
of one sheet

(0, 0, 2)

yx

z

39. Ellipsoid

z

y

x

(1, –1, –2)

40.
Hyperboloid
of one sheet

(–1 , 1 , 2)

y

x

z

41. (a)
x2

9
+
y2

4
= 1. (b) 6, 4. (c) (±

√
5, 0,
√

2). (d) The focal axis is parallel to the x-axis.

42. (a)
y2

4
+
z2

2
= 1. (b) 4, 2

√
2. (c) (3,±

√
2, 0). (d) The focal axis is parallel to the y-axis.

43. (a)
y2

4
− x2

4
= 1. (b) (0,±2, 4). (c) (0,±2

√
2, 4). (d) The focal axis is parallel to the y-axis.

44. (a)
x2

4
− y2

4
= 1. (b) (±2, 0,−4). (c) (±2

√
2, 0,−4). (d) The focal axis is parallel to the x-axis.

45. (a) z + 4 = y2. (b) (2, 0,−4). (c) (2, 0,−15/4). (d) The focal axis is parallel to the z-axis.

46. (a) z − 4 = −x2. (b) (0, 2, 4). (c) (0, 2, 15/4). (d) The focal axis is parallel to the z-axis.

47. x2 + y2 = 4− x2 − y2, x2 + y2 = 2; circle of radius
√

2 in the plane z = 2, centered at (0, 0, 2).

x y

x2 + y2 = 2
(z = 2) 

4

z

48. 3 = 2(x2 + y2) + z2 = 2z + z2, (z + 3)(z − 1) = 0; circle x2 + y2 = 1 in the plane z = 1 (the root z = −3 is
extraneous).
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1

1 1

−1

−1

−1

−2

0

0
0

y

x

z

49. y = 4(x2 + z2).

50. y2 = 4(x2 + z2).

51. |z − (−1)| =
√
x2 + y2 + (z − 1)2, z2 + 2z + 1 = x2 + y2 + z2 − 2z + 1, z = (x2 + y2)/4; circular paraboloid.

52. |z + 1| = 2
√
x2 + y2 + (z − 1)2, z2 + 2z + 1 = 4

(
x2 + y2 + z2 − 2z + 1

)
, 4x2 + 4y2 + 3z2 − 10z + 3 = 0,

x2

4/3
+

y2

4/3
+

(z − 5/3)2

16/9
= 1; ellipsoid, center at (0, 0, 5/3).

53. If z = 0,
x2

a2
+
y2

a2
= 1; if y = 0 then

x2

a2
+
z2

c2
= 1; since c < a the major axis has length 2a, the minor axis has

length 2c.

54.
x2

a2
+
y2

a2
+
z2

b2
= 1, where a = 6378.1370, b = 6356.5231.

55. Each slice perpendicular to the z-axis for |z| < c is an ellipse whose equation is
x2

a2
+
y2

b2
=

c2 − z2

c2
, or

x2

(a2/c2)(c2 − z2)
+

y2

(b2/c2)(c2 − z2)
= 1, the area of which is π

(a
c

√
c2 − z2

)(b
c

√
c2 − z2

)
= π

ab

c2
(
c2 − z2

)

so V = 2

∫ c

0

π
ab

c2
(
c2 − z2

)
dz =

4

3
πabc.

Exercise Set 11.8

1. (a) (8, π/6,−4) (b)
(
5
√

2, 3π/4, 6
)

(c) (2, π/2, 0) (d) (8, 5π/3, 6)

2. (a) (2, 7π/4, 1) (b) (1, π/2, 1) (c) (4
√

2, 3π/4,−7) (d) (2
√

2, 7π/4,−2)

3. (a)
(
2
√

3, 2, 3
)

(b)
(
−4
√

2, 4
√

2,−2
)

(c) (5, 0, 4) (d) (−7, 0,−9)

4. (a)
(
3,−3

√
3, 7
)

(b) (0, 1, 0) (c) (0, 3, 5) (d) (0, 4,−1)

5. (a)
(
2
√

2, π/3, 3π/4
)

(b) (2, 7π/4, π/4) (c) (6, π/2, π/3) (d) (10, 5π/6, π/2)

6. (a)
(
8
√

2, π/4, π/6
)

(b)
(
2
√

2, 5π/3, 3π/4
)

(c) (2, 0, π/2) (d) (4, π/6, π/6)

7. (a) (5
√

6/4, 5
√

2/4, 5
√

2/2) (b) (7, 0, 0) (c) (0, 0, 1) (d) (0,−2, 0)

8. (a)
(
−
√

2/4,
√

6/4,−
√

2/2
)

(b)
(
3
√

2/4,−3
√

2/4,−3
√

3/2
)

(c) (2
√

6, 2
√

2, 4
√

2) (d) (0, 2
√

3, 2)
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9. (a)
(
2
√

3, π/6, π/6
)

(b)
(√

2, π/4, 3π/4
)

(c) (2, 3π/4, π/2) (d)
(
4
√

3, 1, 2π/3
)

10. (a)
(
4
√

2, 5π/6, π/4
)

(b)
(
2
√

2, 0, 3π/4
)

(c) (5, π/2, tan−1(4/3)) (d) (2
√

10, π, tan−1 3)

11. (a)
(
5
√

3/2, π/4,−5/2
)

(b) (0, 7π/6,−1) (c) (0, 0, 3) (d) (4, π/6, 0)

12. (a) (0, π/2, 5) (b) (3
√

2, 0,−3
√

2) (c) (0, 3π/4,−
√

2) (d) (5/2, 2π/3,−5
√

3/2)

15. True.

16. True.

17. True.

18. True.

19.

y

x

z

(3, 0, 0)

x2 + y2 = 9 20. y =  x ,  x ≥  0

y

x

z

21.

yx

z

 z = x2 + y2
22. z =  x

y

x

z

23.

y

x

z

(0, 4, 0)

x2 + (y – 2)2 = 4 24. x =  2

(2, 0, 0)

y

x

z

25.

(1, 0, 0)

y

x

z

x2 + y2 + z2 = 1 26.

z

y

x

x2 – y2 = z

27.

(3, 0, 0)

y

x

z

x2 + y2 + z2 = 9 28.

y

x

z

y = √3x
29.

z

yx
z = √x2 + y2

30.

(0, 0, 2)

z =  2

y

x

z
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31.

(0, 0, 2)

y

x

z

x2 + y2 + (z – 2)2 = 4 32.

(1, 0, 0)

y

x

z

x2 + y2 = 1
33.

(1, 0, 0)

y

x

z

(x – 1)2 + y2 = 1 34.

(1, 0, 0)

y

x

z

(x – 1)2 + y2 + z2 = 1

35. (a) z = 3. (b) ρ cosφ = 3, ρ = 3 secφ.

36. (a) r sin θ = 2, r = 2 csc θ. (b) ρ sinφ sin θ = 2, ρ = 2 cscφ csc θ.

37. (a) z = 3r2. (b) ρ cosφ = 3ρ2 sin2 φ, ρ =
1

3
cscφ cotφ.

38. (a) z =
√

3r. (b) ρ cosφ =
√

3ρ sinφ, tanφ =
1√
3
, φ =

π

6
.

39. (a) r = 2. (b) ρ sinφ = 2, ρ = 2 cscφ.

40. (a) r2 − 6r sin θ = 0, r = 6 sin θ. (b) ρ sinφ = 6 sin θ, ρ = 6 sin θ cscφ.

41. (a) r2 + z2 = 9. (b) ρ = 3.

42. (a) z2 = r2 cos2 θ − r2 sin2 θ = r2(cos2 θ − sin2 θ), z2 = r2 cos 2θ.

(b) Use the result in part (a) with r = ρ sinφ, z = ρ cosφ to get ρ2 cos2 φ = ρ2 sin2 φ cos 2θ, cot2 φ = cos 2θ.

43. (a) 2r cos θ + 3r sin θ + 4z = 1. (b) 2ρ sinφ cos θ + 3ρ sinφ sin θ + 4ρ cosφ = 1.

44. (a) r2 − z2 = 1.

(b) Use the result of part (a) with r = ρ sinφ, z = ρ cosφ to get ρ2 sin2 φ− ρ2 cos2 φ = 1, ρ2 cos 2φ = −1.

45. (a) r2 cos2 θ = 16− z2.

(b) x2 = 16− z2, x2 + y2 + z2 = 16 + y2, ρ2 = 16 + ρ2 sin2 φ sin2 θ, ρ2
(
1− sin2 φ sin2 θ

)
= 16.

46. (a) r2 + z2 = 2z. (b) ρ2 = 2ρ cosφ, ρ = 2 cosφ.

47. All points on or above the paraboloid z = x2 + y2, that are also on or below the plane z = 4.

48. A right circular cylindrical solid of height 3 and radius 1 whose axis is the line x = 0, y = 1.

49. All points on or between concentric spheres of radii 1 and 3 centered at the origin.

50. All points on or above the cone φ = π/6, that are also on or below the sphere ρ = 2.

51. θ = π/6, φ = π/6, spherical (4000, π/6, π/6), rectangular
(
1000
√

3, 1000, 2000
√

3
)
.
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52. (a) y = r sin θ = a sin θ, but az = a sin θ so y = az, which is a plane that contains the curve of intersection of
z = sin θ and the circular cylinder r = a. The curve of intersection of a plane and a circular cylinder is an ellipse.

(b)

z =  sin θ

y

x

z

53. (a) (10, π/2, 1) (b) (0, 10, 1) (c) (
√

101, π/2, tan−1 10)

54.

20

0
0 30

Chapter 11 Review Exercises

1. (b) u and v are orthogonal if and only if u · v = 0.

(c) u and v are parallel if and only if u = av or v = bu.

(d) u, v and w lie in the same plane if and only if u · (v ×w) = 0.

2. (a) E.g. i and j.

(b) For points A, B, C and D consider the vectors
−→
AB,

−→
AC and

−→
AD, then apply Exercise 1.(d).

(c) F = −i− j.

(d) ‖〈1,−2, 2〉‖ = 3, so ‖r− 〈1,−2, 2〉‖ = 3, or (x− 1)2 + (y + 2)2 + (z − 2)2 = 9.

3. (b) x = cos 120◦ = −1/2, y = ± sin 120◦ = ±
√

3/2.

(d) True: ‖u× v‖ = ‖u‖‖v‖| sin(θ)| = 1.

4. (b) Area of the parallelogram spanned by u and v.

(c) Volume of the parallelepiped spanned by u, v and w.

(d) x+ 2y − z = 0.

5. (x+ 3)2 + (y − 5)2 + (z + 4)2 = r2, so

(a) (x+3)2+(y−5)2+(z+4)2 = 16. (b) (x+3)2+(y−5)2+(z+4)2 = 25. (c) (x+3)2+(y−5)2+(z+4)2 = 9.
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6. The sphere x2 + (y − 1)2 + (z + 3)2 = 16 has center Q(0, 1,−3) and radius 4, and ‖
−→
PQ ‖ =

√
12 + 42 =

√
17, so

minimum distance is
√

17− 4, maximum distance is
√

17 + 4.

7.
−→
OS=

−→
OP +

−→
PS= 3i + 4j+

−→
QR= 3i + 4j + (4i + j) = 7i + 5j.

8. (a) 〈16, 0, 13〉 (b) 〈2/
√

17,−2/
√

17, 3/
√

17〉 (c)
√

35 (d)
√

66

9. (a) a · b = 0, 4c+ 3 = 0, c = −3/4.

(b) Use a · b = ‖a‖ ‖b‖ cos θ to get 4c+ 3 =
√
c2 + 1(5) cos(π/4), 4c+ 3 = 5

√
c2 + 1/

√
2. Square both sides and

rearrange to get 7c2 + 48c− 7 = 0, (7c− 1)(c+ 7) = 0 so c = −7 (invalid) or c = 1/7.

(c) Proceed as in (b) with θ = π/6 to get 11c2 − 96c + 39 = 0 and use the quadratic formula to get c =(
48± 25

√
3
)
/11.

(d) a must be a scalar multiple of b, so ci + j = k(4i + 3j), k = 1/3, c = 4/3.

10. (a) The plane through the origin which is perpendicular to r0.

(b) The plane through the tip of r0 which is perpendicular to r0.

11. ‖u− v‖2 = (u− v) · (u− v) = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ = 2(1− cos θ) = 4 sin2(θ/2), so ‖u− v‖ = 2 sin(θ/2).

12. 5〈cos 60◦, cos 120◦, cos 135◦〉 = 〈5/2,−5/2,−5
√

2/2〉.

13.
−→
PQ = 〈1,−1, 6〉, and W = F ·

−→
PQ = 13 lb·ft.

14. F = F1 + F2 = 2i− j + 3k,
−→
PQ = i + 4j− 3k,W = F·

−→
PQ = −11 N·m = −11 J.

15. (a)
−→
AB= −i + 2j + 2k,

−→
AC = i + j− k,

−→
AB ×

−→
AC = −4i + j− 3k, area =

1

2
‖
−→
AB ×

−→
AC ‖ =

√
26/2.

(b) Area =
1

2
h‖
−→
AB ‖ =

3

2
h =

1

2

√
26, h =

√
26/3.

16. (a) False; perhaps they are orthogonal.

(b) False; perhaps they are parallel.

(c) True; 0 = ‖u‖ · ‖v‖ cos θ = ‖u‖ · ‖v‖ sin θ, so either u = 0 or v = 0 since cos θ = sin θ = 0 is impossible.

17.
−→
AB = i− 2j− 2k,

−→
AC = −2i− j− 2k,

−→
AD = i + 2j− 3k.

(a) From Theorem 11.4.6 and formula (9) of Section 11.4,

∣∣∣∣∣∣

1 −2 −2
−2 −1 −2

1 2 −3

∣∣∣∣∣∣
= 29, so V = 29.

(b) The plane containing A,B, and C has normal
−→
AB ×

−→
AC = 2i + 6j − 5k, so the equation of the plane is

2(x−1)+6(y+1)−5(z−2) = 0, 2x+6y−5z = −14. From Theorem 11.6.2, D =
|2(2) + 6(1)− 5(−1) + 14|√

65
=

29√
65

.

18. (a) F = −6i + 3j− 6k.

(b)
−→
OA = 〈5, 0, 2〉, so the vector moment is

−→
OA ×F = −6i + 18j + 15k.
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19. x = 4 + t, y = 1− t, z = 2.

20. (a) 〈2, 1,−1〉 × 〈1, 2, 1〉 = 〈3,−3, 3〉, so the line is parallel to i− j + k. To find one common point, choose x = 0
and solve the system of equations y − z = 3, 2y + z = 3 to obtain that (0, 2,−1) lies on both planes, so the line
has an equation r = 2j− k + t(i− j + k), that is, x = t, y = 2− t, z = −1 + t.

(b) cos θ =
〈2, 1,−1〉 · 〈1, 2, 1〉
‖〈2, 1,−1〉‖‖〈1, 2, 1〉‖ = 1/2, so θ = π/3.

21. A normal to the plane is given by 〈1, 5,−1〉, so the equation of the plane is of the form x + 5y − z = D. Insert
(1, 1, 4) to obtain D = 2, x+ 5y − z = 2.

22. (i+k)× (2j−k) = −2i+ j+ 2k is a normal to the plane, so an equation of the plane is of the form −2x+y+ 2z =
D,−2(4) + (3) + 2(0) = −5,−2x+ y + 2z = −5.

23. The normals to the planes are given by 〈a1, b1, c1〉 and 〈a2, b2, c2〉, so the condition is a1a2 + b1b2 + c1c2 = 0.

24. (b) (y, x, z), (x, z, y), (z, y, x).

(c) The set of points {(5, θ, 1)}, 0 ≤ θ ≤ 2π.

(d) The set of points {(ρ, π/4, 0)}, 0 ≤ ρ < +∞.

25. (a) (x− 3)2 + 4(y + 1)2 − (z − 2)2 = 9, hyperboloid of one sheet.

(b) (x+ 3)2 + (y − 2)2 + (z + 6)2 = 49, sphere.

(c) (x− 1)2 + (y + 2)2 − z2 = 0, circular cone.

26. (a) r2 = z; ρ2 sin2 φ = ρ cosφ, ρ = cotφ cscφ.

(b) r2(cos2 θ − sin2 θ)− z2 = 0, z2 = r2 cos 2θ; ρ2 sin2 φ cos2 θ − ρ2 sin2 φ sin2 θ − ρ2 cos2 φ = 0, cos 2θ = cot2 φ.

27. (a) z = r2 cos2 θ − r2 sin2 θ = x2 − y2. (b) (ρ sinφ cos θ)(ρ cosφ) = 1, xz = 1.

28. (a)

z

yx

r = 1
r = 2

(b)

y

x

z

z = 3

z = 2

(c)

z

yx

u = p/6 u = p/3 (d)

z

y
x

u = p/6 u = p/3

r = 1

z = 2

z = 3

r = 2

29. (a)

y

x

z

2

2

2
(b)

y

x

z
1

(c)

y

x

z

2

2

21
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30. (a)

z

y
x (2, 0, 0)

(0, 0, 2)

(0, 2, 0)

(b)

z

yx

p/6

(c)

p/6

y

x

z
(0, 0, 2)

31. (a)

z

yx
5

5

5

(b)

y

x

z

z = 2

4

(c)

z

yx

2

2

32.

z

y
x

Chapter 11 Making Connections

1. (a) R(xi+ yj) · (xi+ yj) = −yx+ xy = 0, so they are perpendicular. From R(i) = j and R(j) = −i it follows that
R rotates vectors counterclockwise.

(b) If v = xi + yj and w = ri + sj, then R(cv) = R(c[xi + yj]) = R((cx)i + (cy)j) = −cyi + cxj = c[−yi + xj] =
cR(xi + yj) = cR(v) and R(v + w) = R([xi + yj] + [ri + sj]) = R((x + r)i + (y + s)j) = −(y + s)i + (x + r)j =
(−yi + xj) + (−si + rj) = R(xi + yj) +R(ri + sj) = R(v) +R(w).

2. Although the problem is a two-dimensional one, we add a dimension in order to use the cross-product. Let the
triangle be part of the x-y plane, and introduce the z-direction with the unit vector k. Let the vertices of the

triangle be A,B,C taken in a counter-clockwise fashion. Then under a right-handed system, k×
−→
AB is a vector

n1 which is perpendicular to k, and therefore in the plane, and perpendicular to
−→
AB, so it is normal to the side

AB, and in fact it is an exterior normal because of the right-handedness of the system {
−→
AB,n1,k}, and, finally,

‖n1‖ = ‖k‖‖
−→
AB sin θ = ‖

−→
AB ‖. Similarly, we define n2 =

−→
BC ×k and n3 =

−→
CA ×k.

(a) With the definitions above we have n1 + n2 + n3 = (
−→
AB +

−→
BC +

−→
CA) × k =

−→
AA×k = 0× k = 0.

(b) Given a polygon with vertices A1, A2, . . . , Ak (define A0 = Ak) we define normal vectors n1,n2, . . . ,nk in

the manner described above; and then
k∑

i=1

ni =

(
k∑

i=1

−→
Ai−1Ai

)
× k = (

−→
A1A1)× k = 0.

3. (a) Suppose one face lies in the x-y plane and has vertices A,B,C taken in counter-clockwise order as one traverses
the boundary of the triangle looking down. Then the outer normal to triangle ABC points down. One normal to
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triangle ABC is given by
−→
CB ×

−→
BA. The length of this vector is twice the area of the triangle (Theorem 11.4.5),

so we take n1 =
1

2
(
−→
CB ×

−→
BA). Similarly, n2 =

1

2
(
−→
BC ×

−→
CD), n3 =

1

2
(
−→
AD ×

−→
DC), n4 =

1

2
(
−→
AB ×

−→
BD). Then

2(n1 + n2 + n3 + n4) =
−→
AB ×(

−→
BD +

−→
CB)+

−→
CD ×(

−→
CB +

−→
AD) =

−→
AB ×

−→
CD +

−→
CD ×(

−→
CB +

−→
AD) =

−→
CD ×(

−→
BA

+
−→
CB +

−→
AD) =

−→
CD ×

−→
CD= 0.

(b) Use the hint and note that everything works out except the two normal vectors on the face which actually
divides the larger tetrahedron (pyramid, four-sided base) into the smaller ones with triangular bases. But the
normal vectors point in opposite directions and have the same magnitude (the area of the common face) and thus
cancel in all the calculations.

(c) Consider a polyhedron each face of which is a triangle, save possibly one which is an arbitrary polygon. Then
this last face can be broken into triangles and the results of parts (a) and (b) can be applied, with the same
conclusion, that the sum of the exterior normals is the zero vector.

4. The three faces that meet at the chosen vertex are called A,B and C; let the fourth face be D, with area d. Using
Exercise 3 choose a vector nA which is normal to face A, likewise nB , nC , nD. Each vector is assumed to have
length equal to the area of the corresponding face.

(a) Since the sum of the normal vectors is the zero vector, we have 0 = (nD+nA+nB+nC)·(nD−nA−nB−nC) =
d2 − a2 − b2 − c2 − 2ab cosα− 2bc cosβ − 2ac cos γ.

(b) If all of the angles formed at the chosen vertex are right angles, then d2 = a2 + b2 + c2. (Note that such a
tetrahedron could be considered a corner cut from a rectangular solid).

5. Let P and Q have spherical coordinates (ρ, θi, φi), i = 1, 2. Then Cartesian coordinates are given by

(ρ sinφi cos θi, ρ sinφi sin θi, ρ cosφi), i = 1, 2, and the distance between the two points as taken on the great circle is
ρ cosα, where α is the angle between the vectors that go from the origin to the points P andQ. Taking dot products,
we have ρ2 cosα = ρ2(sinφ1 sinφ2 cos θ1 cos θ2 + sinφ1 sinφ2 sin θ1 sin θ2 + cosφ1 cosφ2) = ρ2(sinφ1 sinφ2 cos(θ1 −
θ2) + cosφ1 cosφ2), and the great circle distance is given by d = ρ cos−1(sinφ1 sinφ2 cos(θ1 − θ2) + cosφ1 cosφ2).

6. Using spherical coordinates: for point A, θA = 360◦ − 60◦ = 300◦, φA = 90◦ − 40◦ = 50◦; for point B, θB =
360◦−40◦ = 320◦, φB = 90◦−20◦ = 70◦. Unit vectors directed from the origin to the points A and B, respectively,
are uA = sin 50◦ cos 300◦i + sin 50◦ sin 300◦j + cos 50◦k, and uB = sin 70◦ cos 320◦i + sin 70◦ sin 320◦j + cos 70◦k.
The angle α between uA and uB is α = cos−1(uA · uB) ≈ 0.459486 so the shortest distance is 6370α ≈ 2927 km.



Vector-Valued Functions

Exercise Set 12.1

1. (−∞,+∞); r(π) = −i− 3πj.

2. [−1/3,+∞); r(1) = 〈2, 1〉.

3. [2,+∞); r(3) = −i− ln 3j + k.

4. [−1, 1); r(0) = 〈2, 0, 0〉.

5. r = 3 cos t i + (t+ sin t)j.

6. r = 2ti + 2 sin 3t j + 5 cos 3tk.

7. x = 3t2, y = −2.

8. x = 2t− 1, y = −3
√
t, z = sin 3t.

9. The line in 2-space through the point (3, 0) and parallel to the vector −2i + 5j.

10. The circle of radius 2 in the xy-plane, with center at the origin.

11. The line in 3-space through the point (0,−3, 1) and parallel to the vector 2i + 3k.

12. The circle of radius 2 in the plane x = 3, with center at (3, 0, 0).

13. An ellipse in the plane z = 1, center at (0, 0, 1), major axis of length 6 parallel to y-axis, minor axis of length 4
parallel to x-axis.

14. A parabola in the plane x = −3, vertex at (−3, 1, 0), opening to the ‘left’ (negative y).

15. (a) The line is parallel to the vector −2i + 3j; the slope is −3/2.

(b) y = 0 in the xz-plane so 1 − 2t = 0, t = 1/2 thus x = 2 + 1/2 = 5/2 and z = 3(1/2) = 3/2; the coordinates
are (5/2, 0, 3/2).

16. (a) x = 3 + 2t = 0, t = −3/2 so y = 5(−3/2) = −15/2.

(b) x = t, y = 1 + 2t, z = −3t so 3(t)− (1 + 2t)− (−3t) = 2, t = 3/4; the point of intersection is (3/4, 5/2,−9/4).

589



590 Chapter 12

17. (a)

y

x

(0, 1)

(1, 0)

(b)

x

y

(1, –1)

(1, 1)

18. (a)

y

x

z

(0, 0, 1)

(1, 1, 0)

(b)

y

x

z

(1, 1, 0)

(1, 1, 1)

19. r = (1− t)(3i + 4j), 0 ≤ t ≤ 1.

20. r = (1− t)4k + t(2i + 3j), 0 ≤ t ≤ 1.

21. x = 2.

2
x

y

22. y = 2x+ 10.

–5

10

x

y

23. (x− 1)2 + (y − 3)2 = 1.
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1

3

x

y

24. x2/4 + y2/25 = 1.

2

5

x

y

25. x2 − y2 = 1, x ≥ 1.

1

2

x

y

26. y = 2x2 + 4, x ≥ 0.

1

4

x

y

27.

(0, 2, π /2)

(2, 0, 0)
y

x

z

28.
(9, 0, 0)

(0, 4, π /2)

y

x

z

29.

2

y

x

z

30.

c
o y

x

z
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31. False. It is the intersection of the domains of the components.

32. False. It is a curve in 2-space.

33. True. See equation (8).

34. True. This is a special case of Example 2, with a = 2 and c = 1.

35. x = t, y = t, z = 2t2.

x
y

z
z=x2+y2

x!y=0

36. x = t, y = −t, z =
√

2
√

1− t2.

y

x

z y + x = 0

z = √2 – x2 – y2

37. r = ti + t2j +
1

3

√
81− 9t2 − t4 k.

x

y

z

y=x29x2+y2+9z2=81

38. r = ti + tj + (1− 2t)k.
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z

x

y

x + y + z = 1

y = x

39. x2 + y2 = (t sin t)2 + (t cos t)2 = t2(sin2 t+ cos2 t) = t2 = z.

40. x− y + z + 1 = t− (1 + t)/t+ (1− t2)/t+ 1 = [t2 − (1 + t) + (1− t2) + t]/t = 0.

41. x = sin t, y = 2 cos t, z =
√

3 sin t so x2 + y2 + z2 = sin2 t + 4 cos2 t + 3 sin2 t = 4 and z =
√

3x; it is the curve of
intersection of the sphere x2 + y2 + z2 = 4 and the plane z =

√
3x, which is a circle with center at (0, 0, 0) and

radius 2.

42. x = 3 cos t, y = 3 sin t, z = 3 sin t so x2 + y2 = 9 cos2 t+ 9 sin2 t = 9 and z = y; it is the curve of intersection of the
circular cylinder x2 + y2 = 9 and the plane z = y, which is an ellipse with major axis of length 6

√
2 and minor

axis of length 6.

43. The helix makes one turn as t varies from 0 to 2π so z = c(2π) = 3, c = 3/(2π).

44. 0.2t = 10, t = 50; the helix has made one revolution when t = 2π so when t = 50 it has made 50/(2π) = 25/π ≈ 7.96
revolutions.

45. x2 + y2 = t2 cos2 t+ t2 sin2 t = t2,
√
x2 + y2 = t = z; a conical helix.

46. The curve wraps around an elliptic cylinder with axis along the z-axis; an elliptical helix.

47. (a) III, since the curve is a subset of the plane y = −x.

(b) IV, since only x is periodic in t, and y, z increase without bound.

(c) II, since all three components are periodic in t.

(d) I, since the projection onto the yz-plane is a circle and the curve increases without bound in the x-direction.

49. (a) Let x = 3 cos t and y = 3 sin t, then z = 9 cos2 t. (b)

z

y
x
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50. (a)

x

y

!6 !4 !2 2 4 6

1

2

(b) In part (a) set x = 2t; then y = 2/(1 + (x/2)2) = 8/(4 + x2).

51. The intersection of a cone and a plane is a conic section. In this case the plane is parallel to the line x = 0, z = y,
which lies within the double-napped cone z2 = x2 + y2, so the intersection is a parabola. We can parametrize it
by solving the equations z =

√
x2 + y2 and z = y + 2. These imply that x2 + y2 = z2 = (y + 2)2 = y2 + 4y + 4,

so x2 = 4y + 4 and y =
x2 − 4

4
. The curve is parametrized by x = t, y =

t2 − 4

4
, z = y + 2 =

t2 + 4

4
, so

r(t) =

〈
t,
t2 − 4

4
,
t2 + 4

4

〉
.

x

y

z

52. An intersection occurs whenever r1(t) = r2(u) for some values of t and u. There is no need for t and u to be equal.

Exercise Set 12.2

1. lim
t→+∞

〈 t
2 + 1

3t2 + 2
,

1

t
〉 = 〈1/3, 0〉.

2. lim
t→0+

(√
ti +

sin t

t
j

)
= j. (using L’Hospital’s rule)

3. lim
t→2

(
ti− 3j + t2k

)
= 2i− 3j + 4k.

4. lim
t→1
〈 3

t2
,

ln t

t2 − 1
, sin 2t〉 = 〈3, 1/2, sin 2〉. (using L’Hospital’s rule)

5. (a) Continuous, lim
t→0

r(t) = 0 = r(0). (b) Not continuous, lim
t→0

(1/t) does not exist.

6. (a) Not continuous, lim
t→0

csc t does not exist. (b) Continuous, lim
t→0

r(t) = 5i− j + k = r(0).
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7.

x

y

r'(p/4)

r''(p)

r(2p) – r(3p/2)

8.

x

y

r'(p/4)

r''(p)

r(2p) – r(3p/2)

9. r′(t) = sin tj.

10. r′(t) =
1

1 + t2
i + (cos t− t sin t)j− 1

2
√
t
k.

11. r′(t) = 〈1, 2t〉, r′(2) = 〈1, 4〉, r(2) = 〈2, 4〉.

2

4

〈 1, 4 〉

x

y

12. r′(t) = 3t2i + 2tj, r′(1) = 3i + 2j, r(1) = i + j.

1 2 3 4

1

2

3

x

y

13. r′(t) = sec t tan ti + sec2 tj, r′(0) = j, r(0) = i.
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1.5

x

y

–1

1

14. r′(t) = 2 cos ti− 3 sin tj, r′
(π

6

)
=
√

3i− 3

2
j, r

(π
6

)
= i +

3
√

3

2
j.

–1 1

–2

1
x

y

15. r′(t) = 2 cos ti− 2 sin tk, r′(π/2) = −2k, r(π/2) = 2i + j.

r ′(6) = –2 k

y

x

z

(2, 1, 0)

16. r′(t) = − sin ti + cos tj + k, r′(π/4) = − 1√
2
i +

1√
2
j + k, r(π/4) =

1√
2
i +

1√
2
j +

π

4
k.

1
√2

1
√2

− i  + j + kr′(3) = 

1
√2

1
√2( ,      , 3)

y

x

z
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17.
1.50

0

1.5

18.

4

0

0 4.5

19. r′(t) = 2ti− 1

t
j, r′(1) = 2i− j, r(1) = i + 2j; x = 1 + 2t, y = 2− t.

20. r′(t) = 2e2ti + 6 sin 3tj, r′(0) = 2i, r(0) = i− 2j; x = 1 + 2t, y = −2.

21. r′(t) = −2π sinπti+2π cosπtj+3k, r′(1/3) = −
√

3πi+πj+3k, r(1/3) = i+
√

3 j+k; x = 1−
√

3πt, y =
√

3+πt,
z = 1 + 3t.

22. r′(t) =
1

t
i−e−tj+3t2k, r′(2) =

1

2
i−e−2j+12k, r(2) = ln 2i+e−2j+8k; x = ln 2+

1

2
t, y = e−2−e−2t, z = 8+12t.

23. r′(t) = 2i +
3

2
√

3t+ 4
j, t = 0 at P0 so r′(0) = 2i +

3

4
j, r(0) = −i + 2j; r = (−i + 2j) + t

(
2i +

3

4
j

)
.

24. r′(t) = −4 sin ti− 3j, t = π/3 at P0 so r′(π/3) = −2
√

3i− 3j, r(π/3) = 2i− πj; r = (2i− πj) + t(−2
√

3i− 3j).

25. r′(t) = 2ti+
1

(t+ 1)2
j− 2tk, t = −2 at P0 so r′(−2) = −4i+ j+ 4k, r(−2) = 4i+ j; r = (4i+ j) + t(−4i+ j+ 4k).

26. r′(t) = cos ti + sinh tj +
1

1 + t2
k, t = 0 at P0 so r′(0) = i + k, r(0) = j; r = ti + j + tk.

27. (a) lim
t→0

(r(t)− r′(t)) = i− j + k.

(b) lim
t→0

(r(t)× r′(t)) = lim
t→0

(− cos ti− sin tj + k) = −i + k.

(c) lim
t→0

(r(t) · r′(t)) = 0.

28. r(t) · (r′(t)× r′′(t)) =

∣∣∣∣∣∣

t t2 t3

1 2t 3t2

0 2 6t

∣∣∣∣∣∣
= 2t3, so lim

t→1
r(t) · (r′(t)× r′′(t)) = 2.

29. r′1 = 2i+6tj+3t2k, r′2 = 4t3k, r1 · r2 = t7;
d

dt
(r1 · r2) = 7t6 = r1 · r′2 +r′1 · r2, r1×r2 = 3t6i−2t5j,

d

dt
(r1×r2) =

18t5i− 10t4j = r1 × r′2 + r′1 × r2.

30. r′1 = − sin ti + cos tj + k, r′2 = k, r1 · r2 = cos t + t2;
d

dt
(r1 · r2) = − sin t + 2t = r1 · r′2 + r′1 · r2, r1 × r2 =

t sin ti + t(1− cos t)j− sin tk,
d

dt
(r1 × r2) = (sin t+ t cos t)i + (1 + t sin t− cos t)j− cos tk = r1 × r′2 + r′1 × r2.
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31. 3ti + 2t2j + C.

32. (t3/3)i− t2j + ln |t|k + C.

33. 〈tet − et, t ln t− t〉+ C.

34. 〈−e−t, et, t3〉+ C.

35.

〈
1

2
sin 2t,−1

2
cos 2t

〉]π/2

0

= 〈0, 1〉.

36.

(
1

3
t3i +

1

4
t4j

)]1

0

=
1

3
i +

1

4
j.

37.

∫ 2

0

√
t2 + t4 dt =

∫ 2

0

t(1 + t2)1/2 dt =
1

3

(
1 + t2

)3/2
]2

0

= (5
√

5− 1)/3.

38.

〈
−2

5
(3− t)5/2,

2

5
(3 + t)5/2, t

〉]3

−3

= 〈72
√

6/5, 72
√

6/5, 6〉.

39.

(
2

3
t3/2i + 2t1/2j

)]9

1

=
52

3
i + 4j.

40.
1

2
(e2 − 1)i + (1− e−1)j +

1

2
k.

41. False. The limit only exists if r(t) is differentiable at t = a. As with functions of a single variable, continuity does
not imply differentiability. For example, r(t) = 〈|t|, 0〉 is continuous at t = 0, but not differentiable there.

42. False. By Theorem 12.2.8 they are orthogonal. They are only parallel if r(t) is constant, in which case r′(t) = 0.

43. True. Equations (11) and (12) express

∫ b

a

r(t) dt as a vector, whose components are the definite integrals of the

components of r(t).

44. True. In 2-space, if r(t) = x(t)i+ y(t)j then by the Fundamental Theorem of Calculus, equation (11) implies that

d

dt

∫ t

a

r(u) du =
d

dt

[(∫ t

a

x(u) du

)
i +

(∫ t

a

y(u) du

)
j

]
=

(
d

dt

∫ t

a

x(u) du

)
i+

(
d

dt

∫ t

a

y(u) du

)
j = x(t)i+y(t)j =

r(t). The proof for vectors in 3-space is similar.

45. y(t) =

∫
y′(t) dt = t2i + t3j + C,y(0) = C = i− j,y(t) = (t2 + 1)i + (t3 − 1)j.

46. y(t) =

∫
y′(t) dt = (sin t)i− (cos t)j + C, y(0) = −j + C = i− j so C = i and y(t) = (1 + sin t)i− (cos t)j.

47. y′(t) =

∫
y′′(t) dt = ti + etj + C1,y

′(0) = j + C1 = j so C1 = 0 and y′(t) = ti + etj. y(t) =

∫
y′(t) dt =

1

2
t2i + etj + C2, y(0) = j + C2 = 2i so C2 = 2i− j and y(t) =

(
1

2
t2 + 2

)
i + (et − 1)j.

48. y′(t) =

∫
y′′(t) dt = 4t3i − t2j + C1, y′(0) = C1 = 0, y′(t) = 4t3i − t2j, y(t) =

∫
y′(t) dt = t4i − 1

3
t3j + C2,

y(0) = C2 = 2i− 4j, y(t) = (t4 + 2)i− (
1

3
t3 + 4)j.
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49. (a) 2t− t2 − 3t = −2, t2 + t− 2 = 0, (t+ 2)(t− 1) = 0 so t = −2, 1. The points of intersection are (−2, 4, 6) and
(1, 1,−3).

(b) r′ = i + 2tj − 3k; r′(−2) = i − 4j − 3k, r′(1) = i + 2j − 3k, and n = 2i − j + k is normal to the plane.
Let θ be the acute angle, then for t = −2: cos θ = |n · r′|/(‖n‖ ‖r′‖) = 3/

√
156, θ ≈ 76◦; for t = 1: cos θ =

|n · r′|/(‖n‖ ‖r′‖) = 3/
√

84, θ ≈ 71◦.

50. r′ = −2e−2ti − sin tj + 3 cos tk, t = 0 at the point (1, 1, 0) so r′(0) = −2i + 3k and hence the tangent line is
x = 1− 2t, y = 1, z = 3t. But x = 0 in the yz-plane so 1− 2t = 0, t = 1/2. The point of intersection is (0, 1, 3/2).

51. r1(1) = r2(2) = i + j + 3k so the graphs intersect at P; r′1(t) = 2ti + j + 9t2k and r′2(t) = i +
1

2
tj − k so

r′1(1) = 2i+ j+ 9k and r′2(2) = i+ j−k are tangent to the graphs at P, thus cos θ =
r′1(1) · r′2(2)

‖r′1(1)‖ ‖r′2(2)‖ = − 6√
86
√

3
,

θ = cos−1(6/
√

258) ≈ 68◦.

52. r1(0) = r2(−1) = 2i+ j+3k so the graphs intersect at P; r′1(t) = −2e−ti− (sin t)j+2tk and r′2(t) = −i+2tj+3t2k

so r′1(0) = −2i and r′2(−1) = −i− 2j + 3k are tangent to the graphs at P, thus cos θ =
r′1(0) · r′2(−1)

‖r′1(0)‖ ‖r′2(−1)‖ =
1√
14

,

θ ≈ 74◦.

53.
d

dt
[r(t)× r′(t)] = r(t)× r′′(t) + r′(t)× r′(t) = r(t)× r′′(t) + 0 = r(t)× r′′(t).

54.
d

dt
[u · (v ×w)] = u · d

dt
[v ×w] +

du

dt
· [v ×w] = u ·

(
v × dw

dt
+
dv

dt
×w

)
+
du

dt
· [v ×w] = u ·

[
v × dw

dt

]
+

u ·
[
dv

dt
×w

]
+
du

dt
· [v ×w].

55. In Exercise 54, write each scalar triple product as a determinant.

56. Let c = c1i+c2j, r(t) = x(t)i+y(t)j, r1(t) = x1(t)i+y1(t)j, r2(t) = x2(t)i+y2(t)j and use properties of derivatives.

57. Let r1(t) = x1(t)i+ y1(t)j+ z1(t)k and r2(t) = x2(t)i+ y2(t)j+ z2(t)k, in both (6) and (7); show that the left and
right members of the equalities are the same.

58. (a)

∫
kr(t) dt =

∫
k(x(t)i + y(t)j + z(t)k) dt = k

∫
x(t) dt i + k

∫
y(t) dt j + k

∫
z(t) dtk = k

∫
r(t) dt.

(b) Similar to part (a).

(c) Use part (a) and part (b) with k = −1.

59. See discussion after Definition 12.2.3.

60. r′(t) = 〈2t, 3t2〉, r(t) · r′(t) = 3t5 + 2t3 + 3t2, ‖r(t)‖ =
√
t4 + (t3 + 1)2, ‖r′(t)‖ =

√
4t2 + 9t4, so

θ = cos−1 3t5 + 2t3 + 3t2√
t4 + (t3 + 1)2

√
4t2 + 9t4

. For large negative values of t, the position and tangent vectors point in

almost opposite directions, so θ is almost π. θ decreases until t ≈ −0.439 and then increases again, approaching
π/2 as t → 0−. There is a cusp in the graph at t = 0, so the tangent vector and θ are undefined there. As t
increases from 0 to 3

√
2, θ decreases; at t = 3

√
2 the tangent line to the curve passes through the origin so θ = 0

there. θ increases again until t ≈ 2.302 and then decreases again, approaching 0 as t→ +∞.
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Exercise Set 12.3

1. r′(t) = 3t2i + (6t− 2)j + 2tk; smooth.

2. r′(t) = −2t sin(t2)i + 2t cos(t2)j− e−tk; smooth.

3. r′(t) = (1− t)e−ti + (2t− 2)j− π sin(πt)k; not smooth, r′(1) = 0.

4. r′(t) = π cos(πt)i + (2− 1/t)j + (2t− 1)k; not smooth, r′(1/2) = 0.

5. (dx/dt)2 + (dy/dt)2 + (dz/dt)2 = (−3 cos2 t sin t)2 + (3 sin2 t cos t)2 + 02 = 9 sin2 t cos2 t, L =

∫ π/2

0

3 sin t cos t dt =

3/2.

6. (dx/dt)2 + (dy/dt)2 + (dz/dt)2 = (−3 sin t)2 + (3 cos t)2 + 16 = 25, L =

∫ π

0

5 dt = 5π.

7. r′(t) = 〈et,−e−t,
√

2〉, ‖r′(t)‖ = et + e−t, L =

∫ 1

0

(et + e−t) dt = e− e−1.

8. (dx/dt)2 + (dy/dt)2 + (dz/dt)2 = 1/4 + (1− t)/4 + (1 + t)/4 = 3/4, L =

∫ 1

−1

(
√

3/2) dt =
√

3.

9. r′(t) = 3t2i + j +
√

6 tk, ‖r′(t)‖ = 3t2 + 1, L =

∫ 3

1

(3t2 + 1) dt = 28.

10. r′(t) = 3i− 2j + k, ‖r′(t)‖ =
√

14, L =

∫ 4

3

√
14 dt =

√
14.

11. r′(t) = −3 sin ti + 3 cos tj + k, ‖r′(t)‖ =
√

10, L =

∫ 2π

0

√
10 dt = 2π

√
10.
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12. r′(t) = 2ti + t cos tj + t sin tk, ‖r′(t)‖ =
√

5t, L =

∫ π

0

√
5t dt = π2

√
5/2.

13. (dr/dt)(dt/dτ) = (i+ 2tj)(4) = 4i+ 8tj = 4i+ 8(4τ + 1)j; r(τ) = (4τ + 1)i+ (4τ + 1)2 j, r′(τ) = 4i+ 2(4)(4τ + 1) j.

14. (dr/dt)(dt/dτ) = 〈−3 sin t, 3 cos t〉(π) = 〈−3π sinπτ , 3π cosπτ〉; r(τ) = 〈3 cosπτ, 3 sinπτ〉,
r′(τ) = 〈−3π sinπτ, 3π cosπτ〉.

15. (dr/dt)(dt/dτ) = (eti− 4e−tj)(2τ) = 2τeτ
2

i− 8τe−τ
2

j; r(τ) = eτ
2

i + 4e−τ
2

j, r′(τ) = 2τeτ
2

i− 4(2)τe−τ
2

j.

16. (dr/dt)(dt/dτ) =

(
9

2
t1/2j + k

)
(−1/τ2) = − 9

2τ5/2
j− 1

τ2
k; r(τ) = i + 3τ−3/2j +

1

τ
k, r′(τ) = −9

2
τ−5/2j− 1

τ2
k.

17. False. ‖r′(t)‖ is a scalar, so

∫ b

a

‖r′(t)‖ dt is also a scalar.

18. False. For example, the line can be parametrized by r(t) = 〈t3, t3〉. But then r′(t) = 〈3t2, 3t2〉 which equals 0 for
t = 0. So r(t) is not smooth.

19. False; r′(s) is undefined for the value of s such that r(s) = 0. For example, we may take r(s) =
s√
2
i +
|s|√

2
j.

Then r′(0) is undefined, since |s| is not differentiable at s = 0.

20. True. By Theorem 12.3.4(b), ‖r′(s)‖ = 1, so

∫ 3

−1

‖r′(s)‖ ds =

∫ 3

−1

1 ds = 4.

21. (a) ‖r′(t)‖ =
√

2, s =

∫ t

0

√
2 dt =

√
2t; r =

s√
2
i +

s√
2
j, x =

s√
2
, y =

s√
2

.

(b) Similar to part (a), x = y = z =
s√
3

.

22. (a) x = − s√
2
, y = − s√

2
. (b) x = − s√

3
, y = − s√

3
, z = − s√

3
.

23. (a) r(t) = 〈1, 3, 4〉 when t = 0, so s =

∫ t

0

√
1 + 4 + 4 du = 3t, x = 1 + s/3, y = 3− 2s/3, z = 4 + 2s/3.

(b) r(s)

]

s=25

= 〈28/3,−41/3, 62/3〉.

24. (a) r(t) = 〈−5, 0, 5〉 when t = 0, so s =

∫ t

0

√
9 + 4 + 1 du =

√
14t, x = −5 + 3s/

√
14, y = 2s/

√
14, z = 5 + s/

√
14.

(b) r(s)

]

s=10

= 〈−5 + 30/
√

14, 20/
√

14, 5 + 10/
√

14〉.

25. x = 3 + cos t, y = 2 + sin t, (dx/dt)2 + (dy/dt)2 = 1, s =

∫ t

0

du = t so t = s, x = 3 + cos s, y = 2 + sin s for

0 ≤ s ≤ 2π.

26. x = cos3 t, y = sin3 t, (dx/dt)2 + (dy/dt)2 = 9 sin2 t cos2 t, s =

∫ t

0

3 sinu cosu du =
3

2
sin2 t so sin t = (2s/3)1/2,

cos t = (1− 2s/3)1/2, x = (1− 2s/3)3/2, y = (2s/3)3/2 for 0 ≤ s ≤ 3/2.
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27. x = t3/3, y = t2/2, (dx/dt)2 + (dy/dt)2 = t2(t2 + 1), s =

∫ t

0

u(u2 + 1)1/2 du =
1

3
[(t2 + 1)3/2 − 1] so t =

[(3s+ 1)2/3 − 1]1/2, x =
1

3
[(3s+ 1)2/3 − 1]3/2, y =

1

2
[(3s+ 1)2/3 − 1] for s ≥ 0.

28. x = (1+t)2, y = (1+t)3, (dx/dt)2+(dy/dt)2 = (1+t)2[4+9(1+t)2], s =

∫ t

0

(1+u)[4+9(1+u)2]1/2 du =
1

27
([4+9(1+

t)2]3/2−13
√

13) so 1+t =
1

3
[(27s+13

√
13)2/3−4]1/2, x =

1

9
[(27s+13

√
13)2/3−4], y =

1

27
[(27s+13

√
13)2/3−4]3/2

for 0 ≤ s ≤ (80
√

10− 13
√

13)/27.

29. x = et cos t, y = et sin t, (dx/dt)2 + (dy/dt)2 = 2e2t, s =

∫ t

0

√
2 eu du =

√
2(et − 1) so t = ln(s/

√
2 + 1),

x = (s/
√

2 + 1) cos[ln(s/
√

2 + 1)], y = (s/
√

2 + 1) sin[ln(s/
√

2 + 1)] for 0 ≤ s ≤
√

2(eπ/2 − 1).

30. x = sin(et), y = cos(et), z =
√

3et, (dx/dt)2 +(dy/dt)2 +(dz/dt)2 = 4e2t, s =

∫ t

0

2eu du = 2(et−1) so et = 1+s/2;

x = sin(1 + s/2), y = cos(1 + s/2), z =
√

3(1 + s/2) for s ≥ 0.

31. dx/dt = −a sin t, dy/dt = a cos t, dz/dt = c, s(t0) = L =

∫ t0

0

√
a2 sin2 t+ a2 cos2 t+ c2 dt =

∫ t0

0

√
a2 + c2 dt =

t0
√
a2 + c2.

32. From Exercise 31, s(t0) = t0
√
a2 + c2 = wt0, so s(t) = wt and r =

(
a cos

s

w

)
i +
(
a sin

s

w

)
j +

cs

w
k.

33. x = at − a sin t, y = a − a cos t, (dx/dt)2 + (dy/dt)2 = 4a2 sin2(t/2), s =

∫ t

0

2a sin(u/2) du = 4a[1 − cos(t/2)] so

cos(t/2) = 1−s/(4a), t = 2 cos−1[1−s/(4a)], cos t = 2 cos2(t/2)−1 = 2[1−s/(4a)]2−1, sin t = 2 sin(t/2) cos(t/2) =

2(1− [1− s/(4a)]2)1/2(1− s/(4a)), x = 2a cos−1[1− s/(4a)]− 2a(1− [1− s/(4a)]2)1/2(1− s/(4a)), y =
s(8a− s)

8a
for 0 ≤ s ≤ 8a.

34.
dx

dt
= cos θ

dr

dt
− r sin θ

dθ

dt
,
dy

dt
= sin θ

dr

dt
+ r cos θ

dθ

dt
,

(
dx

dt

)2
+

(
dy

dt

)2
+

(
dz

dt

)2
=

(
dr

dt

)2
+ r2

(
dθ

dt

)2
+

(
dz

dt

)2
.

35. (a) (dr/dt)2 + r2(dθ/dt)2 + (dz/dt)2 = 9e4t, L =

∫ ln 2

0

3e2t dt =
3

2
e2t

]ln 2

0

=
9

2
.

(b) (dr/dt)2 + r2(dθ/dt)2 + (dz/dt)2 = 5t2 + t4 = t2(5 + t2), L =

∫ 2

1

t(5 + t2)1/2 dt = 9− 2
√

6.

36.
dx

dt
= sinφ cos θ

dρ

dt
+ ρ cosφ cos θ

dφ

dt
− ρ sinφ sin θ

dθ

dt
,
dy

dt
= sinφ sin θ

dρ

dt
+ ρ cosφ sin θ

dφ

dt
+ ρ sinφ cos θ

dθ

dt
,
dz

dt
=

cosφ
dρ

dt
− ρ sinφ

dφ

dt
,

(
dx

dt

)2
+

(
dy

dt

)2
+

(
dz

dt

)2
=

(
dρ

dt

)2
+ ρ2 sin2 φ

(
dθ

dt

)2
+ ρ2

(
dφ

dt

)2
.

37. (a) (dρ/dt)2 + ρ2 sin2 φ(dθ/dt)2 + ρ2(dφ/dt)2 = 3e−2t, L =

∫ 2

0

√
3e−t dt =

√
3(1− e−2).

(b) (dρ/dt)2 + ρ2 sin2 φ(dθ/dt)2 + ρ2(dφ/dt)2 = 5, L =

∫ 5

1

√
5 dt = 4

√
5.

38. (a)
d

dt
r(t) = i + 2tj is never zero, but

d

dτ
r(τ3) =

d

dτ
(τ3i + τ6j) = 3τ2i + 6τ5j is zero at τ = 0.
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x

y
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1

2

3

4

(b) Since
d

dτ
r(τ3) = 0 when τ = 0, the ‘direction’ of the second parametrization of the curve is undefined there.

For a smooth curve, the direction must be defined at every point of the curve.

39. (a) g(τ) = πτ . (b) g(τ) = π(1− τ).

40. t = 1− τ .

41. Represent the helix by x = a cos t, y = a sin t, z = ct with a = 6.25 and c = 10/π, so that the radius of the helix
is the distance from the axis of the cylinder to the center of the copper cable, and the helix makes one turn in a
distance of 20 in. (t = 2π). From Exercise 31 the length of the helix is 2π

√
6.252 + (10/π)2 ≈ 44 in.

42. r(t) = 〈cos t, sin t, t3/2〉, r′(t) = 〈− sin t, cos t,
3

2
t1/2〉.

(a) ‖r′(t)‖ =
√

sin2 t+ cos2 t+ 9t/4 =
1

2

√
4 + 9t. (b)

ds

dt
=

1

2

√
4 + 9t. (c)

∫ 2

0

1

2

√
4 + 9t dt =

2

27
(11
√

22−4).

43. r′(t) = (1/t)i + 2j + 2tk.

(a) ‖r′(t)‖ =
√

1/t2 + 4 + 4t2 =
√

(2t+ 1/t)2 = 2t+ 1/t. (b)
ds

dt
= 2t+ 1/t. (c)

∫ 3

1

(2t+ 1/t) dt = 8 + ln 3.

44. r′(t) = 2ti + 3t2j, so, by Theorem 11.3.3, the angle between r′(t) and i is

θ(t) = cos−1 r′(t) · i
‖r′(t)‖ ‖i‖ = cos−1 2t√

4t2 + 9t4
= cos−1 2t

|t|
√

4 + 9t2
. Hence lim

t→0−
θ(t) = lim

t→0−
cos−1

(
− 2√

4 + 9t2

)
=

cos−1(−1) = π and lim
t→0+

θ(t) = lim
t→0+

cos−1

(
2√

4 + 9t2

)
= cos−1(1) = 0.

45. If r(t) = x(t)i+ y(t)j+ z(t)k is smooth, then ‖r′(t)‖ is continuous and nonzero. Thus the angle between r′(t) and
i, given by cos−1(x′(t)/‖r′(t)‖), is a continuous function of t. Similarly, the angles between r′(t) and the vectors j
and k are continuous functions of t.

46. Let r(t) = x(t)i + y(t)j and use the chain rule.

47. A vector-valued function whose graph is the triangle cannot be smooth, since there is an abrupt change of direction
at each vertex. However, such a function can be differentiable: Let f(x) be a differentiable function which is
increasing for 0 ≤ x ≤ 1 and satisfies f(0) = 0, f(1) = 1, and f ′(0) = f ′(1) = 0. For example, we could let

f(x) = 3x2 − 2x3. Then let r(t) =





〈f(t), 0〉 if 0 ≤ t ≤ 1;

〈1− f(t− 1), f(t− 1)〉 if 1 < t ≤ 2;

〈0, 1− f(t− 2)〉 if 2 < t ≤ 3.

It is easy to check that r(t) traces

out the triangle as t varies from 0 to 3 and that r′(t) is differentiable, with r′(t) = 0 for t = 0, 1, 2, and 3.
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Exercise Set 12.4

1. (a)

x

y

(b)

x

y

2.

x

y

3

2

3. From the marginal note, the line is parametrized by normalizing v, but T(t0) = v/‖v‖, so r = r(t0) + tv becomes
r = r(t0) + sT (t0).

4. r′(t)
]
t=1

= 〈1, 2t〉
]
t=1

= 〈1, 2〉, and T(1) =

〈
1√
5
,

2√
5

〉
, so the tangent line can be parametrized as r = 〈1, 1〉 +

s

〈
1√
5
,

2√
5

〉
, so x = 1 +

s√
5
, y = 1 +

2s√
5

.

5. r′(t) = 2ti+ j, ‖r′(t)‖ =
√

4t2 + 1, T(t) = (4t2 +1)−1/2(2ti+ j), T′(t) = (4t2 +1)−1/2(2i)−4t(4t2 +1)−3/2(2ti+ j);

T(1) =
2√
5
i +

1√
5
j, T′(1) =

2

5
√

5
(i− 2j), N(1) =

1√
5
i− 2√

5
j.

6. r′(t) = ti + t2j, T(t) = (t2 + t4)−1/2(ti + t2j), T′(t) = (t2 + t4)−1/2(i + 2tj) − (t + 2t3)(t2 + t4)−3/2(ti + t2j);

T(1) =
1√
2
i +

1√
2
j, T′(1) =

1

2
√

2
(−i + j), N(1) = − 1√

2
i +

1√
2
j.

7. r′(t) = −5 sin ti + 5 cos tj, ‖r′(t)‖ = 5, T(t) = − sin ti + cos tj, T′(t) = − cos ti − sin tj; T(π/3) = −
√

3

2
i +

1

2
j,

T′(π/3) = −1

2
i−
√

3

2
j, N(π/3) = −1

2
i−
√

3

2
j.

8. r′(t) =
1

t
i + j, ‖r′(t)‖ =

√
1 + t2

t
, T(t) = (1 + t2)−1/2(i + tj), T′(t) = (1 + t2)−1/2(j) − t(1 + t2)−3/2(i + tj);

T(e) =
1√

1 + e2
i +

e√
1 + e2

j, T′(e) =
1

(1 + e2)3/2
(−ei + j), N(e) = − e√

1 + e2
i +

1√
1 + e2

j.

9. r′(t) = −4 sin ti + 4 cos tj + k, T(t) =
1√
17

(−4 sin ti + 4 cos tj + k), T′(t) =
1√
17

(−4 cos ti − 4 sin tj), T(π/2) =

− 4√
17

i +
1√
17

k, T′(π/2) = − 4√
17

j, N(π/2) = −j.

10. r′(t) = i + tj + t2k, T(t) = (1 + t2 + t4)−1/2(i + tj + t2k), T′(t) = (1 + t2 + t4)−1/2(j + 2tk) − (t + 2t3)(1 + t2 +
t4)−3/2(i + tj + t2k), T(0) = i, T′(0) = j = N(0).

11. r′(t) = et[(cos t− sin t)i+ (cos t+ sin t)j+k], T(t) =
1√
3

[(cos t− sin t)i+ (cos t+ sin t)j+k], T′(t) =
1√
3

[(− sin t−

cos t)i + (− sin t+ cos t)j], T(0) =
1√
3
i +

1√
3
j +

1√
3
k, T′(0) =

1√
3

(−i + j), N(0) = − 1√
2
i +

1√
2
j.
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12. r′(t) = sinh ti+ cosh tj+k, ‖r′(t)‖ =
√

sinh2 t+ cosh2 t+ 1 =
√

2 cosh t, T(t) =
1√
2

(tanh ti+ j+ sech tk), T′(t) =

1√
2

(sech2ti − sech t tanh tk), at t = ln 2, tanh(ln 2) =
3

5
and sech(ln 2) =

4

5
so T(ln 2) =

3

5
√

2
i +

1√
2
j +

4

5
√

2
k,

T′(ln 2) =
4

25
√

2
(4i− 3k), N(ln 2) =

4

5
i− 3

5
k.

13. r′(t) = cos ti− sin tj + tk, r′(0) = i, r(0) = j, T(0) = i, so the tangent line has the parametrization x = s, y = 1,
z = 0.

14. r(1) = i + j +
√

8k, r′(t) = i + j − t√
9− t2

k, r′(1) = i + j − 1√
8
k, ‖r′(1)‖ =

√
17√
8

, so the tangent line has

parametrizations r = i + j +
√

8k + t

(
i + j− 1√

8
k

)
= i + j +

√
8k +

s
√

8√
17

(
i + j− 1√

8
k

)
.

15. T =
3

5
cos t i − 3

5
sin t j +

4

5
k, N = − sin t i − cos t j, B = T × N =

4

5
cos t i − 4

5
sin t j − 3

5
k. Check: r′ =

3 cos t i−3 sin t j+4k, r′′ = −3 sin t i−3 cos t j, r′×r′′ = 12 cos t i−12 sin t j−9k, ‖r′×r′′‖ = 15, (r′×r′′)/‖r′×r′′‖ =
4

5
cos t i− 4

5
sin t j− 3

5
k = B.

16. T =
1√
2

[(cos t + sin t) i + (− sin t + cos t) j ], N =
1√
2

[(− sin t + cos t) i − (cos t + sin t) j], B = T×N = −k.

Check: r′ = et(cos t + sin t) i + et(cos t − sin t) j, r′′ = 2et cos t i − 2et sin t j, r′ × r′′ = −2e2t k, ‖r′ × r′′‖ =
2e2t, (r′ × r′′)/‖r′ × r′′‖ = −k = B.

17. r′(t) = t sin t i + t cos t j, ‖r′‖ = |t|. For t > 0, T = sin t i + cos t j, N = cos t i − sin t j; for t < 0, T =
− sin t i − cos t j, N = − cos t i + sin t j. In either case, B = T×N = −k. Check: r′ = t sin t i + t cos t j,
r′′ = (sin t+ t cos t) i + (cos t− t sin t) j, r′ × r′′ = −t2 k, ‖r′ × r′′‖ = t2; for t 6= 0, (r′ × r′′)/‖r′ × r′′‖ = −k = B.

18. T = (−a sin t i + a cos t j + ck)/
√
a2 + c2, N = − cos t i− sin t j, B = T×N = (c sin t i− c cos t j + ak)/

√
a2 + c2.

Check: r′ = −a sin t i + a cos t j + ck, r′′ = −a cos t i − a sin t j, r′ × r′′ = ca sin t i − ca cos t j + a2 k, ‖r′ × r′′‖ =
a
√
a2 + c2, (r′ × r′′)/‖r′ × r′′‖ = B.

19. r(π/4) =

√
2

2
i +

√
2

2
j + k,T = − sin ti + cos tj =

√
2

2
(−i + j),N = −(cos ti + sin tj) = −

√
2

2
(i + j),B = k; the

rectifying, osculating, and normal planes are given (respectively) by x+ y =
√

2, z = 1, −x+ y = 0.

20. r(0) = i + j,T =
1√
3

(i + j + k),N =
1√
2

(−j + k),B =
1√
6

(2i− j− k); the rectifying, osculating, and normal

planes are given (respectively) by −y + z = −1, 2x− y − z = 1, x+ y + z = 2.

21. False. For example, if r(t) = 〈t, 0〉 then T(t) = 〈1, 0〉 is parallel to r(t) for all t > 0.

22. False. For example, r(t) = 〈cos t,− sin t〉 parametrizes the unit circle in a clockwise direction. We have T(t) =
〈− sin t,− cos t〉 and N(t) = 〈− cos t, sin t〉, so T(0) = 〈0,−1〉, N(0) = 〈−1, 0〉, and the counterclockwise angle from
T(0) to N(0) is 3π/2, not π/2. (In fact the angle is 3π/2 for all values of t.)

23. True. By Theorem 12.3.4(b), ‖r′(s)‖ = 1 for all s, so Theorem 12.2.8 implies that r′(s) and r′′(s) are orthogonal.

24. False. B(t) is the cross product of T(t) and N(t).

26. The formulas for the unit tangent, normal, and binormal vectors are simpler when a curve is parametrized by arc
length. Compare equations (1) and (6), (2) and (7), and (11) and (12). In the next section, we will see further
examples; e.g. compare Definition 12.5.1 and Theorem 12.5.2.
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Exercise Set 12.5

1. κ ≈ 1

0.5
= 2.

2. κ ≈ 1

4/3
=

3

4
.

3. (a) At x = 0 the curvature of I has a large value, yet the value of II there is zero, so II is not the curvature of I;
hence I is the curvature of II.

(b) I has points of inflection where the curvature is zero, but II is not zero there, and hence is not the curvature
of I; so I is the curvature of II.

4. (a) II takes the value zero at x = 0, yet the curvature of I is large there; hence I is the curvature of II.

(b) I has constant zero curvature; II has constant, positive curvature; hence I is the curvature of II.

5. r′(t) = 2ti + 3t2j, r′′(t) = 2i + 6tj, κ =
‖r′(t)× r′′(t)‖
‖r′(t)‖3 =

6t2

(4t2 + 9t4)3/2
=

6

|t|(4 + 9t2)3/2
.

6. r′(t) = −4 sin ti + cos tj, r′′(t) = −4 cos ti− sin tj, κ =
‖r′(t)× r′′(t)‖
‖r′(t)‖3 =

4

(16 sin2 t+ cos2 t)3/2
.

7. r′(t) = 3e3ti− e−tj, r′′(t) = 9e3ti + e−tj, κ =
‖r′(t)× r′′(t)‖
‖r′(t)‖3 =

12e2t

(9e6t + e−2t)
3/2

.

8. r′(t) = −3t2i + (1− 2t)j, r′′(t) = −6ti− 2j, κ =
‖r′(t)× r′′(t)‖
‖r′(t)‖3 =

6|t2 − t|
(9t4 + 4t2 − 4t+ 1)3/2

.

9. r′(t) = −4 sin ti + 4 cos tj + k, r′′(t) = −4 cos ti− 4 sin tj, κ =
‖r′(t)× r′′(t)‖
‖r′(t)‖3 =

4

17
.

10. r′(t) = i + tj + t2k, r′′(t) = j + 2tk, κ =
‖r′(t)× r′′(t)‖
‖r′(t)‖3 =

√
t4 + 4t2 + 1

(t4 + t2 + 1)3/2
.

11. r′(t) = sinh ti + cosh tj + k, r′′(t) = cosh ti + sinh tj, κ =
‖r′(t)× r′′(t)‖
‖r′(t)‖3 =

1

2 cosh2 t
.

12. r′(t) = j + 2tk, r′′(t) = 2k, κ =
‖r′(t)× r′′(t)‖
‖r′(t)‖3 =

2

(4t2 + 1)3/2
.

13. r′(t) = −3 sin ti + 4 cos tj + k, r′′(t) = −3 cos ti − 4 sin tj, r′(π/2) = −3i + k, r′′(π/2) = −4j; κ =
‖4i + 12k‖
‖ − 3i + k‖3 =

2/5, ρ = 5/2.

14. r′(t) = eti− e−tj + k, r′′(t) = eti + e−tj, r′(0) = i− j + k, r′′(0) = i + j; κ =
‖ − i + j + 2k‖
‖i− j + k‖3 =

√
2/3, ρ = 3/

√
2.

15. r′(t) = et(cos t− sin t)i+et(cos t+sin t)j+etk, r′′(t) = −2et sin ti+2et cos tj+etk, r′(0) = i+ j+k, r′′(0) = 2j+k;

κ =
‖ − i− j + 2k‖
‖i + j + k‖3 =

√
2/3, ρ = 3/

√
2.

16. r′(t) = cos ti− sin tj + tk, r′′(t) = − sin ti− cos tj + k, r′(0) = i, r′′(0) = −j + k; κ =
‖ − j− k‖
‖i‖3 =

√
2, ρ =

√
2/2.
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17. r′(s) =
1

2
cos
(

1 +
s

2

)
i − 1

2
sin
(

1 +
s

2

)
j +

√
3

2
k, ‖r′(s)‖ = 1, so

dT

ds
= −1

4
sin
(

1 +
s

2

)
i − 1

4
cos
(

1 +
s

2

)
j, κ =

∥∥∥∥
dT

ds

∥∥∥∥ =
1

4
.

18. r′(s) = −
√

3− 2s

3
s i +

√
2s

3
j, ‖r′(s)‖ = 1, so

dT

ds
=

1√
9− 6s

i +
1√
6s

j, κ =

∥∥∥∥
dT

ds

∥∥∥∥ =

√
1

9− 6s
+

1

6s
=

√
3

2s(9− 6s)
=

1√
2s(3− 2s)

.

19. True, by Example 1 with a = 2.

20. False. For any line, T(s) is constant, so κ(s) =

∥∥∥∥
dT

ds

∥∥∥∥ = ‖0‖ = 0.

21. False. By equation (1), the curvature is ‖r′′(s)‖, not ‖r′(s)‖. (‖r′(s)‖ is always 1, if it exists.)

22. False. The radius of the osculating circle is the reciprocal of the curvature.

23. (a) r′ = x′i + y′j, r′′ = x′′i + y′′j, ‖r′ × r′′‖ = |x′y′′ − x′′y′|, κ =
|x′y′′ − y′x′′|
(x′2 + y′2)3/2

.

(b) Set x = t, y = f(x) = f(t), x′ = 1, x′′ = 0, y′ =
dy

dx
, y′′ =

d2y

dx2
, κ =

|d2y/dx2|
(1 + (dy/dx)2)3/2

.

24.
dy

dx
= tanφ, (1 + tan2 φ)3/2 = (sec2 φ)3/2 = | secφ|3, κ(x) =

|y′′|
| secφ|3 = |y′′ cos3 φ|.

25. κ(x) =
| sinx|

(1 + cos2 x)3/2
, κ(π/2) = 1.

26. κ(x) =
2 sec2 x| tanx|
(1 + sec4 x)3/2

, κ(π/4) =
4

5
√

5
.

27. κ(x) =
e−x

(1 + e−2x)3/2
, κ(1) =

e−1

(1 + e−2)3/2
.

28. By implicit differentiation, dy/dx = 4x/y, d2y/dx2 = 36/y3 so κ =
36/|y|3

(1 + 16x2/y2)3/2
; if (x, y) = (2, 5) then

κ =
36/125

(1 + 64/25)3/2
=

36

89
√

89
.

29. x′(t) = 2t, y′(t) = 3t2, x′′(t) = 2, y′′(t) = 6t, x′(1/2) = 1, y′(1/2) = 3/4, x′′(1/2) = 2, y′′(1/2) = 3; κ = 96/125.

30. x′(t) = 3e3t, y′(t) = −e−t, x′′(t) = 9e3t, y′′(t) = e−t, x′(0) = 3, y′(0) = −1, x′′(0) = 9, y′′(0) = 1; κ = 6/(5
√

10).

31. x′(t) = 1, y′(t) = −1/t2, x′′(t) = 0, y′′(t) = 2/t3, x′(1) = 1, y′(1) = −1, x′′(1) = 0, y′′(1) = 2;κ = 1/
√

2.

32. x′(t) = 4 cos 2t, y′(t) = 3 cos t, x′′(t) = −8 sin 2t, y′′(t) = −3 sin t, x′(π/2) = −4, y′(π/2) = 0, x′′(π/2) = 0, y′′(π/2) =
−3, κ = 12/163/2 = 3/16.

33. (a) κ(x) =
| cosx|

(1 + sin2 x)3/2
, ρ(x) =

(1 + sin2 x)3/2

| cosx| , ρ(0) = ρ(π) = 1.
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c
(0) = (  ) = 1c

x

y

r r

(b) κ(t) =
2

(4 sin2 t+ cos2 t)3/2
, ρ(t) =

1

2
(4 sin2 t+ cos2 t)3/2, ρ(0) = 1/2, ρ(π/2) = 4.

1

2

ρ(6)  = 4

ρ(0) =
1
2

x

y

34. x′(t) = −e−t(cos t + sin t), y′(t) = e−t(cos t − sin t), x′′(t) = 2e−t sin t, y′′(t) = −2e−t cos t; using the formula of

Exercise 23(a), κ =
1√
2
et.

3-3

t

κ

6

35. y = f(x) = xe−x.

x

y

1 2 3 4 5

0.4

y = κ(x) =
|x− 2|e−x

[1 + (1− x)2e−2x]3/2
.

x

y

1 2 3 4 5

1

36. y = f(x) = x3 − x.

x

y

!1

!0.4

0.4

1



Exercise Set 12.5 609

y = κ(x) =
6|x|

[1 + (3x2 − 1)2]3/2
.

x

y

!1 1

4

37. (a) κ =
|12x2 − 4|

[1 + (4x3 − 4x)2]3/2
. (b)

f(x)

k

–2 2

8

x

y

(c) f ′(x) = 4x3 − 4x = 0 at x = 0,±1, f ′′(x) = 12x2 − 4, so extrema at x = 0,±1, and ρ = 1/4 for x = 0 and
ρ = 1/8 when x = ±1.

38. (a)

–30 30

–30

30

x

y

(c) κ(t) =
t2 + 2

(t2 + 1)3/2
. (d) lim

t→+∞
κ(t) = 0.

39. r′(θ) =

(
−r sin θ + cos θ

dr

dθ

)
i +

(
r cos θ + sin θ

dr

dθ

)
j;

r′′(θ) =

(
−r cos θ − 2 sin θ

dr

dθ
+ cos θ

d2r

dθ2

)
i +

(
−r sin θ + 2 cos θ

dr

dθ
+ sin θ

d2r

dθ2

)
j;

κ =

∣∣∣∣∣r
2 + 2

(
dr

dθ

)2
− r d

2r

dθ2

∣∣∣∣∣
[
r2 +

(
dr

dθ

)2]3/2
.

40. Let r = a be the circle, so that dr/dθ = 0, and κ(θ) =
1

r
=

1

a
.

41. κ(θ) =
3

2
√

2(1 + cos θ)1/2
, κ(π/2) =

3

2
√

2
.

42. κ(θ) =
1√
5e2θ

, κ(1) =
1√
5e2

.

43. κ(θ) =
10 + 8 cos2 3θ

(1 + 8 cos2 3θ)3/2
, κ(0) =

2

3
.
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44. κ(θ) =
θ2 + 2

(θ2 + 1)3/2
, κ(1) =

3

2
√

2
.

45. Let y = t, then x =
t2

4p
and κ(t) =

1/|2p|
[t2/(4p2) + 1]3/2

; t = 0 when (x, y) = (0, 0) so κ(0) = 1/|2p|, ρ = 2|p|.

46. κ(x) =
ex

(1 + e2x)3/2
, κ′(x) =

ex(1− 2e2x)

(1 + e2x)5/2
; κ′(x) = 0 when e2x = 1/2, x = −(ln 2)/2. By the first derivative test,

κ(−1

2
ln 2) is maximum so the point is (−1

2
ln 2, 1/

√
2).

47. Let x = 3 cos t, y = 2 sin t for 0 ≤ t < 2π, κ(t) =
6

(9 sin2 t+ 4 cos2 t)3/2
so ρ(t) =

1

6
(9 sin2 t + 4 cos2 t)3/2 =

1

6
(5 sin2 t+ 4)3/2 which, by inspection, is minimum when t = 0 or π. The radius of curvature is minimum at (3, 0)

and (−3, 0).

48. r′(t) = − sin ti + cos tj − sin tk, r′′(t) = − cos ti − sin tj − cos tk, ‖r′(t) × r′′(t)‖ = ‖ − i + k‖ =
√

2, ‖r′(t)‖ =
(1+sin2 t)1/2; κ(t) =

√
2/(1+sin2 t)3/2, ρ(t) = (1+sin2 t)3/2/

√
2. The minimum value of ρ is 1/

√
2; the maximum

value is 2.

49. From Exercise 39: dr/dθ = aeaθ = ar, d2r/dθ2 = a2eaθ = a2r; κ = 1/[
√

1 + a2 r].

50. Use implicit differentiation on r2 = a2 cos 2θ to get 2r
dr

dθ
= −2a2 sin 2θ, r

dr

dθ
= −a2 sin 2θ, and again to get

r
d2r

dθ2
+

(
dr

dθ

)2
= −2a2 cos 2θ so r

d2r

dθ2
= −

(
dr

dθ

)2
− 2a2 cos 2θ = −

(
dr

dθ

)2
− 2r2, thus

∣∣∣∣∣r
2 + 2

(
dr

dθ

)2
− r d

2r

dθ2

∣∣∣∣∣ =

3

[
r2 +

(
dr

dθ

)2]
, κ =

3

[r2 + (dr/dθ)2]1/2
;
dr

dθ
= −a

2 sin 2θ

r
so r2 +

(
dr

dθ

)2
= r2 +

a4 sin2 2θ

r2
=
r4 + a4 sin2 2θ

r2
=

a4 cos2 2θ + a4 sin2 2θ

r2
=
a4

r2
, hence κ =

3r

a2
.

51. (a) d2y/dx2 = 2, κ(φ) = |2 cos3 φ|. (b) dy/dx = tanφ = 1, φ = π/4, κ(π/4) = |2 cos3(π/4)| = 1/
√

2, ρ =
√

2.

(c) –2 1

3

x

y

52. (a)

(
5

3
, 0

)
,

(
0,−5

2

)
. (b) Clockwise. (c) It is a point, namely the center of the circle.

53. κ = 0 along y = 0; along y = x2, κ(x) = 2/(1 + 4x2)3/2, κ(0) = 2. Along y = x3, κ(x) = 6|x|/(1 + 9x4)3/2,
κ(0) = 0.
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54. (a)
2–2

4

x

y

(b) For y = x2, κ(x) =
2

(1 + 4x2)3/2
, so κ(0) = 2; for y = x4, κ(x) =

12x2

(1 + 16x6)3/2
so κ(0) = 0. κ is not

continuous at x = 0.

55. κ = 1/r along the circle; along y = ax2, κ(x) = 2a/(1 + 4a2x2)3/2, κ(0) = 2a so 2a = 1/r, a = 1/(2r).

56. κ(x) =
|y′′|

(1 + y′2)3/2
so the transition will be smooth if the values of y are equal, the values of y′ are equal, and the

values of y′′ are equal at x = 0. If y = ex, then y′ = y′′ = ex; if y = ax2 + bx+ c, then y′ = 2ax+ b and y′′ = 2a.
Equate y, y′, and y′′ at x = 0 to get c = 1, b = 1, and a = 1/2.

57. Let y(x) =

{
f(x) if x ≤ 0;

ax2 + bx+ c if x > 0.
Since κ(x) =

|y′′|
(1 + y′2)3/2

, the transition will be smooth if y, y′, and y′′

are all continuous at x = 0. This happens if f(0) = c, f ′(0) = b, and f ′′(0) = 2a. So if we let a = f ′′(0)/2,
b = f ′(0), and c = f(0), the transition will be smooth. (Note that we don’t need f ′′′(x) to exist for all x ≤ 0; it
suffices to have f ′′(x) continuous.)

58. The result follows immediately from the definitions N =
T′(s)
‖T′(s)‖ and κ = ‖T′(s)‖.

59. (a) B · dB
ds

= 0 because ‖B(s)‖ = 1, so
dB

ds
is perpendicular to B(s).

(b) B(s) · T(s) = 0, so 0 = B(s) · dT
ds

+
dB

ds
· T(s). Since

dT

ds
= κN(s), B(s) · dT

ds
= κB(s) · N(s) = 0. Hence

dB

ds
· T(s) = 0; thus

dB

ds
is perpendicular to T(s).

(c)
dB

ds
is perpendicular to both B(s) and T(s) but so is N(s), thus

dB

ds
is parallel to N(s) and hence a scalar

multiple of N(s).

(d) If C lies in a plane, then T(s) and N(s) also lie in the plane; B(s) = T(s) × N(s) so B(s) is always

perpendicular to the plane. Since
dB

ds
exists at each point on the curve, B is continuous. Since ‖B‖ = 1, either

B = k for all s or B = −k for all s; in either case
dB

ds
= 0.

60.
dN

ds
= B× dT

ds
+
dB

ds
×T = B× (κN) + (−τN)×T = κB×N− τN×T, but B×N = −T and N×T = −B

so
dN

ds
= −κT + τB.

61. r′′(s) = dT/ds = κN so r′′′(s) = κdN/ds+(dκ/ds)N but dN/ds = −κT+τB so r′′′(s) = −κ2T+(dκ/ds)N+κτB,
r′(s)×r′′(s) = T× (κN) = κT×N = κB, [r′(s)×r′′(s)] · r′′′(s) = −κ3B · T+κ(dκ/ds)B · N+κ2τB · B = κ2τ ,
τ = [r′(s)× r′′(s)] · r′′′(s)/κ2 = [r′(s)× r′′(s)] · r′′′(s)/‖r′′(s)‖2 and B = T×N = [r′(s)× r′′(s)]/‖r′′(s)‖.
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62. (a) T′ =
dT

dt
=
dT

ds

ds

dt
= (κN)s′ = κs′N, N′ =

dN

dt
=
dN

ds

ds

dt
= (−κT + τB)s′ = −κs′T + τs′B.

(b) ‖r′(t)‖ = s′ so r′(t) = s′T and r′′(t) = s′′T + s′T′ = s′′T + s′(κs′N) = s′′T + κ(s′)2N.

(c) r′′′(t) = s′′T′ + s′′′T+ κ(s′)2N′ + [2κs′s′′ + κ′(s′)2]N = s′′(κs′N) + s′′′T+ κ(s′)2(−κs′T+ τs′B) + [2κs′s′′ +
κ′(s′)2]N = [s′′′ − κ2(s′)3]T + [3κs′s′′ + κ′(s′)2]N + κτ(s′)3B.

(d) r′(t)× r′′(t) = s′s′′T×T + κ(s′)3T×N = κ(s′)3B, [r′(t)× r′′(t)] · r′′′(t) = κ2τ(s′)6, so

τ =
[r′(t)× r′′(t)] · r′′′(t)

κ2(s′)6
=

[r′(t)× r′′(t)] · r′′′(t)
‖r′(t)× r′′(t)‖2 .

63. r′ = 2i+2tj+t2k, r′′ = 2j+2tk, r′′′ = 2k, r′×r′′ = 2t2i−4tj+4k, ‖r′×r′′‖ = 2(t2+2), τ = 8/[2(t2+2)]2 = 2/(t2+2)2.

64. r′ = −a sin ti + a cos tj + ck, r′′ = −a cos ti − a sin tj, r′′′ = a sin ti − a cos tj, r′ × r′′ = ac sin ti − ac cos tj + a2k,
‖r′ × r′′‖ =

√
a2(a2 + c2), τ = a2c/[a2(a2 + c2)] = c/(a2 + c2).

65. r′ = eti− e−tj+
√

2k, r′′ = eti+ e−tj, r′′′ = eti− e−tj, r′× r′′ = −
√

2e−ti+
√

2etj+ 2k, ‖r′× r′′‖ =
√

2(et + e−t),
τ = (−2

√
2)/[2(et + e−t)2] = −

√
2/(et + e−t)2.

66. r′ = (1 − cos t)i + sin tj + k, r′′ = sin ti + cos tj, r′′′ = cos ti − sin tj, r′ × r′′ = − cos ti + sin tj + (cos t − 1)k,

‖r′ × r′′‖ =
√

cos2 t+ sin2 t+ (cos t− 1)2 =
√

1 + 4 sin4(t/2), τ = −1/[1 + 4 sin4(t/2)].

67. If the curvature κ has a maximum at P , then the curve lies outside of the osculating circle near P . If κ has a
minimum at P , then the curve lies inside of the osculating circle near P . Otherwise the curve and the osculating
circle cross at P . For example, the curvature of the ellipse in Example 4 has a maximum at t = π/2; as shown
in Figure 12.5.5 the ellipse is outside of the osculating circle at that point. (By symmetry the same is true at
t = 3π/2.) The curvature has a minimum at t = 0 and the ellipse is inside of the osculating circle there. (Also
at t = π, by symmetry.) At other points the ellipse and the osculating circle cross. For example, the figure below
shows them at t = π/4. (The osculating circle at this point has center (−5

√
2/8, 5

√
2/12) and radius 13

√
26/24.)

x

y

t =! /4

2"2

3

"3

68. The radius of curvature is largest at t = 0, so the cardioid is straightest there. As t increases to π, the radius of
curvature decreases; i.e. the curve bends more. At t = π the cardioid has a cusp, at which point the radius of
curvature is 0.

Exercise Set 12.6

1. v(t) = −3 sin ti + 3 cos tj, a(t) = −3 cos ti− 3 sin tj, ‖v(t)‖ =
√

9 sin2 t+ 9 cos2 t = 3, r(π/3) = (3/2)i + (3
√

3/2)j,
v(π/3) = −(3

√
3/2)i + (3/2)j, a(π/3) = −(3/2)i− (3

√
3/2)j.
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3

3
2

3 √ 3
2(      ),

3
2

3 √ 3
2

a = − i − j

x

y 3 √ 3
2v = − i + j3

2

2. v(t) = i + 2tj, a(t) = 2j, ‖v(t)‖ =
√

1 + 4t2, r(2) = 2i + 4j, v(2) = i + 4j, a(2) = 2j.

(2, 4)

a = 2j

v = i + 4j8

4

x

y

3. v(t) = eti− e−tj, a(t) = eti + e−tj, ‖v(t)‖ =
√
e2t + e−2t, r(0) = i + j, v(0) = i− j, a(0) = i + j.

(1, 1)

v  = i  − j

a = i  + j

x

y

4. v(t) = 4i− j, a(t) = 0, ‖v(t)‖ =
√

17, r(1) = 6i, v(1) = 4i− j, a(1) = 0.

(6, 0)

v = 4 i − j
a = 0

x

y

5. v = i + tj + t2k, a = j + 2tk; at t = 1, v = i + j + k, ‖v‖ =
√

3, a = j + 2k.

6. r = (1 + 3t)i + (2− 4t)j + (7 + t)k, v = 3i− 4j + k, a = 0; at t = 2, v = 3i− 4j + k, ‖v‖ =
√

26, a = 0.

7. v = −2 sin ti + 2 cos tj + k, a = −2 cos ti− 2 sin tj; at t = π/4, v = −
√

2i +
√

2j + k, ‖v‖ =
√

5, a = −
√

2i−
√

2j.

8. v = et(cos t + sin t)i + et(cos t − sin t)j + k, a = 2et cos ti − 2et sin tj; at t = π/2, v = eπ/2i − eπ/2j + k, ‖v‖ =
(1 + 2eπ)1/2, a = −2eπ/2j.

9. (a) v = −aω sinωti + bω cosωtj, a = −aω2 cosωti− bω2 sinωtj = −ω2r.
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(b) From part (a), ‖a‖ = ω2‖r‖.

10. (a) v = 16π cosπti−8π sin 2πtj, a = −16π2 sinπti−16π2 cos 2πtj; at t = 1, v = −16πi, ‖v‖ = 16π, a = −16π2j.

(b) x = 16 sinπt, y = 4 cos 2πt = 4 cos2 πt− 4 sin2 πt = 4− 8 sin2 πt, y = 4− x2/32.

(c) x(t) and y(t) are periodic with periods 2 and 1, respectively, so after 2 s the particle retraces its path.

11. If a = 0 then x′′(t) = y′′(t) = z′′(t) = 0, so x(t) = x1t+ x0, y(t) = y1t+ y0, z(t) = z1t+ z0, the motion is along a
straight line and has constant speed.

12. (a) If ‖r‖ is constant then so is ‖r‖2, but then x2 +y2 = c2 (2-space) or x2 +y2 +z2 = c2 (3-space), so the motion
is along a circle or a sphere of radius c centered at the origin, and the velocity vector is always perpendicular to
the position vector.

(b) If ‖v‖ is constant, then by the theorem v(t) · a(t) = 0, so the velocity is always perpendicular to the
acceleration.

13. v = (6/
√
t)i + (3/2)t1/2j, ‖v‖ =

√
36/t+ 9t/4,

d

dt
‖v‖ =

−36/t2 + 9/4

2
√

36/t+ 9t/4
= 0 if t = 4 which yields a minimum by

the first derivative test. The minimum speed is 3
√

2 when r = 24i + 8j.

14. v = (1− 2t)i− 2tj, ‖v‖ =
√

(1− 2t)2 + 4t2 =
√

8t2 − 4t+ 1,
d

dt
‖v‖ =

8t− 2√
8t2 − 4t+ 1

= 0 if t =
1

4
which yields a

minimum by the first derivative test. The minimum speed is 1/
√

2 when the particle is at r =
3

16
i− 1

16
j.

15. (a)

t

speed

3

6

2! /3

(b) v = 3 cos 3t i + 6 sin 3t j, ‖v‖ =
√

9 cos2 3t+ 36 sin2 3t = 3
√

1 + 3 sin2 3t; by inspection, maximum speed is 6
and minimum speed is 3.

(d) By inspection, ‖v‖ = 3
√

1 + 3 sin2 3t is maximal when sin 3t = ±1; this occurs first when t = π/6.

16. (a)

t

speed

2

4

6

8

!

(d) v = −6 sin 2t i + 2 cos 2t j + 4k, ‖v‖ =
√

36 sin2 2t+ 4 cos2 2t+ 16 = 2
√

8 sin2 2t+ 5; by inspection the
maximum speed is 2

√
13 and first occurs when t = π/4, the minimum speed is 2

√
5 and first occurs when t = 0.

17. v(t) = − sin ti + cos tj + C1, v(0) = j + C1 = i, C1 = i − j, v(t) = (1 − sin t)i + (cos t − 1)j; r(t) = (t + cos t)i +
(sin t− t)j + C2, r(0) = i + C2 = j, C2 = −i + j so r(t) = (t+ cos t− 1)i + (sin t− t+ 1)j.
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18. v(t) = ti− e−tj + C1, v(0) = −j + C1 = 2i + j; C1 = 2i + 2j, so v(t) = (t+ 2)i + (2− e−t)j; r(t) = (t2/2 + 2t)i +
(2t+ e−t)j + C2, r(0) = j + C2 = i− j, C2 = i− 2j so r(t) = (t2/2 + 2t+ 1)i + (2t+ e−t − 2)j.

19. v(t) = − cos ti + sin tj + etk + C1, v(0) = −i + k + C1 = k, so C1 = i, v(t) = (1 − cos t)i + sin tj + etk;
r(t) = (t−sin t)i−cos tj+etk+C2, r(0) = −j+k+C2 = −i+k so C2 = −i+j, r(t) = (t−sin t−1)i+(1−cos t)j+etk.

20. v(t) = − 1

t+ 1
j+

1

2
e−2tk+C1, v(0) = −j+ 1

2
k+C1 = 3i−j, so C1 = 3i− 1

2
k, v(t) = 3i− 1

t+ 1
j+

(
1

2
e−2t − 1

2

)
k;

r(t) = 3ti − ln(t + 1)j −
(

1

4
e−2t +

1

2
t

)
k + C2, r(0) = −1

4
k + C2 = 2k so C2 =

9

4
k, r(t) = 3ti − ln(t + 1)j +

(
9

4
− 1

4
e−2t − 1

2
t

)
k.

21. v = 3t2i + 2tj, a = 6ti + 2j; v = 3i + 2j and a = 6i + 2j when t = 1, so cos θ = (v · a)/(‖v‖ ‖a‖) = 11/
√

130,
θ ≈ 15◦.

22. v = et(cos t − sin t)i + et(cos t + sin t)j, a = −2et sin ti + 2et cos tj, v · a = 2e2t, ‖v‖ =
√

2et, ‖a‖ = 2et,
cos θ = (v · a)/(‖v‖ ‖a‖) = 1/

√
2, θ = 45◦.

23. (a) Displacement = r1 − r0 = 0.7i + 2.7j− 3.4k.

(b) ∆r = r1 − r0, so r0 = r1 −∆r = −0.7i− 2.9j + 4.8k.

24. (a)

–4 –2 2 4

–4

–2

2

4

x

y

(b) One revolution, or 10π.

25. ∆r = r(3)− r(1) = 8i + (26/3)j; v = 2ti + t2j, s =

∫ 3

1

t
√

4 + t2 dt =
13
√

13− 5
√

5

3
.

26. ∆r = r(3π/2)− r(0) = 3i− 3j; v = −3 cos ti− 3 sin tj, s =

∫ 3π/2

0

3 dt =
9π

2
.

27. ∆r = r(ln 3)− r(0) = 2i− (2/3)j +
√

2(ln 3)k; v = eti− e−tj +
√

2k, s =

∫ ln 3

0

(et + e−t) dt =
8

3
.

28. ∆r = r(π)−r(0) = 0; v = −2 sin 2ti+2 sin 2tj− sin 2tk, ‖v‖ = 3| sin 2t|, s =

∫ π

0

3| sin 2t| dt = 6

∫ π/2

0

sin 2t dt = 6.

29. In both cases, the equation of the path in rectangular coordinates is x2+y2 = 4, the particles move counterclockwise
around this circle; v1 = −6 sin 3ti + 6 cos 3tj and v2 = −4t sin(t2)i + 4t cos(t2)j so ‖v1‖ = 6 and ‖v2‖ = 4t.

30. Let u = 1 − t3 to get r1(u) = (3 + 2(1 − t3))i + (1 − t3)j + (1 − (1 − t3))k = (5 − 2t3)i + (1 − t3)j + t3k = r2(t),
so both particles move along the same path; v1 = 2i + j − k and v2 = −6t2i − 3t2j + 3t2k so ‖v1‖ =

√
6 and

‖v2‖ = 3
√

6t2.

31. (a) v = −e−ti + etj, a = e−ti + etj; when t = 0, v = −i + j, a = i + j, ‖v‖ =
√

2, v · a = 0, v × a = −2k so
aT = 0, aN =

√
2.

(b) aTT = 0, aNN = a− aTT = i + j. (c) κ = 1/
√

2.
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32. (a) v = −2t sin(t2)i + 2t cos(t2)j, a = [−4t2 cos(t2) − 2 sin(t2)]i + [−4t2 sin(t2) + 2 cos(t2)]j; when t =
√
π/2,

v = −
√
π/2i+

√
π/2j, a = (−π/

√
2−
√

2)i+ (−π/
√

2 +
√

2)j, ‖v‖ =
√
π, v · a = 2

√
π, v× a = π3/2k so aT = 2,

aN = π.

(b) aTT = −
√

2(i− j), aNN = a− aTT = −(π/
√

2)(i + j). (c) κ = 1.

33. (a) v = (3t2 − 2)i + 2tj, a = 6ti + 2j; when t = 1, v = i + 2j, a = 6i + 2j, ‖v‖ =
√

5, v · a = 10, v × a = −10k,
so aT = 2

√
5, aN = 2

√
5.

(b) aTT =
2
√

5√
5

(i + 2j) = 2i + 4j, aNN = a− aTT = 4i− 2j. (c) κ = 2/
√

5.

34. (a) v = et(− sin t + cos t)i + et(cos t + sin t)j, a = −2et sin ti + 2et cos tj; when t = π/4, v =
√

2eπ/4j, a =
−
√

2eπ/4i +
√

2eπ/4j, ‖v‖ =
√

2eπ/4, v · a = 2eπ/2, v × a = 2eπ/2k, so aT =
√

2eπ/4, aN =
√

2eπ/4.

(b) aTT =
√

2eπ/4j, aNN = a− aTT = −
√

2eπ/4i. (c) κ =
1√

2eπ/4
.

35. (a) v = eti − 2e−2tj + k, a = eti + 4e−2tj; when t = 0, v = i − 2j + k, a = i + 4j, ‖v‖ =
√

6, v · a = −7,
v × a = −4i + j + 6k so aT = −7/

√
6, aN =

√
53/6.

(b) aTT = −7

6
(i− 2j + k), aNN = a− aTT =

13

6
i +

5

3
j +

7

6
k. (c) κ =

√
53

6
√

6
.

36. (a) v = 3 cos ti − 2 sin tj − 2 cos 2tk, a = −3 sin ti − 2 cos tj + 4 sin 2tk; when t = π/2, v = −2j + 2k, a = −3i,
‖v‖ = 2

√
2, v · a = 0, v × a = −6j− 6k so aT = 0, aN = 3.

(b) aTT = 0, aNN = a = −3i. (c) κ =
3

8
.

37. ‖v‖ = 4, v · a = −12, v × a = 8k so aT = −3, aN = 2, T = −j, N = (a− aTT)/aN = i.

38. ‖v‖ = 3, v · a = 4, v× a = 4i− 3j− 2k so aT = 4/3, aN =
√

29/3, T = (1/3)(2i + 2j + k), N = (a− aTT)/aN =
(i− 8j + 14k)/(3

√
29).

39. aT =
d2s

dt2
=

d

dt

√
t2 + e−3t =

2t− 3e−3t

2
√
t2 + e−3t

so when t = 0, aT = −3

2
.

40. aT =
d2s

dt2
=

d

dt

√
(4t− 1)2 + cos2 πt =

4(4t− 1)− π cosπt sinπt√
(4t− 1)2 + cos2 πt

so when t = 1/4, aT = − π√
2

.

41. aN = κ(ds/dt)2 = (1/ρ)(ds/dt)2 = (1/1)(2.9× 105)2 = 8.41× 1010 km/s2.

42. a = (d2s/dt2)T + κ(ds/dt)2N where κ =
|d2y/dx2|

[1 + (dy/dx)2]3/2
. If d2y/dx2 = 0, then κ = 0 and a = (d2s/dt2)T so a

is tangent to the curve.

43. aN = κ(ds/dt)2 = [2/(1 + 4x2)3/2](3)2 = 18/(1 + 4x2)3/2.

44. y = ex, aN = κ(ds/dt)2 = [ex/(1 + e2x)3/2](2)2 = 4ex/(1 + e2x)3/2.

45. a = aTT + aNN; by the Pythagorean Theorem aN =
√
‖a‖2 − a2

T =
√

9− 9 = 0.

46. As in Exercise 45, ‖a‖2 = a2
T + a2

N , 81 = 9 + a2
N , aN =

√
72 = 6

√
2.
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47. True. By equation (1) the velocity vector is ds/dt multiplied by the unit tangent vector.

48. False. By equation (13) the normal scalar component of acceleration is the product of the curvature and the square
of the speed.

49. False. Equations (10) and (11) imply that a and v are parallel, but they may point in opposite directions. For
example, if r(t) = (ln t)i + (sin(ln t))j then κ(1) = 0, v(1) = i + j, and a(1) = −i− j.

50. False. The distance traveled only equals the magnitude of the displacement if the particle travels in a straight line
(without reversing direction) during the time interval.

51. From (14), ‖a‖2 = a · a = (aTT + aNN) · (aTT + aNN) = a2
T (T · T) + 2aTaN (T · N) + a2

N (N · N) = a2
T + a2

N ,
since T and N are orthogonal unit vectors. Hence a2

N = ‖a‖2 − a2
T . Since aN ≥ 0 (from equation (13)),

aN =
√
‖a‖2 − a2

T .

52. Let c = ds/dt, aN = κ

(
ds

dt

)2

, aN =
1

1000
c2, so c2 = 1000aN , c ≤ 10

√
10
√

1.5 ≈ 38.73 m/s.

53. 10 km/h is the same as
100

36
m/s, so ‖F‖ = 500

1

15

(
100

36

)2

≈ 257.20 N.

54. (a) v0 = 320, α = 60◦, s0 = 0, so x = 160t, y = 160
√

3t− 16t2.

(b) dy/dt = 160
√

3− 32t, dy/dt = 0 when t = 5
√

3, so ymax = 160
√

3(5
√

3)− 16(5
√

3)2 = 1200 ft.

(c) y = 16t(10
√

3− t), y = 0 when t = 0 or 10
√

3, so xmax = 160(10
√

3) = 1600
√

3 ft.

(d) v(t) = 160i + (160
√

3− 32t)j, v(10
√

3) = 160(i−
√

3j), ‖v(10
√

3)‖ = 320 ft/s.

55. v0 = 80, α = −60◦, s0 = 168 so x = 40t, y = 168− 40
√

3 t− 16t2; y = 0 when t = −7
√

3/2 (invalid) or t =
√

3 so
x(
√

3) = 40
√

3 ft.

56. v0 = 80, α = 0◦, s0 = 168 so x = 80t, y = 168 − 16t2; y = 0 when t = −
√

42/2 (invalid) or t =
√

42/2 so
x(
√

42/2) = 40
√

42 ft.

57. α = 30◦, s0 = 0 so x =
√

3v0t/2, y = v0t/2 − 16t2; dy/dt = v0/2 − 32t, dy/dt = 0 when t = v0/64 so
ymax = v2

0/256 = 2500, v0 = 800 ft/s.

58. α = 45◦, s0 = 0 so x =
√

2 v0t/2, y =
√

2v0t/2− 4.9t2; y = 0 when t = 0 or
√

2v0/9.8, so xmax = v2
0/9.8 = 24, 500,

v0 = 490 m/s.

59. v0 = 800, s0 = 0, so x = (800 cosα)t, y = (800 sinα)t − 16t2 = 16t(50 sinα − t); y = 0 when t = 0 or 50 sinα, so
xmax = 40, 000 sinα cosα = 20, 000 sin 2α = 10, 000, 2α = 30◦ or 150◦, α = 15◦ or 75◦.

60. (a) v0 = 5, α = 0◦, s0 = 4 so x = 5t, y = 4− 16t2; y = 0 when t = −1/2 (invalid) or 1/2 so it takes the ball 1/2
s to hit the floor.

(b) v(t) = 5i− 32tj, v(1/2) = 5i− 16j, ‖v(1/2)‖ =
√

281 so the ball hits the floor with a speed of
√

281 ft/s.

(c) v0 = 0, α = −90◦, s0 = 4 so x = 0, y = 4− 16t2; y = 0 when t = 1/2 so both balls would hit the ground at
the same instant.

61. (a) From (26), r(t) = (40 cos 60◦)t i +

(
4 + (40 sin 60◦)t− 1

2
gt2
)
j = 20t i + (4 + 20

√
3t − 16t2) j. When x =

15, t =
3

4
, and y = 4 + 20

√
3 · 3

4
−16

(
3

4

)2

≈ 20.98 ft, so the water clears the corner point A with 0.98 ft to spare.
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(b) y = 20 when 16t2 − 20
√

3t+ 16 = 0, t =
5
√

3±
√

11

8
, t ≈ 0.668 (reject) or 1.497, x(1.497) ≈ 29.942 ft, so the

water hits the roof.

(c) About 29.942− 15 = 14.942 ft.

62. x = (v0/2)t, y = 4 + (v0

√
3/2)t − 16t2, solve x = 15, y = 20 simultaneously for v0 and t, v0/2 = 15/t, t2 =

15

16

√
3− 1, t ≈ 0.7898, v0 ≈ 30/0.7898 ≈ 37.98 ft/s.

63. (a) x = (35
√

2/2)t, y = (35
√

2/2)t − 4.9t2, from Exercise 23(a) in Section 12.5 κ =
|x′y′′ − x′′y′|

[(x′)2 + (y′)2]3/2
, κ(0) =

9.8

352
√

2
= 0.004

√
2 ≈ 0.00565685; ρ = 1/κ ≈ 176.78 m.

(b) y′(t) = 0 when t =
25

14

√
2, y =

125

4
m.

64. (a) a = aTT + aNN, aT =
d2s

dt2
= −7.5 ft/s2, aN = κ

(
ds

dt

)2

=
1

ρ
(132)2 =

1322

3000
ft/s2, ‖a‖ =

√
a2
T + a2

N =
√

(7.5)2 +

(
1322

3000

)2

≈ 9.49 ft/s2.

(b) cos θ =
a · T
‖a‖‖T‖ =

aT
‖a‖ ≈ −

7.5

9.49
≈ −0.79, θ ≈ 2.48 radians ≈ 142◦.

65. s0 = 0 so x = (v0 cosα)t, y = (v0 sinα)t− gt2/2.

(a) dy/dt = v0 sinα− gt so dy/dt = 0 when t = (v0 sinα)/g, ymax = (v0 sinα)2/(2g).

(b) y = 0 when t = 0 or (2v0 sinα)/g, so x = R = (2v2
0 sinα cosα)/g = (v2

0 sin 2α)/g when t = (2v0 sinα)/g; R is
maximum when 2α = 90◦, α = 45◦, and the maximum value of R is v2

0/g.

66. The range is (v2
0 sin 2α)/g and the maximum range is v2

0/g so (v2
0 sin 2α)/g = (3/4)v2

0/g, sin 2α = 3/4, α =
(1/2) sin−1(3/4) ≈ 24.3◦ or α = (1/2)[180◦ − sin−1(3/4)] ≈ 65.7◦.

67. v0 = 80, α = 30◦, s0 = 5 so x = 40
√

3t, y = 5 + 40t− 16t2.

(a) y = 0 when t = (−40±
√

(40)2 − 4(−16)(5))/(−32) = (5±
√

30)/4, reject (5−
√

30)/4 to get t = (5+
√

30)/4 ≈
2.62 s.

(b) x ≈ 40
√

3(2.62) ≈ 181.5 ft.

68. v0 = 70, α = 60◦, s0 = 5 so x = 35t, y = 5 + 35
√

3t− 16t2.

(a) y = 0 when t = (−35
√

3 ±
√

3 · 352 + 320)/(−32) = (35
√

3 ±
√

3995)/32, reject (35
√

3 −
√

3995)/32 to get
t = (35

√
3 +
√

3995)/32 ≈ 3.87 s.

(b) x ≈ 35(3.87) ≈ 135.4 ft.

69. (a) v0(cosα)(2.9) = 259 cos 23◦ so v0 cosα ≈ 82.21061, v0(sinα)(2.9) − 16(2.9)2 = −259 sin 23◦, so v0 sinα ≈
11.50367; divide v0 sinα by v0 cosα to get tanα ≈ 0.139929, thus α ≈ 8◦ and v0 ≈ 82.21061/ cos 8◦ ≈ 83 ft/s.

(b) From part (a), x ≈ 82.21061t and y ≈ 11.50367t − 16t2 for 0 ≤ t ≤ 2.9; the distance traveled is∫ 2.9

0

√
(dx/dt)2 + (dy/dt)2 dt ≈ 268.76 ft.
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70. (a) v0 = v, s0 = h so x = (v cosα)t, y = h + (v sinα)t − 1

2
gt2. If x = R, then (v cosα)t = R, t =

R

v cosα
but

y = 0 for this value of t so h+ (v sinα)[R/(v cosα)]− 1

2
g[R/(v cosα)]2 = 0, h+ (tanα)R− g(sec2 α)R2/(2v2) = 0,

g(sec2 α)R2 − 2v2(tanα)R− 2v2h = 0.

(b) 2g sec2α tanαR2 + 2g sec2αR
dR

dα
− 2v2 sec2αR− 2v2 tanα

dR

dα
= 0; if

dR

dα
= 0 and α = α0 when R = R0, then

2g sec2α0 tanα0R
2
0 − 2v2 sec2α0R0 = 0, g tanα0R0 − v2 = 0, tanα0 = v2/(gR0).

(c) If α = α0 and R = R0, then from part (a) g(sec2α0)R2
0 − 2v2(tanα0)R0 − 2v2h = 0, but from part (b)

tanα0 = v2/(gR0) so sec2α0 = 1 + tan2α0 = 1 + v4/(gR0)2, thus g[1 + v4/(gR0)2]R2
0 − 2v2[v2/(gR0)]R0 − 2v2h =

0, gR2
0 − v4/g − 2v2h = 0, R2

0 = v2(v2 + 2gh)/g2, R0 = (v/g)
√
v2 + 2gh and tanα0 = v2/(v

√
v2 + 2gh) =

v/
√
v2 + 2gh, α0 = tan−1(v/

√
v2 + 2gh).

71. The forces acting on the passenger are gravity and the normal and frictional forces exerted by the parts of
the car that are in contact with the passenger. The total force is given by Newton’s second law of motion:

F = ma = maTT + maNN = m
d2s

dt2
T + mκ

(
ds

dt

)2

N. When the car is turning to the right (resp. left),

mκ

(
ds

dt

)2

N points right (resp. left), and the passenger feels a push in that direction caused by contact with

some part of the car to his left (resp. right). When the car is speeding up, m
d2s

dt2
T points forward and the

passenger feels a forward push from the back of the seat. When the car is slowing down, m
d2s

dt2
T points backward

and the passenger feels a backward push from friction with the seat, or from the normal force of a seat belt or
shoulder strap. On level ground, the net downward force is zero; the force of the seat pushing up on the passenger

exactly balances the force of gravity. But when the car goes over the top of a hill, mκ

(
ds

dt

)2

N points down.

Since the force of gravity is unchanged, the force of the seat pushing up is diminished, and the passenger feels
lighter. (The passenger doesn’t feel the force of gravity directly, since it acts equally on all parts of the body.) If

we double the speed as a function of time, then
ds

dt
and

d2s

dt2
are doubled, so the tangential component of the force,

m
d2s

dt2
, is doubled and the normal component, mκ

(
ds

dt

)2

, is quadrupled.

72. See discussion leading up to Formula (26).

Exercise Set 12.7

1. (a) From (15) and (6), at t = 0,C = v0 × b0 −GMu = v0j× r0v0k−GMu = r0v
2
0i−GM i = (r0v

2
0 −GM)i.

(b) From (22), r0v
2
0 − GM = GMe, so from (7) and (17), v × b = GM(cos θi + sin θj) + GMei, and the result

follows.

(c) From (10) it follows that b is perpendicular to v, and the result follows.

(d) From part (c) and (10), ‖v × b‖ = ‖v‖‖b‖ = vr0v0. From part (b), ‖v × b‖ = GM
√

(e+ cos θ)2 + sin2 θ =

GM
√
e2 + 2e cos θ + 1. By (10) and part (c), ‖v×b‖ = ‖v‖‖b‖ = v(r0v0) thus v =

GM

r0v0

√
e2 + 2e cos θ + 1. From

(22), r0v
2
0/(GM) = 1 + e, GM/(r0v0) = v0/(1 + e) so v =

v0

1 + e

√
e2 + 2e cos θ + 1.

(e) From (20) r =
k

1 + e cos θ
, so the minimum value of r occurs when θ = 0 and the maximum value when θ = π.
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From part (d) v =
v0

1 + e

√
e2 + 2e cos θ + 1 so the minimum value of v occurs when θ = π and the maximum when

θ = 0.

2. At the end of the minor axis, cos θ = −c/a = −e, so v =
v0

1 + e

√
e2 + 2e(−e) + 1 =

v0

1 + e

√
1− e2 = v0

√
1− e
1 + e

.

3. vmax occurs when θ = 0 so vmax = v0; vmin occurs when θ = π, so vmin =
v0

1 + e

√
e2 − 2e+ 1 = vmax

1− e
1 + e

, thus

vmax = vmin
1 + e

1− e .

4. If the orbit is a circle then e = 0 so from Exercise 1(d), v = v0 at all points on the orbit. Use (22) with e = 0 to
get v0 =

√
GM/r0 so v =

√
GM/r0.

5. (a) The results follow from formulae (1) and (7) of Section 10.6.

(b) rmin and rmax are extremes and occur at the same time as the extrema of ‖r‖2, and hence at critical points

of ‖r‖2. Thus
d

dt
‖r‖2 =

d

dt
(r · r) = 2r · r′ = 0, and hence r and v = r′ are orthogonal.

(c) vmin and vmax are extremes and occur at the same time as the extrema of ‖v‖2, and hence at critical points

of ‖v‖2. Thus
d

dt
‖v‖2 =

d

dt
(v · v) = 2v · v′ = 0, and hence v and a = v′ are orthogonal. By (5), a is a scalar

multiple of r and thus v and r are orthogonal.

(d) From equation (2), r× v = b and thus ‖b‖ = ‖r× v‖ = ‖r‖ ‖v‖ sin θ. When either r or v has an extremum,
however, the angle θ = π/2 and thus ‖b‖ = ‖r‖‖v‖. Finally, since b is a constant vector, the maximum of r occurs
at the minimum of v and vice versa, and thus ‖b‖ = rmaxvmin = rminvmax.

6. From Exercise 5, vmax =
rmaxvmin

rmin
=
a(1 + e)vmin

a(1− e) = vmin
1 + e

1− e .

7. r0 = 6440 + 200 = 6640 km so v =
√

3.99× 105/6640 ≈ 7.75 km/s.

8. From Example 1, the orbit is 22,250 mi above the Earth, thus v ≈
√

1.24× 1012

26,250
≈ 6873 mi/h.

9. From (23) with r0 = 6440 + 300 = 6740 km, vesc =

√
2(3.99)× 105

6740
≈ 10.88 km/s.

10. From (29), T =
2π√
GM

a3/2. But T = 1 yr = 365 · 24 · 3600 s, thus M =
4π2a3

GT 2
≈ 1.99× 1030 kg.

11. (a) At perigee, r = rmin = a(1 − e) = 238,900 (1 − 0.055) ≈ 225,760 mi; at apogee, r = rmax = a(1 + e) =
238,900(1 + 0.055) ≈ 252,040 mi. Subtract the sum of the radius of the Moon and the radius of the Earth to get

minimum distance = 225,760− 5080 = 220,680 mi, and maximum distance = 252,040− 5080 = 246,960 mi.

(b) T = 2π
√
a3/(GM) = 2π

√
(238,900)3/(1.24× 1012) ≈ 659 hr ≈ 27.5 days.

12. (a) rmin = 6440 + 649 = 7,089 km, rmax = 6440 + 4,340 = 10,780 km so a = (rmin + rmax)/2 = 8934.5 km.

(b) e = (10,780 − 7,089)/(10,780 + 7,089) ≈ 0.207.

(c) T = 2π
√
a3/(GM) = 2π

√
(8934.5)3/(3.99× 105) ≈ 8400 s ≈ 140 min.
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13. (a) r0 = 4000 + 180 = 4180 mi, v =

√
GM

r0
=
√

1.24× 1012/4180 ≈ 17,224 mi/h.

(b) r0 = 4180 mi, v0 =

√
GM

r0
+ 600; e =

r0v
2
0

GM
− 1 = 1200

√
r0

GM
+ (600)2 r0

GM
≈ 0.071; rmax = 4180(1 +

0.071)/(1− 0.071) ≈ 4819 mi; the apogee altitude is about 4819− 4000 = 819 mi.

14. By equation (20), r =
k

1 + e cos θ
, where k > 0. By assumption, r is minimal when θ = 0, hence e ≥ 0.

Chapter 12 Review Exercises

2. The line in 2-space through the point (2, 0) and parallel to the vector −3i− 4j.

3. The circle of radius 3 in the xy-plane, with center at the origin.

4. An ellipse in the plane z = −1, center at (0, 0,−1), major axis of length 6 parallel to x-axis, minor axis of length
4 parallel to y-axis.

5. A parabola in the plane x = −2, vertex at (−2, 0,−1), opening upward.

6. (a) The line through the tips of r0 and r1.

(b) The line segment connecting the tips of r0 and r1.

(c) The line through the tip of r0 which is parallel to r′(t0).

7. Let r = xi + yj + zk, then x2 + z2 = t2(sin2 πt+ cos2 πt) = t2 = y2.

-2
-1

0
1

2

-2

-1

0

1

2
-2

-1

0

1

2

8. Let x = t, then y = t2, z = ±
√

4− t2/3− t4/6.

x

y

z

10. lim
t→0

(
e−ti +

1− cos t

t
j + t2k

)
= i.

11. r′(t) = (1− 2 sin 2t)i− (2t+ 1)j + cos tk, r′(0) = i− j + k and r(0) = i, so the line is given by x = 1 + t, y = −t,
z = t.
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12. (a) r′(t) = 3r′1(t) + 2r′2(t), r′(0) = 〈3, 0, 3〉+ 〈8, 0, 4〉 = 〈11, 0, 7〉.

(b) r′(t) =
1

t+ 1
r1(t) + (ln(t+ 1))r′1(t), r′(0) = r1(0) = 〈−1, 1, 2〉.

(c) r′ = r1 × r′2 + r′1 × r2, r
′(0) = 〈−1, 1, 2〉 × 〈4, 0, 2〉+ 〈1, 2, 1〉 × 〈1, 0, 1〉 = 〈0, 10,−2〉.

(d) f ′(t) = r1(t) · r′2(t) + r′1(t) · r2(t), f ′(0) = 0 + 2 = 2.

13. (sin t)i− (cos t)j + C.

14.

〈
1

3
sin 3t,

1

3
cos 3t

〉]π/3

0

= 〈0,−2/3〉.

15. y(t) =

∫
y′(t) dt =

1

3
t3i + t2j + C,y(0) = C = i + j,y(t) = (

1

3
t3 + 1)i + (t2 + 1)j.

16. Let r(t) = x(t)i + y(t)j, then
dx

dt
= x(t),

dy

dt
= y(t), x(0) = x0, y(0) = y0, so x(t) = x0e

t, y(t) = y0e
t, r(t) = etr0.

If r(t) is a vector in 3-space then an analogous solution holds.

17.

(
ds

dt

)2

=
(√

2e
√

2t
)2

+
(
−
√

2e−
√

2t
)2

+ 4 = 8 cosh2(
√

2t), L =

∫ √2 ln 2

0

2
√

2 cosh(
√

2t) dt = 2 sinh(
√

2t)

]√2 ln 2

0

=

2 sinh(2 ln 2) =
15

4
.

18. r′1(t) = (− ln 2)et ln 2r′(2− et ln 2), r′1(1) = −(2 ln 2)r′(0) = −(2 ln 2)(3i− j + k).

19. r = r0 + t
−→
PQ= (t− 1)i + (4− 2t)j + (3 + 2t)k;

∥∥∥∥
dr

dt

∥∥∥∥ = 3, r(s) =
s− 3

3
i +

12− 2s

3
j +

9 + 2s

3
k.

20. r′(t) = 〈et(cos t− sin t),−et(sin t+ cos t)〉, s(t) =
√

2

∫ t

0

eτ dτ =
√

2(et − 1); et = (s+
√

2)/
√

2, t = ln

(
s+
√

2√
2

)
,

r(s) =

〈
s+
√

2√
2

cos ln

(
s+
√

2√
2

)
,−s+

√
2√

2
sin ln

(
s+
√

2√
2

)〉
.

22.
dr

dt
=

〈
−2 sin t,−2 sin t+

3√
5

cos t,− sin t− 6√
5

cos t

〉
,

∥∥∥∥
dr

dt

∥∥∥∥
2

= 9,

r(s) =

〈
2 cos

s

3
, 2 cos

s

3
+

3√
5

sin
s

3
, cos

s

3
− 6√

5
sin

s

3

〉
, T(0) = r′(0) =

〈
0,

1√
5
,− 2√

5

〉
;

r′′(s) =

〈
−2

9
cos

s

3
,−2

9
cos

s

3
− 1

3
√

5
sin

s

3
,−1

9
cos

s

3
+

2

3
√

5
sin

s

3

〉
, r′′(0) =

〈
−2

9
,−2

9
,−1

9

〉
, ‖r′′(0)‖ =

1

3
;

N(0) =

〈
−2

3
,−2

3
,−1

3

〉
; B(0) =

〈
−
√

5

3
,

4
√

5

15
,

2
√

5

15

〉
.

24. From Theorem 12.5.2b, κ(0) = ‖r′(0)× r′′(0)‖/‖r′(0)‖3 = ‖2k‖/‖i‖3 = 2.

25. r′(t) = −2 sin ti + 3 cos tj − k, r′(π/2) = −2i − k, r′′(t) = −2 cos ti − 3 sin tj, r′′(π/2) = −3j, r′(π/2) × r′′(π/2) =
−3i + 6k and hence, by Theorem 12.5.2b, κ(π/2) =

√
45/53/2 = 3/5.

26. r′(t) =
〈
2, 2e2t,−2e−2t

〉
, r′(0) = 〈2, 2,−2〉, r′′(t) =

〈
0, 4e2t, 4e−2t

〉
, r′′(0) = 〈0, 4, 4〉, and, by Theorem 12.5.2b,

κ(0) = ‖〈16,−8, 8〉‖/(12)3/2 =
8
√

6

12
√

12
=

1

3

√
2.
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27. By Exercise 23(b) of Section 12.5, κ = |d2y/dx2|/[1 + (dy/dx)2]3/2, but d2y/dx2 = − cosx = 0 at x = π/2, so
κ = 0.

28. dy/dx = 1/x, d2y/dx2 = −1/x2, and, by Exercise 23(b) of Section 12.5, κ(1) =
√

2/4.

29. (a) Speed. (b) Distance traveled. (c) Distance of the particle from the origin.

30. (a) The tangent vector to the curve is always tangent to the sphere.

(b) ‖v‖ = const, so v · a = 0; the acceleration vector is always perpendicular to the velocity vector.

(c) ‖r(t)‖2 =

(
1− 1

4
cos2 t

)
(cos2 t+ sin2 t) +

1

4
cos2 t = 1.

31. (a) ‖r(t)‖ = 1, so, by Theorem 12.2.8, r′(t) is always perpendicular to the vector r(t). Then v(t) = Rω(− sinωti+
cosωtj), v = ‖v(t)‖ = Rω.

(b) a = −Rω2(cosωti + sinωtj), a = ‖a‖ = Rω2, and a = −ω2r is directed toward the origin.

(c) The smallest positive value of t for which r(t) = r(0) satisfies ωt = 2π, so T = t =
2π

ω
.

32. (a) F = ‖F‖ = m‖a‖ = mRω2 = mR
v2

R2
=
mv2

R
.

(b) R = 6440 + 3200 = 9640 km, 6.43 = v = Rω = 9640ω, ω =
6.43

9640
≈ 0.000667, a = Rω2 = vω =

6.432

9640
≈

0.00429 km/s2, a = −a(cosωti + sinωtj) ≈ −0.00429[cos(0.000667t)i + sin(0.000667t)j] km/s2.

(c) F = ma ≈ 60(0.00429) kg · km/s2 = 0.2574 kN = 257.4 N.

33. (a)
dv

dt
= 2t2i + j+cos 2tk,v0 = i+2j− k, so x′(t) =

2

3
t3+1, y′(t) = t+2, z′(t) =

1

2
sin 2t−1, x(t) =

1

6
t4+t, y(t) =

1

2
t2 +2t, z(t) = −1

4
cos 2t− t+ 1

4
, since r(0) = 0. Hence r(t) =

(
1

6
t4 + t

)
i+

(
1

2
t2 + 2t

)
j−
(

1

4
cos 2t+ t− 1

4

)
k.

(b)
ds

dt

]
t=1

= ‖r′(t)‖
]
t=1

=
√

(5/3)2 + 9 + (1− (sin 2)/2)2 ≈ 3.475.

34. ‖v‖2 = v(t) · v(t), 2‖v‖ d
dt
‖v‖ = 2v · a, d

dt
(‖v‖) =

1

‖v‖ (v · a).

35. From Table 12.7.1, GM ≈ 3.99×105 km3/s2, and r0 = 6440+600 = 7040 km, so vesc =

√
2GM

r0
≈
√

2 · 3.99× 105

7040
≈

10.65 km/s.

36. The height y(t) of the rocket satisfies tan θ = y/b, y = b tan θ, v =
dy

dt
=
dy

dθ

dθ

dt
= b sec2 θ

dθ

dt
.

37. By equation (26) of Section 12.6, r(t) = (60 cosα)ti+((60 sinα)t−16t2 +4)j, and the maximum height of the base-

ball occurs when y′(t) = 0, 60 sinα = 32t, t =
15

8
sinα, so the ball clears the ceiling if ymax = (60 sinα)

15

8
sinα−

16
152

82
sin2 α + 4 ≤ 25,

152 sin2 α

4
≤ 21, sin2 α ≤ 28

75
. The ball hits the wall when x = 60, t = secα, and

y(secα) = 60 sinα secα−16 sec2 α+4. Maximize the height h(α) = y(secα) = 60 tanα−16 sec2 α+4, subject to the

constraint sin2 α ≤ 28

75
. Then h′(α) = 60 sec2 α−32 sec2 α tanα = 0, tanα =

60

32
=

15

8
, so sinα =

15√
82 + 152

=
15

17
,
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but for this value of α the constraint is not satisfied (the ball hits the ceiling). Hence the maximum value of h

occurs at one of the endpoints of the α-interval on which the ball clears the ceiling, i.e.
[
0, sin−1

√
28/75

]
. Since

h′(0) = 60, it follows that h is increasing throughout the interval, since h′ > 0 inside the interval. Thus hmax

occurs when sin2 α =
28

75
, hmax = 60 tanα−16 sec2 α+4 = 60

√
28√
47
−16

75

47
+4 =

120
√

329− 1012

47
≈ 24.78 ft. Note:

the possibility that the baseball keeps climbing until it hits the wall can be rejected as follows: if so, then y′(t) = 0

after the ball hits the wall, i.e. t =
15

8
sinα occurs after t = secα, hence

15

8
sinα ≥ secα, 15 sinα cosα ≥ 8,

15 sin 2α ≥ 16, impossible.

Chapter 12 Making Connections

1. (a) The given formulas imply that N(t) = B(t)×T(t) =
r′(t)× r′′(t)
‖r′(t)× r′′(t)‖ ×

r′(t)
‖r′(t)‖ .

(b) Since r′ is perpendicular to r′×r′′, Theorem 11.4.5a implies that ‖(r′(t)×r′′(t))×r′(t)‖ = ‖r′(t)×r′′(t)‖‖r′(t)‖,
and the result follows.

(c) (i) r′(t) = 2ti + j, r′(1) = 2i + j, r′′(t) = 2i,u = 2i− 4j,N =
1√
5
i− 2√

5
j.

(ii) r′(t) = −4 sin t i+4 cos t j+k, r′(
π

2
) = −4i+k, r′′(t) = −4 cos t i−4 sin t j, r′′(

π

2
) = −4j,u = 17(−4j),N = −j.

2. (a) From Exercise 45 of Section 11.4, (r′(t) × r′′(t)) × r′(t) = ‖r′(t)‖2r′′(t) − (r′(t) · r′′(t))r′(t) = u(t), so
N(t) = u(t)/‖u(t)‖.

(b) (i) r′(t) = cos t i− sin t j+k, r′′(t) = − sin t i− cos t j,u = −2(sin t i+ cos t j), ‖u‖ = 2,N(t) = − sin t i− cos t j.

(ii) r′(t) = i + 2tj + 3t2k, r′′(t) = 2j + 6tk,u(t) = −(4t+ 18t3)i + (2− 18t4)j + (6t+ 12t3)k,

N(t) =
1

2
√

81t8 + 117t6 + 54t4 + 13t2 + 1

(
−(4t+ 18t3)i + (2− 18t4)j + (6t+ 12t3)k

)
.

3. (a) r(t) =

∫ t

0

cos

(
πu2

2

)
du i+

∫ t

0

sin

(
πu2

2

)
du j;

∥∥∥∥
dr

dt

∥∥∥∥
2

= x′(t)2 + y′(t)2 = cos2

(
πt2

2

)
+ sin2

(
πt2

2

)
= 1 and

r(0) = 0.

(b) r′(s) = cos

(
πs2

2

)
i + sin

(
πs2

2

)
j, r′′(s) = −πs sin

(
πs2

2

)
i + πs cos

(
πs2

2

)
j, κ(s) = ‖r′′(s)‖ = π|s|.

(c) κ(s)→ +∞, so the spiral winds ever tighter.

4. Suppose that the roller coaster starts with the part of the Cornu spiral of Exercise 3 with 0 ≤ t ≤ t0, expanded by
a factor of a. Let P be the point with t = t0, where the spiral is joined to a circular arc of radius r and angle 2θ.
(Here θ is π/2, π/4, and 0 for the 3 cases.) The figure shows the uphill half of the coaster. We will find the values
of t0, a, and r in terms of θ, given that the slopes and curvatures of the spiral and arc match at P , and that the
width of the roller coaster is 45 feet.

Since we’ve expanded the spiral by a factor of a, the parametric equations are x(t) = a

∫ t

0

cos

(
πu2

2

)
du, y(t) =

a

∫ t

0

sin

(
πu2

2

)
du.

The arc length is also expanded by a factor of a, so s = at. So is the radius of curvature along the spiral, so the
curvature is 1/a times that found in Exercise 3(b): κ(t) = πt/a for t ≥ 0.
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Let φ(t) be the angle of inclination at a point on the spiral. By equation (8) of Section 12.5, κ(t) =
dφ

ds
=
dφ

dt

dt

ds
=

1

a

dφ

dt
. Since φ(0) = 0, φ(t0) =

∫ t0

0

dφ

dt
dt =

∫ t0

0

aκ(t) dt =

∫ t0

0

πt dt =
π

2
t20. From the figure, φ(t0) = π − θ, so

π

2
t20 = π − θ and t0 =

√
2− 2θ/π.

Since the curvatures of the spiral and the arc at P must be equal, we have 1/r = κ(t0) = πt0/a, so a = πt0r.

Next we find the width of the roller coaster. The horizontal distance from the center of the circular arc to P
is r sin θ. The rightmost point on the spiral has φ(t) = π/2, so t = 1, and its horizontal distance from P is

x(1)−x(t0) = −a
∫ t0

1

cos

(
πu2

2

)
du. Hence the width of the roller coaster is 2

(
r sin θ − a

∫ t0

1

cos

(
πu2

2

)
du

)
=

2r

(
sin θ − πt0

∫ t0

1

cos

(
πu2

2

)
du

)
. This must be 45 feet, so r =

45

2

(
sin θ − πt0

∫ t0

1

cos

(
πu2

2

)
du

) .

We now have equations for t0, a, and r in terms of θ, and we can compute the height: The vertical distance
between P and the center C of the circular arc is r cos θ, so the height of C is y(t0) − r cos θ. The height of the

top of the loop is y(t0)− r cos θ + r = r(1− cos θ) + a

∫ t0

0

sin

(
πu2

2

)
du.

To summarize, given θ, we compute: t0 =
√

2− 2θ/π, r =
45

2

(
sin θ − πt0

∫ t0

1

cos

(
πu2

2

)
du

) , a = πt0r, height

= r(1− cos θ) + a

∫ t0

0

sin

(
πu2

2

)
du.

For the 3 cases, we find, using numerical integration:

semicircle: θ = π/2 t0 = 1 r = 45/2 a = 45π/2 height ≈ 53.47871

quarter-circle: θ = π/4 t0 =
√

3/2 r ≈ 22.07718 a ≈ 84.94525 height ≈ 60.97553

single point: θ = 0 t0 =
√

2 r ≈ 20.17627 a ≈ 89.64079 height ≈ 64.00103

!

!
" (t

0
)

P=r(t
0
)

r(1)

r(0)

C

r

5. r =
(
a cos

s

w

)
i+
(
a sin

s

w

)
j+

cs

w
k, r′ = −

( a
w

sin
s

w

)
i+
( a
w

cos
s

w

)
j+

c

w
k, r′′ = −

( a

w2
cos

s

w

)
i−
( a

w2
sin

s

w

)
j,

r′′′ =
( a

w3
sin

s

w

)
i−
( a

w3
cos

s

w

)
j, r′× r′′ =

( ac
w3

sin
s

w

)
i−
( ac
w3

cos
s

w

)
j+

a2

w3
k, (r′× r′′) · r′′′ =

a2c

w6
, ‖r′′(s)‖ =

a

w2
, so τ =

c

w2
and B =

( c
w

sin
s

w

)
i−
( c
w

cos
s

w

)
j +

a

w
k.

6. (a) ‖er(t)‖2 = cos2 θ + sin2 θ = 1, so er(t) is a unit vector; r(t) = r(t)e(t), so they have the same direction if
r(t) > 0, opposite if r(t) < 0. eθ(t) is perpendicular to er(t) since er(t) · eθ(t) = 0, and it will result from a
counterclockwise rotation of er(t) provided e(t)× eθ(t) = k, which is true.

(b)
d

dt
er(t) =

dθ

dt
(− sin θi+ cos θj) =

dθ

dt
eθ(t) and

d

dt
eθ(t) = −dθ

dt
(cos θi+ sin θj) = −dθ

dt
er(t), so v(t) =

d

dt
r(t) =

d

dt
(r(t)er(t)) = r′(t)er(t) + r(t)

dθ

dt
eθ(t).



626 Chapter 12

(c) From part (b), a =
d

dt
v(t) = r′′(t)er(t) + r′(t)

dθ

dt
eθ(t) + r′(t)

dθ

dt
eθ(t) + r(t)

d2θ

dt2
eθ(t) − r(t)

(
dθ

dt

)2

er(t) =
[
d2r

dt2
− r

(
dθ

dt

)2
]
er(t) +

[
r
d2θ

dt2
+ 2

dr

dt

dθ

dt

]
eθ(t).



Partial Derivatives

Exercise Set 13.1

1. (a) f(2, 1) = (2)2(1) + 1 = 5. (b) f(1, 2) = (1)2(2) + 1 = 3. (c) f(0, 0) = (0)2(0) + 1 = 1.

(d) f(1,−3) = (1)2(−3) + 1 = −2. (e) f(3a, a) = (3a)2(a) + 1 = 9a3 + 1.

(f) f(ab, a− b) = (ab)2(a− b) + 1 = a3b2 − a2b3 + 1.

2. (a) 2t (b) 2x (c) 2y2 + 2y

3. (a) f(x+ y, x− y) = (x+ y)(x− y) + 3 = x2 − y2 + 3. (b) f
(
xy, 3x2y3

)
= (xy)

(
3x2y3

)
+ 3 = 3x3y4 + 3.

4. (a) (x/y) sin(x/y) (b) xy sin(xy) (c) (x− y) sin(x− y)

5. F (g(x), h(y)) = F
(
x3, 3y + 1

)
= x3ex

3(3y+1).

6. g(u(x, y), v(x, y)) = g
(
x2y3, πxy

)
= πxy sin

[(
x2y3

)2
(πxy)

]
= πxy sin

(
πx5y7

)
.

7. (a) t2 + 3t10 (b) 0 (c) 3076

8.
√
te−3 ln(t2+1) =

√
t

(t2 + 1)
3 .

9. (a) 2.50 mg/L. (b) C(100, t) = 20(e−0.2t − e−t). (c) C(x, 1) = 0.2x(e−0.2 − e−1).

10. (a) e−0.2t − e−t = e−0.1 − e−0.5 at t ≈ 6.007, the medication remains effective for 5 and a half hours longer.

(b) The maximum concentration is about 10.6998 mg/L, at time t ≈ 2.0118 hours.

11. (a) v = 7 lies between v = 5 and v = 15, and 7 = 5+2 = 5+
2

10
(15−5), so WCI ≈ 19+

2

10
(13−19) = 19−1.2 =

17.8◦F.

(b) T = 28 lies between T = 25 and T = 30, and 28 = 25 +
3

5
(30− 25), so WCI ≈ 19 +

3

5
(25− 19) = 19 + 3.6 =

22.6◦F.

12. (a) At T = 35, 14 = 5 + 9 = 5 +
9

10
(15− 5), so WCI ≈ 31 +

9

10
(25− 31) = 25.6◦F.

(b) At v = 15, 32 = 30 +
2

5
(35− 30), so WCI ≈ 19 +

2

5
(25− 19) = 21.4◦F.

13. (a) At v = 25, WCI = 16, so T = 30◦F.

627
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(b) At v = 25, WCI = 6 = 3 +
1

2
(9− 3), so T ≈ 20 +

1

2
(25− 20) = 22.5◦F.

14. (a) At T = 25, WCI = 7, so v = 35 mi/h.

(b) At T = 30, WCI = 15 = 16 +
1

2
(14− 16), so v ≈ 25 +

1

2
(35− 25) = 30 mi/h.

15. (a) The depression is 20− 16 = 4, so the relative humidity is 66%.

(b) The relative humidity ≈ 77− (1/2)7 = 73.5%.

(c) The relative humidity ≈ 59 + (2/5)4 = 60.6%.

16. (a) 4◦ C.

(b) The relative humidity ≈ 62− (1/4)9 = 59.75%.

(c) The relative humidity ≈ 77 + (1/5)(79− 77) = 77.4%.

17. (a) 19 (b) −9 (c) 3 (d) a6 + 3 (e) −t8 + 3 (f) (a+ b)(a− b)2b3 + 3

18. (a) x2(x+ y)(x− y) + (x+ y) = x2
(
x2 − y2

)
+ (x+ y) = x4 − x2y2 + x+ y.

(b) (xz)(xy)(y/x) + xy = xy2z + xy.

19. F
(
x2, y + 1, z2

)
= (y + 1)ex

2(y+1)z2 .

20. g
(
x2z3, πxyz, xy/z

)
= (xy/z) sin

(
πx3yz4

)
.

21. (a) f(
√

5, 2, π,−3π) = 80
√
π. (b) f(1, 1, . . . , 1) =

n∑

k=1

k = n(n+ 1)/2.

22. (a) f(−2, 2, 0, π/4) = 1. (b) f(1, 2, . . . , n) = n(n+ 1)(2n+ 1)/6, see Theorem 5.4.2(b), Section 5.4.

23.

1
x

y

24.

2

x

y

25.

x

y

26.

x

y
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27. (a) All points in 2-space above or on the line y = −2.

(b) All points in 3-space on or within the sphere x2 + y2 + z2 = 25.

(c) All points in 3-space.

28. (a) All points in 2-space on or between the vertical lines x = ±2.

(b) All points in 2-space above the line y = 2x.

(c) All points in 3-space not on the plane x+ y + z = 0.

29. True; it is the intersection of the domain [−1, 1] of sin−1 t and the domain [0,+∞) of
√
t.

30. False, the origin is not in the domain of the function.

31. False; z has no constraints so the domain is an infinite solid circular cylinder.

32. True; f(x, y, z) = D yields the plane with normal vector i + 2j + 3k and which passes through (D, 0, 0).

33.

3

x

y

z

34.

(0, 3, 0)

z

y

x 35.

z

yx

36.

z

yx 37.

z

y

x

38. (2, 0, 0)

(0, 2, 0)

(0, 0, 4)

z

yx

39.

z

y

x

(0, 0, 1)

40.

(0, 1, 0)
(1, 0, 0)

z

y
x 41.

z

y

x

(0, 0, 1)

(0, –1, 0)
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42.

z

y

x

43. (a) Hyperbolas. (b) Parabolas. (c) Noncircular ellipses. (d) Lines.

44. (a) Lines. (b) Circles. (c) Hyperbolas. (d) Parabolas.

45. (a) ≈ $130. (b) ≈ $275 more.

46. (a) ≈ $55. (b) ≈ $250 less.

47. (a) f(x, y) = 1−x2− y2, because f = c is a circle of radius
√

1− c (provided c ≤ 1), and the radii in (a) decrease
as c increases.

(b) f(x, y) =
√
x2 + y2 because f = c is a circle of radius c, and the radii increase uniformly.

(c) f(x, y) = x2 + y2 because f = c is a circle of radius
√
c and the radii in the plot grow like the square root

function.

48. (a) III, because the surface has 9 peaks along the edges, three peaks to each edge.

(b) I, because in the first quadrant of the xy-plane, z ≥ 0 for x ≥ y, and z ≤ 0 for x ≤ y.

(c) IV, because in the first quadrant of the xy-plane, z ≤ 0 for x ≥ y, and z ≥ 0 for x ≤ y.

(d) II, because the surface has four peaks.

49. (a) A (b) B (c) Increase. (d) Decrease. (e) Increase. (f) Decrease.

50. (a) Medicine Hat, since the contour lines are closer together near Medicine Hat than they are near Chicago.

(b) The change in atmospheric pressure is about ∆p ≈ 999 − 1010 = −11, so the average rate of change is
∆p/1400 ≈ −0.0079.

51.

1 2 3 4k = 0

x

y

52.

k = -1

k = -2 k = 2

k = 1

k = 0 x

y

53.

x

y

k = 2
k = 1
k = 0
k = –1
k = –2
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54.

1 2 3 4k = 0

x

y

55.

x

y

k = 2

k = 2

k = 1

k = 1

k = 0

k = 0

k = –1

k = –1

k = –2

k = –2

-2

-2

2

2

56.

2

c o

k = -2

k = 2

k = -1
k = 0

k = 1

x

y

57.

(0, 4, 0)

(0, 0, 2)

(2, 0, 0)

z

y
x

58.

z

yx

59.

(0, 0, 3)

z

x y

60.

(0, 0, 1)

( , 0, 0)1
4

(0, −    , 0)1
2

z

x

y

61. Concentric spheres, common center at (2,0,0).

62. Parallel planes, common normal 3i− j + 2k.

63. Concentric cylinders, common axis the y-axis.

64. Circular paraboloids, common axis the z-axis, all the same shape but with different vertices along z-axis.

65. (a) f(−1, 1) = 0; x2 − 2x3 + 3xy = 0. (b) f(0, 0) = 0; x2 − 2x3 + 3xy = 0.

(c) f(2,−1) = −18; x2 − 2x3 + 3xy = −18.

66. (a) f(ln 2, 1) = 2; yex = 2. (b) f(0, 3) = 3; yex = 3. (c) f(1,−2) = −2e; yex = −2e.

67. (a) f(1,−2, 0) = 5; x2 + y2− z = 5. (b) f(1, 0, 3) = −2; x2 + y2− z = −2. (c) f(0, 0, 0) = 0; x2 + y2− z = 0.

68. (a) f(1, 0, 2) = 3; xyz + 3 = 3, xyz = 0. (b) f(−2, 4, 1) = −5; xyz + 3 = −5, xyz = −8.

(c) f(0, 0, 0) = 3; xyz = 0.
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69. (a)
4

4

x

y

T = 1

T = 2

T = 3

(b) At (1, 4) the temperature is T (1, 4) = 4 so the temperature will remain constant along the path xy = 4.

70. V =
8√

16 + x2 + y2
, x2 + y2 =

64

V 2
− 16, the equipotential curves are circles.

10 20

20 V = 2.0
V = 1.0
V = 0.5

x

y

71. (a)

5-5

-3

2

(b)

4-4

-3

1

72. (a)

10

-10

-10 10

(b)

40

-40

-5 5

73. (a)

z

x y
(b) -2 -1 0 1 2

-2

-1

0

1

2
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74. (a)

01234  x

0 y 

–5

0

5

z

6
c i

o

(b) 0 1 2 3 4
0

3
6

9
c

f
i
l
o

75. (a) The graph of g is the graph of f shifted one unit in the positive x-direction.

(b) The graph of g is the graph of f shifted one unit up the z-axis.

(c) The graph of g is the graph of f shifted one unit down the y-axis and then inverted with respect to the plane
z = 0.

76. (a)

z

y
x

(b) If a is positive and increasing then the graph of g is more pointed, and in the limit as a → +∞ the graph
approaches a ’spike’ on the z-axis of height 1. As a decreases to zero the graph of g gets flatter until it finally
approaches the plane z = 1.

Exercise Set 13.2

1. lim
(x,y)→(1,3)

(4xy2 − x) = 4 · 1 · 32 − 1 = 35.

2. lim
(x,y)→(0,0)

4x− y
sin y − 1

=
4 · 0− 0

sin 0− 1
= 0.

3. lim
(x,y)→(−1,2)

xy3

x+ y
=
−1 · 23

−1 + 2
= −8.

4. lim
(x,y)→(1,−3)

e2x−y2 = e2·1−(−3)2 = e−7.

5. lim
(x,y)→(0,0)

ln(1 + x2y3) = ln(1 + 02 · 03) = 0.

6. lim
(x,y)→(4,−2)

x 3
√
y3 + 2x = (−2) · 3

√
(−2)3 + 2 · 4 = 0.

7. (a) Along x = 0 : lim
(x,y)→(0,0)

3

x2 + 2y2
= lim
y→0

3

2y2
does not exist.

(b) Along x = 0 : lim
(x,y)→(0,0)

x+ y

2x2 + y2
= lim
y→0

1

y
does not exist.
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8. (a) Along y = 0 : lim
x→0

x

x2
= lim
x→0

1

x
does not exist, so the original limit does not exist.

(b) Along y = 0 : lim
x→0

1

x2
does not exist, so the original limit does not exist.

9. Let z = x2 + y2, then lim
(x,y)→(0,0)

sin
(
x2 + y2

)

x2 + y2
= lim
z→0+

sin z

z
= 1.

10. Let z = x2 + y2, then lim
(x,y)→(0,0)

1− cos
(
x2 + y2

)

x2 + y2
= lim
z→0+

1− cos z

z
= lim
z→0+

sin z

1
= 0.

11. Let z = x2 + y2, then lim
(x,y)→(0,0)

e−1/(x2+y2) = lim
z→0+

e−1/z = 0.

12. With z = x2 + y2, lim
z→0

1√
z
e−1/

√
z; let w =

1√
z
, lim
w→+∞

w

ew
= 0.

13. lim
(x,y)→(0,0)

(
x2 + y2

) (
x2 − y2

)

x2 + y2
= lim

(x,y)→(0,0)

(
x2 − y2

)
= 0.

14. lim
(x,y)→(0,0)

(
x2 + 4y2

) (
x2 − 4y2

)

x2 + 4y2
= lim

(x,y)→(0,0)

(
x2 − 4y2

)
= 0.

15. Along y = 0 : lim
x→0

0

3x2
= lim
x→0

0 = 0; along y = x : lim
x→0

x2

5x2
= lim
x→0

1/5 = 1/5, so the limit does not exist.

16. Let z = x2 + y2, then lim
(x,y)→(0,0)

1− x2 − y2

x2 + y2
= lim
z→0+

1− z
z

= +∞ so the limit does not exist.

17. lim
(x,y,z)→(2,−1,2)

xz2

√
x2 + y2 + z2

=
2 · 22

√
22 + (−1)2 + 22

=
8

3
.

18. lim
(x,y,z)→(2,0,−1)

ln(2x+ y − z) = ln(2 · 2 + 0− (−1)) = ln 5.

19. Let t =
√
x2 + y2 + z2, then lim

(x,y,z)→(0,0,0)

sin
(
x2 + y2 + z2

)
√
x2 + y2 + z2

= lim
t→0+

sin
(
t2
)

t
= 0.

20. With t =
√
x2 + y2 + z2, lim

t→0+

sin t

t2
= lim
t→0+

cos t

2t
= +∞ so the limit does not exist.

21.
e
√
x2+y2+z2

√
x2 + y2 + z2

=
eρ

ρ
, so lim

(x,y,z)→(0,0,0)

e
√
x2+y2+z2

√
x2 + y2 + z2

= lim
ρ→0+

eρ

ρ
does not exist.

22. lim
(x,y,z)→(0,0,0)

tan−1

[
1

x2 + y2 + z2

]
= lim
ρ→0+

tan−1 1

ρ2
=
π

2
.

23. lim
r→0

r ln r2 = lim
r→0

(2 ln r)/(1/r) = lim
r→0

(2/r)/(−1/r2) = lim
r→0

(−2r) = 0.

24. y ln(x2 + y2) = r sin θ ln r2 = 2r(ln r) sin θ, so lim
(x,y)→(0,0)

y ln(x2 + y2) = lim
r→0+

2r(ln r) sin θ = 0.

25.
x2y2

√
x2 + y2

=
(r2 cos2 θ)(r2 sin2 θ)

r
= r3 cos2 θ sin2 θ, so lim

(x,y)→(0,0)

x2y2

√
x2 + y2

= 0.
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26.

∣∣∣∣∣
r2 cos θ sin θ√
r2 + 2r2 sin2 θ

∣∣∣∣∣ ≤
r2

√
r2

= r so lim
(x,y)→(0,0)

∣∣∣∣
xy

x2 + 2y2

∣∣∣∣ = 0.

27.

∣∣∣∣
ρ3 sin2 φ cosφ sin θ cos θ

ρ2

∣∣∣∣ ≤ ρ, so lim
(x,y,z)→(0,0,0)

xyz

x2 + y2 + z2
= 0.

28.

∣∣∣∣∣
sinx sin y√

x2 + 2y2 + 3z2

∣∣∣∣∣ ≤
∣∣∣∣∣

xy√
x2 + y2 + z2

∣∣∣∣∣ =

∣∣∣∣
ρ2 sin2 φ cos θ sin θ

ρ

∣∣∣∣ ≤ ρ, so lim
(x,y,z)→(0,0,0)

sinx sin y√
x2 + 2y2 + 3z2

= 0.

29. True: contains no boundary points, therefore each point of D is an interior point.

30. False: f(x, y) = xy/(x2 + y2) has limit zero along x = 0 as well as along y = 0, but not, if m 6= 0, along the line
y = mx.

31. False: let f(x, y) = −1 for x < 0 and f(x, y) = 1 for x ≥ 0 and let g(x.y) = −f(x, y).

32. True; there is a δ > 0 such that |f(x)| > |L|/2 if 0 < x < δ, so
x2 + y2

|f(x2 + y2)| ≤
x2 + y2

|L|/2 < ε if x2 + y2 < δ and

x2 + y2 < |L|ε/2.

33. (a) No, since there seem to be points near (0, 0) with z = 0 and other points near (0, 0) with z ≈ 1/2.

(b) lim
x→0

mx3

x4 +m2x2
= lim
x→0

mx

x2 +m2
= 0.

(c) lim
x→0

x4

2x4
= lim
x→0

1/2 = 1/2.

(d) A limit must be unique if it exists, so f(x, y) cannot have a limit as (x, y)→ (0, 0).

34. (a) Along y = mx: lim
x→0

mx4

2x6 +m2x2
= lim
x→0

mx2

2x4 +m2
= 0; along y = kx2: lim

x→0

kx5

2x6 + k2x4
= lim
x→0

kx

2x2 + k2
= 0.

(b) lim
x→0

x6

2x6 + x6
= lim
x→0

1

3
=

1

3
6= 0.

35. (a) We may assume that a2 + b2 + c2 > 0, since we are dealing with a line (not just the point (0, 0, 0)). Assume

first that a 6= 0. Then lim
t→0

abct3

a2t2 + b4t4 + c4t4
= lim

t→0

abct

a2 + b4t2 + c4t2
= 0. If, on the other hand, a = 0, the result

is trivial, as the quotient is then zero.

(b) lim
t→0

t4

t4 + t4 + t4
= lim
t→0

1/3 = 1/3.

36. π/2 because
x2 + 1

x2 + (y − 1)2
→ +∞ as (x, y)→ (0, 1).

37. −π/2 because
x2 − 1

x2 + (y − 1)2
→ −∞ as (x, y)→ (0, 1).

38. With z = x2 + y2, lim
z→0+

sin z

z
= 1 = f(0, 0).

39. The required limit does not exist, so the singularity is not removable.
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40. lim
(x,y)→(0,0)

f(x, y) = 0 so the limit exists, and f(0, 0) = −4 6= 0, thus the singularity is removable.

41.

-1

x

y

42.

y = x

x

y

43.

5

x

y

44.

1

y = 2x + 1

x

y

45.

x

y

46.

x

y

47.

x

y

xy = –1

xy = 1

xy = 1

xy = –1

48.

x

y

49. All of 3-space.

50. All points inside the sphere with radius 2 and center at the origin.

51. All points not on the cylinder x2 + z2 = 1.

52. All of 3-space.

Exercise Set 13.3

1. (a) 9x2y2 (b) 6x3y (c) 9y2 (d) 9x2 (e) 6y (f) 6x3 (g) 36 (h) 12

2. (a) 2e2x sin y (b) e2x cos y (c) 2 sin y (d) 0 (e) cos y (f) e2x (g) 0 (h) 4

3.
∂z

∂x
= 18xy − 15x4y,

∂z

∂y
= 9x2 − 3x5.

4. fx(x, y) = 20xy4 − 6y2 + 20x, fy(x, y) = 40x2y3 − 12xy.

5.
∂z

∂x
= 8(x2 + 5x− 2y)7(2x+ 5),

∂z

∂y
= −16(x2 + 5x− 2y)7.
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6. fx(x, y) = (−1)(xy2 − x2y)−2(y2 − 2xy), fy(x, y) = (−1)(xy2 − x2y)−2(2xy − x2).

7.
∂

∂p
(e−7p/q) = −7e−7p/q/q,

∂

∂q
(e−7p/q) = 7pe−7p/q/q2.

8.
∂

∂x
(xe
√

15xy) = e
√

15xy + xe
√

15xy 1

2

1√
15xy

15y,
∂

∂y
(xe
√

15xy) = xe
√

15xy 1

2

1√
15xy

15x.

9.
∂z

∂x
= (15x2y + 7y2) cos(5x3y + 7xy2),

∂z

∂y
= (5x3 + 14xy) cos(5x3y + 7xy2).

10. fx(x, y) = −(2y2 − 6xy2) sin(2xy2 − 3x2y2), fy(x, y) = −(4xy − 6x2y) sin(2xy2 − 3x2y2).

11. (a)
∂z

∂x
=

3

2
√

3x+ 2y
; slope =

3

8
. (b)

∂z

∂y
=

1√
3x+ 2y

; slope =
1

4
.

12. (a)
∂z

∂x
= e−y; slope = 1. (b)

∂z

∂y
= −xe−y + 5; slope = 2.

13. (a)
∂z

∂x
= −4 cos(y2 − 4x); rate of change = −4 cos 7. (b)

∂z

∂y
= 2y cos(y2 − 4x); rate of change = 2 cos 7.

14. (a)
∂z

∂x
= − 1

(x+ y)2
; rate of change = −1

4
. (b)

∂z

∂y
= − 1

(x+ y)2
; rate of change = −1

4
.

15. ∂z/∂x = slope of line parallel to xz-plane = −4; ∂z/∂y = slope of line parallel to yz-plane = 1/2.

16. Moving to the right from (x0, y0) decreases f(x, y), so fx < 0; moving up increases f , so fy > 0.

17. (a) The right-hand estimate is ∂r/∂v ≈ (222 − 197)/(85 − 80) = 5; the left-hand estimate is ∂r/∂v ≈ (197 −
173)/(80− 75) = 4.8; the average is ∂r/∂v ≈ 4.9.

(b) The right-hand estimate is ∂r/∂θ ≈ (200 − 197)/(45 − 40) = 0.6; the left-hand estimate is ∂r/∂θ ≈ (197 −
188)/(40− 35) = 1.8; the average is ∂r/∂θ ≈ 1.2.

18. (a) The right-hand estimate is ∂r/∂v ≈ (253−226)/(90−85) = 5.4; the left-hand estimate is (226−200)/(85−80) =
5.2; the average is ∂r/∂v ≈ 5.3.

(b) The right-hand estimate is ∂r/∂θ ≈ (222−226)/(50−45) = −0.8; the left-hand estimate is (226−222)/(45−
40) = 0.8; the average is ∂r/∂v ≈ 0.

19. III is a plane, and its partial derivatives are constants, so III cannot be f(x, y). If I is the graph of z = f(x, y)
then (by inspection) fy is constant as y varies, but neither II nor III is constant as y varies. Hence z = f(x, y) has
II as its graph, and as II seems to be an odd function of x and an even function of y, fx has I as its graph and fy
has III as its graph.

20. The slope at P in the positive x-direction is negative, the slope in the positive y-direction is negative, thus
∂z/∂x < 0, ∂z/∂y < 0; the curve through P which is parallel to the x-axis is concave down, so ∂2z/∂x2 < 0; the
curve parallel to the y-axis is concave down, so ∂2z/∂y2 < 0.

21. True: f is constant along the line y = 2 so fx(4, 2) = 0.

22. True, f(3, y) = y2, so fy(3, 4) = 8.

23. True; z is a linear function of both x and y.
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24. False; if so then 2y + 2 =
∂fx
∂y

=
∂fy
∂x

= 2y, a contradiction.

25. ∂z/∂x = 8xy3ex
2y3 , ∂z/∂y = 12x2y2ex

2y3 .

26. ∂z/∂x = −5x4y4 sin(x5y4), ∂z/∂y = −4x5y3 sin
(
x5y4

)
.

27. ∂z/∂x = x3/(y3/5 + x) + 3x2 ln(1 + xy−3/5), ∂z/∂y = −(3/5)x4/(y8/5 + xy).

28. ∂z/∂x = yexy sin(4y2), ∂z/∂y = 8yexy cos(4y2) + xexy sin(4y2).

29.
∂z

∂x
= −y(x2 − y2)

(x2 + y2)2
,
∂z

∂y
=
x(x2 − y2)

(x2 + y2)2
.

30.
∂z

∂x
=
xy3(3x+ 4y)

2(x+ y)3/2
,
∂z

∂y
=
x2y2(6x+ 5y)

2(x+ y)3/2
.

31. fx(x, y) = (3/2)x2y
(
5x2 − 7

) (
3x5y − 7x3y

)−1/2
, fy(x, y) = (1/2)x3

(
3x2 − 7

) (
3x5y − 7x3y

)−1/2
.

32. fx(x, y) = −2y/(x− y)2, fy(x, y) = 2x/(x− y)2.

33. fx(x, y) =
y−1/2

y2 + x2
, fy(x, y) = − xy

−3/2

y2 + x2
− 3

2
y−5/2 tan−1(x/y).

34. fx(x, y) = 3x2e−y + (1/2)x−1/2y3 sec
√
x tan

√
x, fy(x, y) = −x3e−y + 3y2 sec

√
x.

35. fx(x, y) = −(4/3)y2 sec2 x
(
y2 tanx

)−7/3
, fy(x, y) = −(8/3)y tanx

(
y2 tanx

)−7/3
.

36. fx(x, y) = 2y2 cosh
√
x sinh

(
xy2
)

cosh
(
xy2
)

+
1

2
x−1/2 sinh

√
x sinh2

(
xy2
)
,

fy(x, y) = 4xy cosh
√
x sinh

(
xy2
)

cosh
(
xy2
)
.

37. fx(x, y) = −2x, fx(3, 1) = −6; fy(x, y) = −21y2, fy(3, 1) = −21.

38. ∂f/∂x = x2y2exy + 2xyexy, ∂f/∂x
∣∣
(1,1) = 3e; ∂f/∂y = x3yexy + x2exy, ∂f/∂y

∣∣
(1,1) = 2e .

39. ∂z/∂x = x(x2 + 4y2)−1/2, ∂z/∂x
∣∣
(1,2) = 1/

√
17 ; ∂z/∂y = 4y(x2 + 4y2)−1/2, ∂z/∂y

∣∣
(1,2) = 8/

√
17 .

40. ∂w/∂x = −x2y sinxy + 2x cosxy,
∂w

∂x
(1/2, π) = −π/4; ∂w/∂y = −x3 sinxy,

∂w

∂y
(1/2, π) = −1/8.

41. (a) 2xy4z3 + y (b) 4x2y3z3 + x (c) 3x2y4z2 + 2z (d) 2y4z3 + y (e) 32z3 + 1 (f) 438

42. (a) 2xy cos z (b) x2 cos z (c) −x2y sin z (d) 4y cos z (e) 4 cos z (f) 0

43. fx = 2z/x, fy = z/y, fz = ln(x2y cos z)− z tan z.

44. fx = y−5/2z sec(xz/y) tan(xz/y), fy = −xy−7/2z sec(xz/y) tan(xz/y)− (3/2)y−5/2 sec(xz/y),

fz = xy−5/2 sec(xz/y) tan(xz/y).

45. fx = −y2z3/
(
1 + x2y4z6

)
, fy = −2xyz3/

(
1 + x2y4z6

)
, fz = −3xy2z2/

(
1 + x2y4z6

)
.

46. fx = 4xyz cosh
√
z sinh

(
x2yz

)
cosh

(
x2yz

)
, fy = 2x2z cosh

√
z sinh

(
x2yz

)
cosh

(
x2yz

)
,

fz = 2x2y cosh
√
z sinh

(
x2yz

)
cosh

(
x2yz

)
+ (1/2)z−1/2 sinh

√
z sinh2

(
x2yz

)
.
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47. ∂w/∂x = yzez cosxz, ∂w/∂y = ez sinxz, ∂w/∂z = yez(sinxz + x cosxz).

48. ∂w/∂x = 2x/
(
y2 + z2

)
, ∂w/∂y = −2y

(
x2 + z2

)
/
(
y2 + z2

)2
, ∂w/∂z = 2z

(
y2 − x2

)
/
(
y2 + z2

)2
.

49. ∂w/∂x = x/
√
x2 + y2 + z2, ∂w/∂y = y/

√
x2 + y2 + z2, ∂w/∂z = z/

√
x2 + y2 + z2.

50. ∂w/∂x = 2y3e2x+3z, ∂w/∂y = 3y2e2x+3z, ∂w/∂z = 3y3e2x+3z.

51. (a) e (b) 2e (c) e

52. (a) 2/
√

7 (b) 4/
√

7 (c) 1/
√

7

53.

-2
0 1

-2
-1

-1 0
1
2

y

0
1
2

z

-1
2

x
-2 -1 0 1 2

-2
-1

0
1
2

y
-6

-4

-2

0

z

x

54.

-2
-1

0
1

2
 x

-2
-1

0
1

2

-1
0
1

z

y 

-2
-1

0
1

2
 x

-2
-1

0
1

2

0

6
z

y 

55. ∂z/∂x = 2x+ 6y(∂y/∂x) = 2x, ∂z/∂x
∣∣
(2,1)

= 4.

56. ∂z/∂y = 6y, ∂z/∂y
∣∣
(2,1) = 6.

57. ∂z/∂x = −x
(
29− x2 − y2

)−1/2
, ∂z/∂x|(4,3) = −2.

58. (a) ∂z/∂y = 8y, ∂z/∂y|(−1,1) = 8. (b) ∂z/∂x = 2x, ∂z/∂x|(−1,1) = −2.

59. (a) ∂V/∂r = 2πrh. (b) ∂V/∂h = πr2. (c) ∂V/∂r|r=6, h=4 = 48π. (d) ∂V/∂h|r=8, h=10 = 64π.

60. (a) ∂V/∂s =
πsd2

6
√

4s2 − d2
. (b) ∂V/∂d =

πd(8s2 − 3d2)

24
√

4s2 − d2
. (c) ∂V/∂s|s=10, d=16 = 320π/9.

(d) ∂V/∂d|s=10, d=16 = 16π/9.

61. (a) P = 10T/V , ∂P/∂T = 10/V , ∂P/∂T |T=80, V=50 = 1/5 lb/(in2K).

(b) V = 10T/P, ∂V/∂P = −10T/P 2, if V = 50 and T = 80, then P = 10(80)/(50) = 16, ∂V/∂P |T=80, P=16 =

−25/8(in5/lb).

62. (a) ∂T/∂x = 3x2 + 1, ∂T/∂x|(1,2) = 4
◦C
cm

. (b) ∂T/∂y = 4y, ∂T/∂y|(1,2) = 8
◦C
cm

.

63. (a) V = lwh, ∂V/∂l = wh = 6. (b) ∂V/∂w = lh = 15. (c) ∂V/∂h = lw = 10.
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64. (a) ∂A/∂a = (1/2)b sin θ = (1/2)(10)
(√

3/2
)

= 5
√

3/2.

(b) ∂A/∂θ = (1/2)ab cos θ = (1/2)(5)(10)(1/2) = 25/2.

(c) b = (2A csc θ)/a, ∂b/∂a = −(2A csc θ)/a2 = −b/a = −2.

65. ∂V/∂r =
2

3
πrh =

2

r
(
1

3
πr2h) = 2V/r.

66. (a) ∂z/∂y = x2, ∂z/∂y|(1,3) = 1, j + k is parallel to the tangent line so x = 1, y = 3 + t, z = 3 + t.

(b) ∂z/∂x = 2xy, ∂z/∂x|(1,3) = 6, i + 6k is parallel to the tangent line so x = 1 + t, y = 3, z = 3 + 6t.

67. (a) 2x− 2z(∂z/∂x) = 0, ∂z/∂x = x/z = ±3/(2
√

6) = ±
√

6/4.

(b) z = ±
√
x2 + y2 − 1, ∂z/∂x = ±x/

√
x2 + y2 − 1 = ±

√
6/4.

68. (a) 2y − 2z(∂z/∂y) = 0, ∂z/∂y = y/z = ±4/(2
√

6) = ±
√

6/3.

(b) z = ±
√
x2 + y2 − 1, ∂z/∂y = ±y/

√
x2 + y2 − 1 = ±

√
6/3.

69.
3

2

(
x2 + y2 + z2

)1/2
(

2x+ 2z
∂z

∂x

)
= 0, ∂z/∂x = −x/z; similarly, ∂z/∂y = −y/z.

70.
4x− 3z2(∂z/∂x)

2x2 + y − z3
= 1,

∂z

∂x
=

4x− 2x2 − y + z3

3z2
;

1− 3z2(∂z/∂y)

2x2 + y − z3
= 0,

∂z

∂y
=

1

3z2
.

71. 2x+ z

(
xy
∂z

∂x
+ yz

)
cosxyz +

∂z

∂x
sinxyz = 0,

∂z

∂x
= − 2x+ yz2 cosxyz

xyz cosxyz + sinxyz
;

z

(
xy
∂z

∂y
+ xz

)
cosxyz +

∂z

∂y
sinxyz = 0,

∂z

∂y
= − xz2 cosxyz

xyz cosxyz + sinxyz
.

72. exy(cosh z)
∂z

∂x
+ yexy sinh z − z2 − 2xz

∂z

∂x
= 0,

∂z

∂x
=
z2 − yexy sinh z

exy cosh z − 2xz
;

exy(cosh z)
∂z

∂y
+ xexy sinh z − 2xz

∂z

∂y
= 0,

∂z

∂y
= − xexy sinh z

exy cosh z − 2xz
.

73. (3/2)
(
x2 + y2 + z2 + w2

)1/2
(

2x+ 2w
∂w

∂x

)
= 0, ∂w/∂x = −x/w; similarly, ∂w/∂y = −y/w and ∂w/∂z = −z/w.

74. ∂w/∂x = −4x/3, ∂w/∂y = −1/3, ∂w/∂z = (2x2 + y − z3 + 3z2 + 3w)/3.

75.
∂w

∂x
= − yzw cosxyz

2w + sinxyz
,
∂w

∂y
= − xzw cosxyz

2w + sinxyz
,
∂w

∂z
= − xyw cosxyz

2w + sinxyz
.

76.
∂w

∂x
=

yexy sinhw

z2 − exy coshw
,
∂w

∂y
=

xexy sinhw

z2 − exy coshw
,
∂w

∂z
=

2zw

exy coshw − z2
.

77. fx = ex
2

, fy = −ey2 .

78. fx = yex
2y2 , fy = xex

2y2 .

79. fx = 2xy3 sinx6y9, fy = 3x2y2 sinx6y9.
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80. fx = sin(x− y)3 − sin(x+ y)3, fy = − sin(x− y)3 − sin(x+ y)3.

81. (a) − 1

4x3/2
cos y (b) −√x cos y (c) − sin y

2
√
x

(d) − sin y

2
√
x

82. (a) 8 + 84x2y5 (b) 140x4y3 (c) 140x3y4 (d) 140x3y4

83. (a) 6 cos(3x2 + 6y2)− 36x2 sin(3x2 + 6y2) (b) 12 cos(3x2 + 6y2)− 144y2 sin(3x2 + 6y2)

(c) −72xy sin(3x2 + 6y2) (d) −72xy sin(3x2 + 6y2)

84. (a) 0 (b) 4xe2y (c) 2e2y (d) 2e2y

85. fx = 8x− 8y4, fy = −32xy3 + 35y4, fxy = fyx = −32y3.

86. fx = x/
√
x2 + y2, fy = y/

√
x2 + y2, fxy = fyx = −xy(x2 + y2)−3/2.

87. fx = ex cos y, fy = −ex sin y, fxy = fyx = −ex sin y.

88. fx = ex−y
2

, fy = −2yex−y
2

, fxy = fyx = −2yex−y
2

.

89. fx = 4/(4x− 5y), fy = −5/(4x− 5y), fxy = fyx = 20/(4x− 5y)2.

90. fx = 2x/(x2 + y2), fy = 2y/(x2 + y2), fxy = −4xy/(x2 + y2)2.

91. fx = 2y/(x+ y)2, fy = −2x/(x+ y)2, fxy = fyx = 2(x− y)/(x+ y)3.

92. fx = 4xy2/(x2 + y2)2, fy = −4x2y/(x2 + y2)2, fxy = fyx = 8xy(x2 − y2)/(x2 + y2)3.

93. (a)
∂3f

∂x3
(b)

∂3f

∂y2∂x
(c)

∂4f

∂x2∂y2
(d)

∂4f

∂y3∂x

94. (a) fxyy (b) fxxxx (c) fxxyy (d) fyyyxx

95. (a) 30xy4 − 4 (b) 60x2y3 (c) 60x3y2

96. (a) 120(2x− y)2 (b) −240(2x− y)2 (c) 480(2x− y)

97. (a) fxyy(0, 1) = −30 (b) fxxx(0, 1) = −125 (c) fyyxx(0, 1) = 150

98. (a)
∂3w

∂y2∂x
= −ey sin x,

∂3w

∂y2∂x

∣∣∣∣
(π/4,0)

= −1/
√

2. (b)
∂3w

∂x2∂y
= −ey cos x,

∂3w

∂x2∂y

∣∣∣∣
(π/4,0)

= −1/
√

2.

99. (a) fxy = 15x2y4z7 + 2y. (b) fyz = 35x3y4z6 + 3y2. (c) fxz = 21x2y5z6.

(d) fzz = 42x3y5z5. (e) fzyy = 140x3y3z6 + 6y. (f) fxxy = 30xy4z7.

(g) fzyx = 105x2y4z6. (h) fxxyz = 210xy4z6.

100. (a) 160(4x− 3y + 2z)3 (b) −1440(4x− 3y + 2z)2 (c) −5760(4x− 3y + 2z)

101. (a) zx = 2x+ 2y, zxx = 2, zy = −2y + 2x, zyy = −2; zxx + zyy = 2− 2 = 0.

(b) zx = ex sin y−ey sinx, zxx = ex sin y−ey cosx, zy = ex cos y+ey cosx, zyy = −ex sin y+ey cosx; zxx+zyy =
ex sin y − ey cosx− ex sin y + ey cosx = 0.
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(c) zx =
2x

x2 + y2
− 2

y

x2

1

1 + (y/x)2
=

2x− 2y

x2 + y2
, zxx = −2

x2 − y2 − 2xy

(x2 + y2)2
, zy =

2y

x2 + y2
+ 2

1

x

1

1 + (y/x)2
=

2y + 2x

x2 + y2
, zyy = −2

y2 − x2 + 2xy

(x2 + y2)2
; zxx + zyy = −2

x2 − y2 − 2xy

(x2 + y2)2
− 2

y2 − x2 + 2xy

(x2 + y2)2
= 0.

102. (a) zt = −e−t sin(x/c), zx = (1/c)e−t cos(x/c), zxx = −(1/c2)e−t sin(x/c); zt − c2zxx = −e−t sin(x/c) −
c2(−(1/c2)e−t sin(x/c)) = 0.

(b) zt = −e−t cos(x/c), zx = −(1/c)e−t sin(x/c), zxx = −(1/c2)e−t cos(x/c); zt − c2zxx = −e−t cos(x/c) −
c2(−(1/c2)e−t cos(x/c)) = 0.

103. ux = ω sin c ωt cosωx, uxx = −ω2 sin c ωt sinωx, ut = c ω cos c ωt sinωx, utt = −c2ω2 sin c ωt sinωx; uxx−
1

c2
utt =

−ω2 sin c ωt sinωx− 1

c2
(−c2)ω2 sin c ωt sinωx = 0.

104. (a) ∂u/∂x = ∂v/∂y = 2x, ∂u/∂y = −∂v/∂x = −2y.

(b) ∂u/∂x = ∂v/∂y = ex cos y, ∂u/∂y = −∂v/∂x = −ex sin y.

(c) ∂u/∂x = ∂v/∂y = 2x/(x2 + y2), ∂u/∂y = −∂v/∂x = 2y/(x2 + y2).

105. ∂u/∂x = ∂v/∂y and ∂u/∂y = −∂v/∂x so ∂2u/∂x2 = ∂2v/∂x∂y, and ∂2u/∂y2 = −∂2v/∂y∂x, ∂2u/∂x2+∂2u/∂y2 =
∂2v/∂x∂y−∂2v/∂y∂x, if ∂2v/∂x∂y = ∂2v/∂y∂x then ∂2u/∂x2 +∂2u/∂y2 = 0; thus u satisfies Laplace’s equation.
The proof that v satisfies Laplace’s equation is similar. Adding Laplace’s equations for u and v gives Laplaces’

equation for u+ v.

106. ∂2R/∂R2
1 = −2R2

2/(R1 + R2)3, ∂2R/∂R2
2 = −2R2

1/(R1 + R2)3,
(
∂2R/∂R2

1

) (
∂2R/∂R2

2

)
= 4R2

1R
2
2/ (R1 +R2)

6
=[

4/ (R1 +R2)
4
]

[R1R2/ (R1 +R2)]
2

= 4R2/ (R1 +R2)
4
.

107. ∂f/∂v = 8vw3x4y5, ∂f/∂w = 12v2w2x4y5, ∂f/∂x = 16v2w3x3y5, ∂f/∂y = 20v2w3x4y4.

108. ∂w/∂r = cos st+ ueu cosur, ∂w/∂s = −rt sin st, ∂w/∂t = −rs sin st, ∂w/∂u = reu cosur + eu sinur.

109. ∂f/∂v1 = 2v1/
(
v2

3 + v2
4

)
, ∂f/∂v2 = −2v2/

(
v2

3 + v2
4

)
, ∂f/∂v3 = −2v3

(
v2

1 − v2
2

)
/
(
v2

3 + v2
4

)2
,

∂f/∂v4 = −2v4

(
v2

1 − v2
2

)
/
(
v2

3 + v2
4

)2
.

110.
∂V

∂x
= 2xe2x−y + e2x−y,

∂V

∂y
= −xe2x−y + w,

∂V

∂z
= w2ezw,

∂V

∂w
= wzezw + ezw + y.

111. (a) 0 (b) 0 (c) 0 (d) 0 (e) 2(1 + yw)eyw sin z cos z (f) 2xw(2 + yw)eyw sin z cos z

112. 128, −512, 32, 64/3.

113. ∂w/∂xi = −i sin(x1 + 2x2 + . . .+ nxn).

114. ∂w/∂xi =
1

n

(
n∑

k=1

xk

)(1/n)−1

.

115. (a) xy-plane, fx = 12x2y + 6xy, fy = 4x3 + 3x2, fxy = fyx = 12x2 + 6x.

(b) y 6= 0, fx = 3x2/y, fy = −x3/y2, fxy = fyx = −3x2/y2.
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116. (a) x2 + y2 > 1, (the exterior of the circle of radius 1 about the origin); fx = x/
√
x2 + y2 − 1, fy =

y/
√
x2 + y2 − 1, fxy = fyx = −xy

(
x2 + y2 − 1

)−3/2
.

(b) xy-plane, fx = 2x cos(x2 + y3), fy = 3y2 cos(x2 + y3), fxy = fyx = −6xy2 sin
(
x2 + y3

)
.

117. fx(2,−1) = lim
x→2

f(x,−1)− f(2,−1)

x− 2
= lim
x→2

2x2 + 3x+ 1− 15

x− 2
= lim
x→2

(2x+ 7) = 11 and

fy(2,−1) = lim
y→−1

f(2, y)− f(2,−1)

y + 1
= lim
y→−1

8− 6y + y2 − 15

y + 1
= lim
y→−1

y − 7 = −8.

118. fx(x, y) =
2

3
(x2 +y2)−1/3(2x) =

4x

3(x2 + y2)1/3
, (x, y) 6= (0, 0); and by definition, fx(0, 0) = lim

h→0

((h)2)2/3 − 0

h
= 0.

119. (a) fy(0, 0) =
d

dy
[f(0, y)]

∣∣∣∣
y=0

=
d

dy
[y]

∣∣∣∣
y=0

= 1.

(b) If (x, y) 6= (0, 0), then fy(x, y) =
1

3
(x3 + y3)−2/3(3y2) =

y2

(x3 + y3)2/3
; fy(x, y) does not exist when y 6= 0 and

y = −x.

Exercise Set 13.4

1. f(x, y) ≈ f(3, 4) + fx(x− 3) + fy(y− 4) = 5 + 2(x− 3)− (y− 4) and f(3.01, 3.98) ≈ 5 + 2(0.01)− (−0.02) = 5.04.

2. f(x, y) ≈ f(−1, 2) + fx(x+ 1) + fy(y− 2) = 2 + (x+ 1) + 3(y− 2) and f(−0.99, 2.02) ≈ 2 + 0.01 + 3(0.02) = 2.07.

3. L(x, y, z) = f(1, 2, 3) + (x− 1) + 2(y − 2) + 3(z − 3), f(1.01, 2.02, 3.03) ≈ 4 + 0.01 + 2(0.02) + 3(0.03) = 4.14.

4. L(x, y, z) = f(2, 1,−2)− (x− 2) + (y − 1)− 2(z + 2), f(1.98, 0.99,−1.97) ≈ 0.02− 0.01− 2(0.03) = −0.05.

5. Suppose f(x, y) = c for all (x, y). Then at (x0, y0) we have
f(x0 + ∆x, y0)− f(x0, y0)

∆x
= 0 and hence fx(x0, y0)

exists and is equal to 0 (Definition 13.3.1). A similar result holds for fy. From equation (2), it follows that ∆f = 0,
and then by Definition 13.4.1 we see that f is differentiable at (x0, y0). An analogous result holds for functions
f(x, y, z) of three variables.

6. Let f(x, y) = ax + by + c. Then L(x, y) = f(x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) = ax0 + by0 + c +
a(x− x0) + b(y − y0) = ax+ by + c, so L = f and thus E is zero. For three variables the proof is analogous.

7. fx = 2x, fy = 2y, fz = 2z so L(x, y, z) = 0, E = f − L = x2 + y2 + z2, and lim
(x,y,z)→(0,0,0)

E(x, y, z)√
x2 + y2 + z2

=

lim
(x,y,z)→(0,0,0)

√
x2 + y2 + z2 = 0, so f is differentiable at (0, 0, 0).

8. fx = 2xr(x2 + y2 + z2)r−1, fy = 2yr(x2 + y2 + z2)r−1, fz = 2zr(x2 + y2 + z2)r−1, so the partials of f exist only

if r ≥ 1. If so then L(x, y, z) = 0, E(x, y, z) = f(x, y, z) and
E(x, y, z)√
x2 + y2 + z2

= (x2 + y2 + z2)r−1/2, so f is

differentiable at (0, 0, 0) if and only if r ≥ max(1/2, 1) = 1.

9. dz = 7dx− 2dy.

10. dz = yexydx+ xexydy.

11. dz = 3x2y2dx+ 2x3ydy.
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12. dz = (10xy5 − 2)dx+ (25x2y4 + 4)dy.

13. dz =
[
y/
(
1 + x2y2

)]
dx+

[
x/
(
1 + x2y2

)]
dy.

14. dz = −3e−3x cos 6ydx− 6e−3x sin 6ydy.

15. dw = 8dx− 3dy + 4dz.

16. dw = yzexyzdx+ xzexyzdy + xyexyzdz.

17. dw = 3x2y2zdx+ 2x3yzdy + x3y2dz.

18. dw =
(
8xy3z7 − 3y

)
dx+

(
12x2y2z7 − 3x

)
dy +

(
28x2y3z6 + 1

)
dz.

19. dw =
yz

1 + x2y2z2
dx+

xz

1 + x2y2z2
dy +

xy

1 + x2y2z2
dz.

20. dw =
1

2
√
x
dx+

1

2
√
y
dy +

1

2
√
z
dz.

21. df = (2x+ 2y − 4)dx+ 2xdy; x = 1, y = 2, dx = 0.01, dy = 0.04 so df = 0.10 and ∆f = 0.1009.

22. df = (1/3)x−2/3y1/2dx + (1/2)x1/3y−1/2dy; x = 8, y = 9, dx = −0.22, dy = 0.03 so df = −0.045 and ∆f ≈
−0.045613.

23. df = −x−2dx− y−2dy; x = −1, y = −2, dx = −0.02, dy = −0.04 so df = 0.03 and ∆f ≈ 0.029412.

24. df =
y

2(1 + xy)
dx+

x

2(1 + xy)
dy; x = 0, y = 2, dx = −0.09, dy = −0.02 so df = −0.09 and ∆f ≈ −0.098129.

25. df = 2y2z3dx + 4xyz3dy + 6xy2z2dz, x = 1, y = −1, z = 2, dx = −0.01, dy = −0.02, dz = 0.02 so df = 0.96 and
∆f ≈ 0.97929.

26. df =
yz(y + z)

(x+ y + z)2
dx+

xz(x+ z)

(x+ y + z)2
dy+

xy(x+ y)

(x+ y + z)2
dz, x = −1, y = −2, z = 4, dx = −0.04, dy = 0.02, dz = −0.03

so df = 0.58 and ∆f ≈ 0.60529.

27. False: Example 9, Section 13.3 gives such a function which is not even continuous at (x0, y0), let alone differentiable.

28. False; only where f is continuous, since by Theorem 13.2.3 the condition given is equivalent to continuity.

29. True; indeed, by Theorem 13.4.4, f is differentiable.

30. True; from (9), it has normal vector fx(x0, y0)i + fy(x0, y0)j− k and passes through (x0, y0, f(x0, y0)).

31. Label the four smaller rectangles A,B,C,D starting with the lower left and going clockwise. Then the increase in
the area of the rectangle is represented by B,C and D; and the portions B and D represent the approximation of
the increase in area given by the total differential.

32. V + ∆V = (π/3)4.052(19.95) ≈ 109.0766250π, V = 320π/3,∆V ≈ 2.40996π; dV = (2/3)πrhdr + (1/3)πr2dh;
r = 4, h = 20, dr = 0.05, dh = −0.05 so dV = 2.4π, and ∆V/dV ≈ 1.00415.

33. (a) f(P ) = 1/5, fx(P ) = −x/(x2 + y2)−3/2

∣∣∣∣
(x,y)=(4,3)

= −4/125, fy(P ) = −y/(x2 + y2)−3/2

∣∣∣∣
(x,y)=(4,3)

=

−3/125, L(x, y) =
1

5
− 4

125
(x− 4)− 3

125
(y − 3).
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(b) L(Q) − f(Q) =
1

5
− 4

125
(−0.08) − 3

125
(0.01) − 0.2023342382 ≈ −0.0000142382, |PQ| =

√
0.082 + 0.012 ≈

0.08062257748, |L(Q)− f(Q)|/|PQ| ≈ 0.000176603.

34. (a) f(P ) = 1, fx(P ) = 0.5, fy(P ) = 0.3, L(x, y) = 1 + 0.5(x− 1) + 0.3(y − 1).

(b) L(Q)−f(Q) = 1+0.5(0.05)+0.3(−0.03)−1.050.50.970.3 ≈ 0.00063, |PQ| =
√

0.052 + 0.032 ≈ 0.05831, |L(Q)−
f(Q)|/|PQ| ≈ 0.0107.

35. (a) f(P ) = 0, fx(P ) = 0, fy(P ) = 0, L(x, y) = 0.

(b) L(Q) − f(Q) = −0.003 sin(0.004) ≈ −0.000012, |PQ| =
√

0.0032 + 0.0042 = 0.005, |L(Q) − f(Q)|/|PQ| ≈
0.0024.

36. (a) f(P ) = ln 2, fx(P ) = 1, fy(P ) = 1/2, L(x, y) = ln 2 + (x− 1) +
1

2
(y − 2).

(b) L(Q)−f(Q) = ln 2 + 0.01 + (1/2)(0.02)− ln 2.0402 ≈ 0.0000993383, |PQ| =
√

0.012 + 0.022 ≈ 0.02236067978,

|L(Q)− f(Q)|/|PQ| ≈ 0.0044425.

37. (a) f(P ) = 6, fx(P ) = 6, fy(P ) = 3, fz(P ) = 2, L(x, y) = 6 + 6(x− 1) + 3(y − 2) + 2(z − 3).

(b) L(Q)− f(Q) = 6 + 6(0.001) + 3(0.002) + 2(0.003)− 6.018018006 = −.000018006,

|PQ| =
√

0.0012 + 0.0022 + 0.0032 ≈ .0003741657387; |L(Q)− f(Q)|/|PQ| ≈ −0.000481.

38. (a) f(P ) = 0, fx(P ) = 1/2, fy(P ) = 1/2, fz(P ) = 0, L(x, y) =
1

2
(x+ 1) +

1

2
(y − 1).

(b) L(Q)− f(Q) = 0, |L(Q)− f(Q)|/|PQ| = 0.

39. (a) f(P ) = e, fx(P ) = e, fy(P ) = −e, fz(P ) = −e, L(x, y) = e+ e(x− 1)− e(y + 1)− e(z + 1).

(b) L(Q)− f(Q) = e− 0.01e + 0.01e− 0.01e− 0.99e0.9999 = 0.99(e− e0.9999), |PQ| =
√

0.012 + 0.012 + 0.012 ≈
0.01732, |L(Q)− f(Q)|/|PQ| ≈ 0.01554.

40. (a) f(P ) = 0, fx(P ) = 1, fy(P ) = −1, fz(P ) = 1, L(x, y, z) = (x− 2)− (y − 1) + (z + 1).

(b) L(Q)− f(Q) = 0.02 + 0.03− 0.01− ln 1.0403 ≈ 0.00049086691, |PQ| =
√

0.022 + 0.032 + 0.012 ≈ 0.03742,

|L(Q)− f(Q)|/|PQ| ≈ 0.01312.

41. (a) Let f(x, y) = ex sin y; f(0, 0) = 0, fx(0, 0) = 0, fy(0, 0) = 1, so ex sin y ≈ y.

(b) Let f(x, y) =
2x+ 1

y + 1
; f(0, 0) = 1, fx(0, 0) = 2, fy(0, 0) = −1, so

2x+ 1

y + 1
≈ 1 + 2x− y.

42. f(1, 1) = 1, fx(x, y) = αxα−1yβ , fx(1, 1) = α, fy(x, y) = βxαyβ−1, fy(1, 1) = β, so xαyβ ≈ 1 + α(x− 1) + β(y − 1).

43. (a) Let f(x, y, z) = xyz + 2, then fx = fy = fz = 1 at x = y = z = 1, and L(x, y, z) = f(1, 1, 1) + fx(x − 1) +
fy(y − 1) + fz(z − 1) = 3 + x− 1 + y − 1 + z − 1 = x+ y + z.

(b) Let f(x, y, z) =
4x

y + z
, then fx = 2, fy = −1, fz = −1 at x = y = z = 1, and L(x, y, z) = f(1, 1, 1) + fx(x −

1) + fy(y − 1) + fz(z − 1) = 2 + 2(x− 1)− (y − 1)− (z − 1) = 2x− y − z + 2.

44. Let f(x, y, z) = xαyβzγ , then fx = α, fy = β, fz = γ at x = y = z = 1, and f(x, y, z) ≈ f(1, 1, 1) + fx(x − 1) +
fy(y − 1) + fz(z − 1) = 1 + α(x− 1) + β(y − 1) + γ(z − 1).
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45. L(x, y) = f(1, 1) + fx(1, 1)(x − 1) + fy(1, 1)(y − 1) and L(1.1, 0.9) = 3.15 = 3 + 2(0.1) + fy(1, 1)(−0.1) so
fy(1, 1) = −0.05/(−0.1) = 0.5.

46. L(x, y) = 3 + fx(0,−1)x− 2(y + 1), 3.3 = 3 + fx(0,−1)(0.1)− 2(−0.1), so fx(0,−1) = 0.1/0.1 = 1.

47. x − y + 2z − 2 = L(x, y, z) = f(3, 2, 1) + fx(3, 2, 1)(x − 3) + fy(3, 2, 1)(y − 2) + fz(3, 2, 1)(z − 1), so fx(3, 2, 1) =
1, fy(3, 2, 1) = −1, fz(3, 2, 1) = 2 and f(3, 2, 1) = L(3, 2, 1) = 1.

48. L(x, y, z) = x+2y+3z+4 = (x−0)+2(y+1)+3(z+2)−4, f(0,−1,−2) = −4, fx(0,−1,−2) = 1, fy(0,−1,−2) =
2, fz(0,−1,−2) = 3.

49. L(x, y) = f(x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0), 2y − 2x − 2 = x2
0 + y2

0 + 2x0(x − x0) + 2y0(y − y0),
from which it follows that x0 = −1, y0 = 1.

50. f(x, y) = x2y, so fx(x0, y0) = 2x0y0, fy(x0, y0) = x2
0, and L(x, y) = f(x0, y0) + 2x0y0(x − x0) + x2

0(y − y0). But
L(x, y) = 8 − 4x + 4y, hence −4 = 2x0y0, 4 = x2

0 and 8 = f(x0, y0) − 2x2
0y0 − x2

0y0 = −2x2
0y0. Thus either

x0 = −2, y0 = 1 from which it follows that 8 = −8, a contradiction, or x0 = 2, y0 = −1, which is a solution since
then 8 = −2x2

0y0 = 8 is true.

51. L(x, y, z) = f(x0, y0, z0) + fx(x0, y0, z0)(x − x0) + fy(x0, y0, z0)(y − y0) + fz(x0, y0, z0)(z − z0), y + 2z − 1 =
x0y0 + z2

0 + y0(x− x0) + x0(y − y0) + 2z0(z − z0), so that x0 = 1, y0 = 0, z0 = 1.

52. L(x, y, z) = f(x0, y0, z0)+fx(x0, y0, z0)(x−x0)+fy(x0, y0, z0)(y−y0)+fz(x0, y0, z0)(z−z0). Then x−y−z−2 =
x0y0z0+y0z0(x−x0)+x0z0(y−y0)+x0y0(z−z0), hence y0z0 = 1, x0z0 = −1, x0y0 = −1, and−2 = x0y0z0−3x0y0z0,
or x0y0z0 = 1. Since now x0 = −y0 = −z0, we must have |x0| = |y0| = |z0| = 1 or else |x0y0z0| 6= 1, impossible.
Thus x0 = 1, y0 = z0 = −1 (note that (−1, 1, 1) is not a solution).

53. A = xy, dA = ydx + xdy, dA/A = dx/x + dy/y, |dx/x| ≤ 0.03 and |dy/y| ≤ 0.05, |dA/A| ≤ |dx/x| + |dy/y| ≤
0.08 = 8%.

54. V = (1/3)πr2h, dV = (2/3)πrhdr + (1/3)πr2dh, dV/V = 2(dr/r) + dh/h, |dr/r| ≤ 0.01 and |dh/h| ≤ 0.04,
|dV/V | ≤ 2|dr/r|+ |dh/h| ≤ 0.06 = 6%.

55. z =
√
x2 + y2, dz =

x√
x2 + y2

dx+
y√

x2 + y2
dy,

dz

z
=

x

x2 + y2
dx+

y

x2 + y2
dy =

x2

x2 + y2

(
dx

x

)
+

y2

x2 + y2

(
dy

y

)
,

∣∣∣∣
dz

z

∣∣∣∣ ≤
x2

x2 + y2

∣∣∣∣
dx

x

∣∣∣∣+
y2

x2 + y2

∣∣∣∣
dy

y

∣∣∣∣, if

∣∣∣∣
dx

x

∣∣∣∣ ≤ r/100 and

∣∣∣∣
dy

y

∣∣∣∣ ≤ r/100, then

∣∣∣∣
dz

z

∣∣∣∣ ≤
x2

x2 + y2
(r/100) +

y2

x2 + y2
(r/100) =

r

100
so the percentage error in z is at most about r%.

56. (a) z =
√
x2 + y2, dz = x

(
x2 + y2

)−1/2
dx+y

(
x2 + y2

)−1/2
dy, |dz| ≤ x

(
x2 + y2

)−1/2 |dx|+y
(
x2 + y2

)−1/2 |dy|;
if x = 3, y = 4, |dx| ≤ 0.05, and |dy| ≤ 0.05 then |dz| ≤ (3/5)(0.05) + (4/5)(0.05) = 0.07 cm.

(b) A = (1/2)xy, dA = (1/2)ydx+ (1/2)xdy, |dA| ≤ (1/2)y|dx|+ (1/2)x|dy| ≤ 2(0.05) + (3/2)(0.05) = 0.175 cm2.

57. dT =
π

g
√
L/g

dL− πL

g2
√
L/g

dg,
dT

T
=

1

2

dL

L
− 1

2

dg

g
; |dL/L| ≤ 0.005 and |dg/g| ≤ 0.001 so |dT/T | ≤ (1/2)(0.005) +

(1/2)(0.001) = 0.003 = 0.3%.

58. dP = (k/V )dT − (kT/V 2)dV , dP/P = dT/T − dV/V ; if dT/T = 0.03 and dV/V = 0.05 then dP/P = −0.02 so
there is about a 2% decrease in pressure.

59. (a)

∣∣∣∣
d(xy)

xy

∣∣∣∣ =

∣∣∣∣
y dx+ x dy

xy

∣∣∣∣ =

∣∣∣∣
dx

x
+
dy

y

∣∣∣∣ ≤
∣∣∣∣
dx

x

∣∣∣∣+

∣∣∣∣
dy

y

∣∣∣∣ ≤
r

100
+

s

100
; (r + s)%.
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(b)

∣∣∣∣
d(x/y)

x/y

∣∣∣∣ =

∣∣∣∣
y dx− x dy

xy

∣∣∣∣ =

∣∣∣∣
dx

x
− dy

y

∣∣∣∣ ≤
∣∣∣∣
dx

x

∣∣∣∣+

∣∣∣∣
dy

y

∣∣∣∣ ≤
r

100
+

s

100
; (r + s)%.

(c)

∣∣∣∣
d(x2y3)

x2y3

∣∣∣∣ =

∣∣∣∣
2xy3 dx+ 3x2y2 dy

x2y3

∣∣∣∣ =

∣∣∣∣2
dx

x
+ 3

dy

y

∣∣∣∣ ≤ 2

∣∣∣∣
dx

x

∣∣∣∣+ 3

∣∣∣∣
dy

y

∣∣∣∣ ≤ 2
r

100
+ 3

s

100
; (2r + 3s)%.

(d)

∣∣∣∣
d(x3y1/2)

x3y1/2

∣∣∣∣ =

∣∣∣∣
3x2y1/2 dx+ (1/2)x3y−1/2 dy

x3y1/2

∣∣∣∣ =

∣∣∣∣3
dx

x
+

1

2

dy

y

∣∣∣∣ ≤ 3

∣∣∣∣
dx

x

∣∣∣∣+
1

2

∣∣∣∣
dy

y

∣∣∣∣ ≤ 3
r

100
+

1

2

s

100
; (3r+

1

2
s)%.

60. R = 1/ (1/R1 + 1/R2 + 1/R3), ∂R/∂R1 =
1

R2
1(1/R1 + 1/R2 + 1/R3)2

= R2/R2
1, similarly ∂R/∂R2 = R2/R2

2 and

∂R/∂R3 = R2/R2
3 so

dR

R
= (R/R1)

dR1

R1
+ (R/R2)

dR2

R2
+ (R/R3)

dR3

R3
,

∣∣∣∣
dR

R

∣∣∣∣ ≤ (R/R1)

∣∣∣∣
dR1

R1

∣∣∣∣+ (R/R2)

∣∣∣∣
dR2

R2

∣∣∣∣+

(R/R3)

∣∣∣∣
dR3

R3

∣∣∣∣ ≤ (R/R1) (0.10) + (R/R2) (0.10) + (R/R3) (0.10) = R (1/R1 + 1/R2 + 1/R3) (0.10) = (1)(0.10) =

0.10 = 10%.

61. dA =
1

2
b sin θda +

1

2
a sin θdb +

1

2
ab cos θdθ, |dA| ≤ 1

2
b sin θ|da| + 1

2
a sin θ|db| + 1

2
ab cos θ|dθ| ≤ 1

2
(50)(1/2)(1/2) +

1

2
(40)(1/2)(1/4) +

1

2
(40)(50)

(√
3/2
)

(π/90) = 35/4 + 50π
√

3/9 ≈ 39 ft2.

62. V = `wh, dV = whd`+ `hdw + `wdh, |dV/V | ≤ |d`/`|+ |dw/w|+ |dh/h| ≤ 3(r/100) = 3r%.

63. fx = 2x sin y, fy = x2 cos y are both continuous everywhere, so f is differentiable everywhere.

64. fx = y sin z, fy = x sin z, fz = xy cos z are all continuous everywhere, so f is differentiable everywhere.

65. That f is differentiable means that lim
(x,y)→(x0,y0)

Ef (x, y)√
(x− x0)2 + (y − y0)2

= 0, where Ef (x, y) = f(x, y)− Lf (x, y);

here Lf (x, y) is the linear approximation to f at (x0, y0). Let fx and fy denote fx(x0, y0), fy(x0, y0) respectively.
Then g(x, y, z) = z − f(x, y), Lf (x, y) = f(x0, y0) + fx(x − x0) + fy(y − y0), Lg(x, y, z) = g(x0, y0, z0) + gx(x −
x0) + gy(y − y0) + gz(z − z0) = 0− fx(x− x0)− fy(y − y0) + (z − z0), and Eg(x, y, z) = g(x, y, z)− Lg(x, y, z) =
(z−f(x, y))+fx(x−x0)+fy(y−y0)−(z−z0) = f(x0, y0)+fx(x0, y0)(x−x0)+fy(x0, y0)(y−y0)−f(x, y) = −Ef (x, y).

Thus
|Eg(x, y, z)|√

(x− x0)2 + (y − y0)2 + (z − z0)2
≤ |Ef (x, y)|√

(x− x0)2 + (y − y0)2
, so

lim
(x,y,z)→(x0,y0,z0)

Eg(x, y, z)√
(x− x0)2 + (y − y0)2 + (z − z0)2

= 0 and g is differentiable at (x0, y0, z0).

66. The condition lim
(∆x,∆y)→(0,0)

∆f − fx(x0, y0)∆x− fy(x0, y0)∆y√
(∆x)2 + (∆y)2

= 0 is equivalent to lim
(∆x,∆y)→(0,0)

ε(∆x,∆y) = 0

which is equivalent to ε being continuous at (0, 0) with ε(0, 0) = 0. Since ε is continuous, f is differentiable.

Exercise Set 13.5

1.
dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
= 42t13.

2.
dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
=

2(3 + t−1/3)

3(2t+ t2/3)
.

3.
dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
= 3t−2 sin(1/t).
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4.
dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
=

1− 2t4 − 8t4 ln t

2t
√

1 + ln t− 2t4 ln t
.

5.
dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
= −10

3
t7/3e1−t10/3 .

6.
dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
= (1 + t)et cosh

(
tet/2

)
sinh

(
tet/2

)
.

7.
dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt
= 165t32.

8.
dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt
=

3− (4/3)t−1/3 − 24t−7

3t− 2t2/3 + 4t−6
.

9.
dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt
= −2t cos

(
t2
)
.

10.
dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt
=

1− 512t5 − 2560t5 ln t

2t
√

1 + ln t− 512t5 ln t
.

11.
dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt
= 3264.

12.
dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt
= 0.

13.
dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
= 3(2t)t=2 − (3t2)t=2 = 12− 12 = 0.

14.
dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt
= 1 + 2(π cosπt)t=1 + 3(2t)t=1 = 1− 2π + 6 = 7− 2π.

15. Let z = xy, and let x = f(t) and y = g(t). Then z = f(t)g(t) and (f(t)g(t))′ =
dz

dt
=

∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
=

y
dx

dt
+ x

dy

dt
= g(t)f ′(t) + f(t)g′(t).

16. Let z = xy, and let x = t and y = t. Then z = tt and (tt)′ =
dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
= yxy−1 dx

dt
+ (lnx)xy

dy

dt
=

t · tt−1 + (ln t) tt = tt + (ln t) tt.

17. ∂z/∂u = 24u2v2 − 16uv3 − 2v + 3, ∂z/∂v = 16u3v − 24u2v2 − 2u− 3.

18. ∂z/∂u = 2u/v2 − u2v sec2(u/v)− 2uv2 tan(u/v), ∂z/∂v = −2u2/v3 + u3 sec2(u/v)− 2u2v tan(u/v).

19. ∂z/∂u = −2 sinu

3 sin v
, ∂z/∂v = −2 cosu cos v

3 sin2 v
.

20. ∂z/∂u = 3 + 3v/u− 4u, ∂z/∂v = 2 + 3 lnu+ 2 ln v.

21. ∂z/∂u = eu, ∂z/∂v = 0.

22. ∂z/∂u = − sin(u− v) sin
(
u2 + v2

)
+ 2u cos(u− v) cos

(
u2 + v2

)
,

∂z/∂v = sin(u− v) sin
(
u2 + v2

)
+ 2v cos(u− v) cos

(
u2 + v2

)
.
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23. ∂T/∂r = 3r2 sin θ cos2 θ − 4r3 sin3 θ cos θ, ∂T/∂θ = −2r3 sin2 θ cos θ + r4 sin4 θ + r3 cos3 θ − 3r4 sin2 θ cos2 θ.

24. dR/dφ = 5e5φ.

25. ∂t/∂x =
(
x2 + y2

)
/
(
4x2y3

)
, ∂t/∂y =

(
y2 − 3x2

)
/
(
4xy4

)
.

26. ∂w/∂u =
2v2

[
u2v2 − (u− 2v)2

]

[u2v2 + (u− 2v)2]
2 , ∂w/∂v =

u2
[
(u− 2v)2 − u2v2

]

[u2v2 + (u− 2v)2]
2 .

27. ∂z/∂r = (dz/dx)(∂x/∂r) = 2r cos2 θ/
(
r2 cos2 θ + 1

)
, ∂z/∂θ = (dz/dx)(∂x/∂θ) = −2r2 sin θ cos θ/

(
r2 cos2 θ + 1

)
.

28. ∂u/∂x = (∂u/∂r)(dr/dx) + (∂u/∂t)(∂t/∂x) =
(
s2 ln t

)
(2x) +

(
rs2/t

) (
y3
)

= x(4y + 1)2
(
1 + 2 lnxy3

)
, ∂u/∂y =

(∂u/∂s)(ds/dy) + (∂u/∂t)(∂t/∂y) = (2rs ln t)(4) +
(
rs2/t

) (
3xy2

)
= 8x2(4y + 1) lnxy3 + 3x2(4y + 1)2/y.

29. ∂w/∂ρ = 2ρ
(
4 sin2 φ+ cos2 φ

)
, ∂w/∂φ = 6ρ2 sinφ cosφ, ∂w/∂θ = 0.

30.
dw

dx
=
∂w

∂x
+
∂w

∂y

dy

dx
+
∂w

∂z

dz

dx
= 3y2z3 + (6xyz3)(6x) + 9xy2z2 1

2
√
x− 1

= 3(3x2 + 2)2(x− 1)3/2+

+36x2(3x2 + 2)(x− 1)3/2 +
9

2
x(3x2 + 2)2

√
x− 1 =

3

2
(3x2 + 2)(39x3 − 30x2 + 10x− 4)

√
x− 1.

31. −π.

32. 351/2, −168.

33.
√

3e
√

3,
(
2− 4

√
3
)
e
√

3.

34. 1161.

35. A =
1

2
ab sin θ, so

dA

dt
=
∂A

∂a

da

dt
+
∂A

∂b

db

dt
+
∂A

∂θ

dθ

dt
. This gives us 0 =

dA

dt
=

1

2
b sin θ

da

dt
+

1

2
a sin θ

db

dt
+

1

2
ab cos θ

dθ

dt
.

From here,
dθ

dt
= −(b sin θ

da

dt
+ a sin θ

db

dt
)/(ab cos θ), and with the given values,

dθ

dt
= −9

√
3

20
≈ −0.779423 rad/s.

36. V = IR, so
dV

dt
=

∂V

∂I

dI

dt
+
∂V

∂R

dR

dt
= R

dI

dt
+ I

dR

dt
. We also know that R =

R1R2

R1 +R2
, which gives us

dR

dt
=

∂R

∂R1

dR1

dt
+

∂R

∂R2

dR2

dt
=

R2
2

(R1 +R2)2

dR1

dt
+

R2
1

(R1 +R2)2

dR2

dt
. With the given values, we get

dV

dt
≈ 0.455 V/s.

37. False; by themselves they have no meaning.

38. True; this is the chain rule.

39. False; consider z = xy, x = t, y = t; then z = t2.

40. True; use the chain rule to differentiate both sides of the equation f(t, t) = c.

41. F (x, y) = x2y3 + cos y,
dy

dx
= − 2xy3

3x2y2 − sin y
.

42. F (x, y) = x3 − 3xy2 + y3 − 5,
dy

dx
= − 3x2 − 3y2

−6xy + 3y2
=

x2 − y2

2xy − y2
.

43. F (x, y) = exy + yey − 1,
dy

dx
= − yexy

xexy + yey + ey
.
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44. F (x, y) = x− (xy)1/2 + 3y − 4,
dy

dx
= − 1− (1/2)(xy)−1/2y

−(1/2)(xy)−1/2x+ 3
=

2
√
xy − y

x− 6
√
xy

.

45.
∂z

∂x
=

2x+ yz

6yz − xy ,
∂z

∂y
=
xz − 3z2

6yz − xy .

46. ln(1 + z) + xy2 + z − 1 = 0;
∂z

∂x
= −y

2(1 + z)

2 + z
,
∂z

∂y
= −2xy(1 + z)

2 + z
.

47. yex − 5 sin 3z − 3z = 0;
∂z

∂x
= − yex

−15 cos 3z − 3
=

yex

15 cos 3z + 3
,
∂z

∂y
=

ex

15 cos 3z + 3
.

48.
∂z

∂x
= − zeyz cosxz − yexy cos yz

yexy sin yz + xeyz cosxz + yeyz sinxz
,
∂z

∂y
= −ze

xy sin yz − xexy cos yz + zeyz sinxz

yexy sin yz + xeyz cosxz + yeyz sinxz
.

49. (a)
∂z

∂x
=
dz

du

∂u

∂x
,
∂z

∂y
=
dz

du

∂u

∂y
.

(b)
∂2z

∂x2
=
dz

du

∂2u

∂x2
+

∂

∂x

(
dz

du

)
∂u

∂x
=
dz

du

∂2u

∂x2
+
d2z

du2

(
∂u

∂x

)2
;

∂2z

∂y2
=
dz

du

∂2u

∂y2
+
∂

∂y

(
dz

du

)
∂u

∂y
=
dz

du

∂2u

∂y2
+
d2z

du2

(
∂u

∂y

)2

;
∂2z

∂y∂x
=
dz

du

∂2u

∂y∂x
+
∂

∂y

(
dz

du

)
∂u

∂x
=
dz

du

∂2u

∂y∂x
+
d2z

du2

∂u

∂x

∂u

∂y
.

50. (a) z = f(u), u = x2−y2; ∂z/∂x = (dz/du)(∂u/∂x) = 2xdz/du; ∂z/∂y = (dz/du)(∂u/∂y) = −2ydz/du, y∂z/∂x+
x∂z/∂y = 2xydz/du− 2xydz/du = 0.

(b) z = f(u), u = xy;
∂z

∂x
=
dz

du

∂u

∂x
= y

dz

du
,
∂z

∂y
=
dz

du

∂u

∂y
= x

dz

du
, x

∂z

∂x
− y ∂z

∂y
= xy

dz

du
− xy dz

du
= 0.

(c) yzx + xzy = y(2x cos(x2 − y2))− x(2y cos(x2 − y2)) = 0.

(d) xzx − yzy = xyexy − yxexy = 0.

51. Let z = f(u) where u = x + 2y; then ∂z/∂x = (dz/du)(∂u/∂x) = dz/du, ∂z/∂y = (dz/du)(∂u/∂y) = 2dz/du so
2∂z/∂x− ∂z/∂y = 2dz/du− 2dz/du = 0.

52. Let z = f(u) where u = x2 + y2; then ∂z/∂x = (dz/du)(∂u/∂x) = 2x dz/du, ∂z/∂y = (dz/du)(∂u/∂y) = 2ydz/du
so y ∂z/∂x− x∂z/∂y = 2xydz/du− 2xydz/du = 0.

53.
∂w

∂x
=
dw

du

∂u

∂x
=
dw

du
,
∂w

∂y
=
dw

du

∂u

∂y
= 2

dw

du
,
∂w

∂z
=
dw

du

∂u

∂z
= 3

dw

du
, so

∂w

∂x
+
∂w

∂y
+
∂w

∂z
= 6

dw

du
.

54. ∂w/∂x = (dw/dρ)(∂ρ/∂x) = (x/ρ)dw/dρ, similarly ∂w/∂y = (y/ρ)dw/dρ and ∂w/∂z = (z/ρ)dw/dρ so (∂w/∂x)2+
(∂w/∂y)2 + (∂w/∂z)2 = (dw/dρ)2.

55. z = f(u, v) where u = x−y and v = y−x,
∂z

∂x
=
∂z

∂u

∂u

∂x
+
∂z

∂v

∂v

∂x
=
∂z

∂u
− ∂z
∂v

and
∂z

∂y
=
∂z

∂u

∂u

∂y
+
∂z

∂v

∂v

∂y
= −∂z

∂u
+
∂z

∂v

so
∂z

∂x
+
∂z

∂y
= 0.

56. Let w = f(r, s, t) where r = x− y, s = y − z, t = z − x; ∂w/∂x = (∂w/∂r)(∂r/∂x) + (∂w/∂t)(∂t/∂x) = ∂w/∂r −
∂w/∂t, similarly ∂w/∂y = −∂w/∂r + ∂w/∂s and ∂w/∂z = −∂w/∂s+ ∂w/∂t so ∂w/∂x+ ∂w/∂y + ∂w/∂z = 0.

57. (a) 1 = −r sin θ
∂θ

∂x
+ cos θ

∂r

∂x
and 0 = r cos θ

∂θ

∂x
+ sin θ

∂r

∂x
; solve for ∂r/∂x and ∂θ/∂x.
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(b) 0 = −r sin θ
∂θ

∂y
+ cos θ

∂r

∂y
and 1 = r cos θ

∂θ

∂y
+ sin θ

∂r

∂y
; solve for ∂r/∂y and ∂θ/∂y.

(c)
∂z

∂x
=
∂z

∂r

∂r

∂x
+
∂z

∂θ

∂θ

∂x
=
∂z

∂r
cos θ − 1

r

∂z

∂θ
sin θ,

∂z

∂y
=
∂z

∂r

∂r

∂y
+
∂z

∂θ

∂θ

∂y
=
∂z

∂r
sin θ +

1

r

∂z

∂θ
cos θ.

(d) Square and add the results of parts (a) and (b).

(e) From part (c),
∂2z

∂x2
=

∂

∂r

(
∂z

∂r
cos θ − 1

r

∂z

∂θ
sin θ

)
∂r

∂x
+

∂

∂θ

(
∂z

∂r
cos θ − 1

r

∂z

∂θ
sin θ

)
∂θ

∂x
=

=

(
∂2z

∂r2
cos θ +

1

r2

∂z

∂θ
sin θ − 1

r

∂2z

∂r∂θ
sin θ

)
cos θ+

(
∂2z

∂θ∂r
cos θ − ∂z

∂r
sin θ − 1

r

∂2z

∂θ2
sin θ − 1

r

∂z

∂θ
cos θ

)(
− sin θ

r

)
=

∂2z

∂r2
cos2 θ +

2

r2

∂z

∂θ
sin θ cos θ − 2

r

∂2z

∂θ∂r
sin θ cos θ +

1

r2

∂2z

∂θ2
sin2 θ +

1

r

∂z

∂r
sin2 θ.

Similarly, from part (c),
∂2z

∂y2
=
∂2z

∂r2
sin2 θ − 2

r2

∂z

∂θ
sin θ cos θ +

2

r

∂2z

∂θ∂r
sin θ cos θ +

1

r2

∂2z

∂θ2
cos2 θ +

1

r

∂z

∂r
cos2 θ.

Add these to get
∂2z

∂x2
+
∂2z

∂y2
=
∂2z

∂r2
+

1

r2

∂2z

∂θ2
+

1

r

∂z

∂r
.

58. zx =
−2y

x2 + y2
, zxx =

4xy

(x2 + y2)2
, zy =

2x

x2 + y2
, zyy = − 4xy

(x2 + y2)2
, zxx + zyy = 0; z = tan−1 2r2 cos θ sin θ

r2(cos2 θ − sin2 θ)
=

tan−1 tan 2θ = 2θ + kπ for some fixed k; zr = 0, zθθ = 0.

59. (a) By the chain rule,
∂u

∂r
=

∂u

∂x
cos θ +

∂u

∂y
sin θ and

∂v

∂θ
= −∂v

∂x
r sin θ +

∂v

∂y
r cos θ, use the Cauchy-Riemann

conditions
∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
in the equation for

∂u

∂r
to get

∂u

∂r
=
∂v

∂y
cos θ − ∂v

∂x
sin θ and compare to

∂v

∂θ

to see that
∂u

∂r
=

1

r

∂v

∂θ
. The result

∂v

∂r
= −1

r

∂u

∂θ
can be obtained by considering

∂v

∂r
and

∂u

∂θ
.

(b) ux =
2x

x2 + y2
, vy = 2

1

x

1

1 + (y/x)2
=

2x

x2 + y2
= ux;uy =

2y

x2 + y2
, vx = −2

y

x2

1

1 + (y/x)2
= − 2y

x2 + y2
=

−uy;u = ln r2, v = 2θ, ur = 2/r, vθ = 2, so ur =
1

r
vθ, uθ = 0, vr = 0, so vr = −1

r
uθ.

60. (a) ux = f ′(x+ ct), uxx = f ′′(x+ ct), ut = cf ′(x+ ct), utt = c2f ′′(x+ ct);utt = c2uxx.

(b) Substitute g for f and −c for c in part (a).

(c) Since the sum of derivatives equals the derivative of the sum, the result follows from parts (a) and (b).

(d) sin t sinx =
1

2
(− cos(x+ t) + cos(x− t)).

61. ∂w/∂ρ = (sinφ cos θ)∂w/∂x+ (sinφ sin θ)∂w/∂y + (cosφ) ∂w/∂z,

∂w/∂φ = (ρ cosφ cos θ)∂w/∂x+ (ρ cosφ sin θ)∂w/∂y − (ρ sinφ)∂w/∂z,

∂w/∂θ = −(ρ sinφ sin θ)∂w/∂x+ (ρ sinφ cos θ)∂w/∂y.

62. (a)
∂w

∂x
=
∂f

∂x
+
∂f

∂z

∂z

∂x
. (b)

∂w

∂y
=
∂f

∂y
+
∂f

∂z

∂z

∂y
.

63. wr = er/ (er + es + et + eu), wrs = −eres/ (er + es + et + eu)
2
, wrst = 2ereset/ (er + es + et + eu)

3
, wrstu =

−6ereseteu/
(
er + es + et + eu

)4
= −6er+s+t+u/e4w = −6er+s+t+u−4w.

64. ∂w/∂y1 = a1∂w/∂x1 + a2∂w/∂x2 + a3∂w/∂x3, ∂w/∂y2 = b1∂w/∂x1 + b2∂w/∂x2 + b3∂w/∂x3.
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65. (a) dw/dt =
4∑

i=1

(∂w/∂xi) (dxi/dt). (b) ∂w/∂vj =
4∑

i=1

(∂w/∂xi) (∂xi/∂vj) for j = 1, 2, 3.

66. Let u = x2
1 + x2

2 + ... +x2
n; then w = uk, ∂w/∂xi = kuk−1(2xi) = 2k xiu

k−1, ∂2w/∂x2
i = 2k(k − 1)xiu

k−2 (2xi) +

2kuk−1 = 4k(k − 1)x2
iu
k−2 + 2kuk−1 for i = 1, 2, . . . , n, so

n∑

i=1

∂2w/∂x2
i = 4k (k − 1)uk−2

n∑

i=1

x2
i + 2knuk−1 =

4k(k − 1)uk−2u+ 2knuk−1 = 2kuk−1[2(k − 1) + n], which is 0 if k = 0 or if 2(k − 1) + n = 0, k = 1− n/2.

67. dF/dx = (∂F/∂u)(du/dx) + (∂F/∂v)(dv/dx) = f(u)g′(x)− f(v)h′(x) = f(g(x))g′(x)− f(h(x))h′(x).

68. Represent the line segment C that joins A and B by x = x0 + (x1 − x0)t, y = y0 + (y1 − y0)t for 0 ≤ t ≤ 1. Let
F (t) = f(x0 + (x1 − x0)t, y0 + (y1 − y0)t) for 0 ≤ t ≤ 1; then f(x1, y1) − f(x0, y0) = F (1) − F (0). Apply the
Mean Value Theorem to F (t) on the interval [0,1] to get [F (1)−F (0)]/(1− 0) = F ′ (t∗), F (1)−F (0) = F ′ (t∗) for
some t∗ in (0,1) so f (x1, y1)− f (x0, y0) = F ′ (t∗). By the chain rule, F ′(t) = fx(x, y)(dx/dt) + fy(x, y)(dy/dt) =
fx(x, y)(x1−x0)+fy(x, y)(y1−y0). Let (x∗, y∗) be the point on C for t = t∗ then f (x1, y1)−f (x0, y0) = F ′ (t∗) =
fx (x∗, y∗) (x1 − x0) + fy (x∗, y∗) (y1 − y0).

69. Let (a, b) be any point in the region, if (x, y) is in the region then by the result of Exercise 74 f(x, y)− f(a, b) =
fx(x∗, y∗)(x − a) + fy(x∗, y∗)(y − b), where (x∗, y∗) is on the line segment joining (a, b) and (x, y). If fx(x, y) =
fy(x, y) = 0 throughout the region then f(x, y)− f(a, b) = (0)(x− a) + (0)(y − b) = 0, f(x, y) = f(a, b) so f(x, y)
is constant on the region.

Exercise Set 13.6

1. ∇f(x, y) = (3y/2)(1 + xy)1/2i + (3x/2)(1 + xy)1/2j, ∇f(3, 1) = 3i + 9j, Duf = ∇f · u = 12/
√

2 = 6
√

2.

2. ∇f(x, y) = 5 cos(5x− 3y)i− 3 cos(5x− 3y)j, ∇f(3, 5) = 5i− 3j, Duf = ∇f · u = −27/5.

3. ∇f(x, y) =
[
2x/

(
1 + x2 + y

)]
i +
[
1/
(
1 + x2 + y

)]
j, ∇f(0, 0) = j, Duf = −3/

√
10.

4. ∇f(x, y) = −
[
(c+ d)y/(x− y)2

]
i+
[
(c+ d)x/(x− y)2

]
j,∇f(3, 4) = −4(c+d)i+ 3(c+d)j, Duf = −(7/5)(c+d).

5. ∇f(x, y, z) = 20x4y2z3i + 8x5yz3j + 12x5y2z2k, ∇f(2,−1, 1) = 320i− 256j + 384k, Duf = −320.

6. ∇f(x, y, z) = yzexzi + exzj + (xyexz + 2z)k, ∇f(0, 2, 3) = 6i + j + 6k, Duf = 45/7.

7. ∇f(x, y, z) =
2x

x2 + 2y2 + 3z2
i+

4y

x2 + 2y2 + 3z2
j+

6z

x2 + 2y2 + 3z2
k, ∇f(−1, 2, 4) = (−2/57)i+(8/57)j+(24/57)k,

Duf = −314/741.

8. ∇f(x, y, z) = yz cosxyzi+ xz cosxyzj+ xy cosxyzk, ∇f(1/2, 1/3, π) = (π
√

3/6)i+ (π
√

3/4)j+ (
√

3/12)k, Duf =
(1− π)/12.

9. ∇f(x, y) = 12x2y2i + 8x3yj, ∇f(2, 1) = 48i + 64j, u = (4/5)i− (3/5)j, Duf = ∇f · u = 0.

10. ∇f(x, y) = 27x2i− 6y2j, ∇f(1, 0) = 27i, u = (1/
√

2)i + (1/
√

2)j, Duf = ∇f · u = 27/
√

2.

11. ∇f(x, y) =
(
y2/x

)
i + 2y lnxj, ∇f(1, 4) = 16i, u = (−i + j)/

√
2, Duf = −8

√
2.

12. ∇f(x, y) = ex cos yi− ex sin yj, ∇f(0, π/4) = (i− j)/
√

2, u = (5i− 2j)/
√

29, Duf = 7/
√

58.

13. ∇f(x, y) = −
[
y/
(
x2 + y2

)]
i +
[
x/
(
x2 + y2

)]
j,∇f(−2, 2) = −(i + j)/4, u = −(i + j)/

√
2, Duf =

√
2/4.

14. ∇f(x, y) = (ey − yex) i + (xey − ex)j, ∇f(0, 0) = i− j, u = (5i− 2j)/
√

29, Duf = 7/
√

29.
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15. ∇f(x, y, z) = yi + xj + 2zk, ∇f(−3, 0, 4) = −3j + 8k, u = (i + j + k)/
√

3, Duf = 5/
√

3.

16. ∇f(x, y, z) = −x
(
x2 + z2

)−1/2
i + j − z

(
x2 + z2

)−1/2
k, ∇f(−3, 1, 4) = (3/5)i + j−(4/5)k, u = (2i − 2j− k)/3,

Duf = 0.

17. ∇f(x, y, z) = − 1

z + y
i − z − x

(z + y)2
j +

y + x

(z + y)2
k, ∇f(1, 0,−3) = (1/3)i + (4/9)j + (1/9)k, u = (−6i + 3j − 2k)/7,

Duf = −8/63.

18. ∇f(x, y, z) = ex+y+3z(i + j+3k), ∇f(−2, 2,−1) = e−3(i + j+3k), u = (20i− 4j + 5k)/21, Duf = (31/21)e−3.

19. ∇f(x, y) = (y/2)(xy)−1/2i + (x/2)(xy)−1/2j, ∇f(1, 4) = i + (1/4)j, u = cos θi + sin θj = (1/2)i +
(√

3/2
)
j,

Duf = 1/2 +
√

3/8.

20. ∇f(x, y) = [2y/(x+ y)2]i− [2x/(x+ y)2]j, ∇f(−1,−2) = −(4/9)i + (2/9)j, u = j, Duf = 2/9.

21. ∇f(x, y) = 2 sec2(2x+ y)i + sec2(2x+ y)j, ∇f(π/6, π/3) = 8i + 4j, u = (i− j)/
√

2, Duf = 2
√

2.

22. ∇f(x, y) = coshx cosh yi + sinhx sinh yj, ∇f(0, 0) = i, u = −i, Duf = −1.

23. ∇f(x, y) = y(x+ y)−2i− x(x+ y)−2j, ∇f(1, 0) = −j,
−→
PQ= −2i− j, u = (−2i− j)/

√
5, Duf = 1/

√
5.

24. ∇f(x, y) = −e−x sec yi + e−x sec y tan yj,∇f(0, π/4) =
√

2(−i + j),
−→
PO= −(π/4)j, u = −j, Duf = −

√
2.

25. ∇f(x, y) =
yey

2
√
xy

i +

(√
xyey +

xey

2
√
xy

)
j, ∇f(1, 1) = (e/2)(i + 3j), u = −j, Duf = −3e/2.

26. ∇f(x, y) = −y(x+ y)−2i + x(x+ y)−2j, ∇f(2, 3) = (−3i + 2j)/25, if Duf = 0 then u and ∇f are orthogonal, by
inspection 2i + 3j is orthogonal to ∇f(2, 3) so u = ±(2i + 3j)/

√
13.

27. ∇f(2, 1,−1) = −i + j− k.
−→
PQ= −3i + j + k, u = (−3i + j + k)/

√
11, Duf = 3/

√
11.

28. ∇f(−1,−2, 1) = 13i + 5j− 20k, u = −k, Duf = 20.

29. Solve the system (3/5)fx(1, 2)− (4/5)fy(1, 2) = −5, (4/5)fx(1, 2) + (3/5)fy(1, 2) = 10 for

(a) fx(1, 2) = 5. (b) fy(1, 2) = 10. (c) ∇f(1, 2) = 5i + 10j, u = (−i− 2j)/
√

5, Duf = −5
√

5.

30. ∇f(−5, 1) = −3i + 2j,
−→
PQ= i + 2j, u = (i + 2j)/

√
5, Duf = 1/

√
5.

31. f increases the most in the direction of III.

32. The contour lines are closer at P , so the function is increasing more rapidly there, hence ∇f is larger at P .

33. ∇z = −7y cos(7y2 − 7xy)i + (14y − 7x) cos(7y2 − 7xy)j.

34. ∇z = (42/y) cos(6x/y)i− (42x/y2) cos(6x/y)j.

35. ∇z = − 84y

(6x− 7y)2
i +

84x

(6x− 7y)2
j.

36. ∇z =
48ye3y

(x+ 8y)2
i +

6xe3y(3x+ 24y − 8)

(x+ 8y)2
j.



654 Chapter 13

37. ∇w = −9x8i− 3y2j + 12z11k.

38. ∇w = e8y sin 6zi + 8xe8y sin 6zj + 6xe8y cos 6zk.

39. ∇w =
x

x2 + y2 + z2
i +

y

x2 + y2 + z2
j +

z

x2 + y2 + z2
k.

40. ∇w = e−5x sec(x2yz)
[(

2xyz tan(x2yz)− 5
)
i + x2z tan(x2yz) j + x2y tan(x2yz)k

]
.

41. ∇f(x, y) = 10xi + 4y3j, ∇f(4, 2) = 40i + 32j.

42. ∇f(x, y) = 10x cos(x2)i− 3 sin 3yj, ∇f(
√
π/2, 0) = 5

√
π/2i.

43. ∇f(x, y) = 3(2x+ y)
(
x2 + xy

)2
i + 3x

(
x2 + xy

)2
j, ∇f(−1,−1) = −36i− 12j.

44. ∇f(x, y) = −x
(
x2 + y2

)−3/2
i− y

(
x2 + y2

)−3/2
j, ∇f(3, 4) = −(3/125)i− (4/125)j.

45. ∇f(x, y, z) = [y/(x+ y + z)]i + [y/(x+ y + z) + ln(x+ y + z)]j + [y/(x+ y + z)]k,∇f(−3, 4, 0) = 4i + 4j + 4k.

46. ∇f(x, y, z) = 3y2z tan2 x sec2 x i + 2yz tan3 x j + y2 tan3 xk, ∇f(π/4,−3) = 54 i− 6 j + 9k.

47. f(1, 2) = 3, level curve 4x− 2y + 3 = 3, 2x− y = 0; ∇f(x, y) = 4i− 2j, ∇f(1, 2) = 4i− 2j.

(1, 2)

4i – 2j x

y

48. f(−2, 2) = 1/2, level curve y/x2 = 1/2, y = x2/2 for x 6= 0. ∇f(x, y) = −
(
2y/x3

)
i +

(
1/x2

)
j, ∇f(−2, 2) =

(1/2)i + (1/4)j.

1
2

1
4i + j

(−2, 2)

x

y

49. f(−2, 0) = 4, level curve x2 + 4y2 = 4, x2/4 + y2 = 1. ∇f(x, y) = 2xi + 8yj, ∇f(−2, 0) = −4i.
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-4i

1

2

x

y

50. f(2,−1) = 3, level curve x2 − y2 = 3. ∇f(x, y) = 2xi− 2yj, ∇f(2,−1) = 4i + 2j.

(2, −1)

4 i + 2j
x

y

51. ∇f(x, y) = 8xyi + 4x2j, ∇f(1,−2) = −16i + 4j is normal to the level curve through P so u = ±(−4i + j)/
√

17.

52. ∇f(x, y) = (6xy − y)i +
(
3x2 − x

)
j, ∇f(2,−3) = −33i + 10j is normal to the level curve through P so u =

±(−33i + 10j)/
√

1189.

53. ∇f(x, y) = 12x2y2i + 8x3yj, ∇f(−1, 1) = 12i− 8j, u = (3i− 2j)/
√

13, ‖∇f(−1, 1)‖ = 4
√

13.

54. ∇f(x, y) = 3i− (1/y)j, ∇f(2, 4) = 3i− (1/4)j, u = (12i− j)/
√

145, ‖∇f(2, 4)‖ =
√

145/4.

55. ∇f(x, y) = x
(
x2 + y2

)−1/2
i + y

(
x2 + y2

)−1/2
j,∇f(4,−3) = (4i− 3j)/5, u = (4i− 3j)/5, ‖∇f(4,−3)‖ = 1.

56. ∇f(x, y) = y(x+ y)−2i− x(x+ y)−2j, ∇f(0, 2) = (1/2)i, u = i, ‖∇f(0, 2)‖ = 1/2.

57. ∇f(1, 1,−1) = 3i− 3j, u = (i− j)/
√

2, ‖∇f(1, 1,−1)‖ = 3
√

2.

58. ∇f(0,−3, 0) = (i−3j+4k)/6, u = (i−3j+4k)/
√

26, ‖∇f(0,−3, 0)‖ =
√

26/6.

59. ∇f(1, 2,−2) = (−i + j)/2, u = (−i + j)/
√

2, ‖∇f(1, 2,−2)‖ = 1/
√

2.

60. ∇f(4, 2, 2) = (i− j− k)/8, u = (i− j− k)/
√

3, ‖∇f(4, 2, 2)‖ =
√

3/8.

61. ∇f(x, y) = −2xi− 2yj, ∇f(−1,−3) = 2i + 6j, u = −(i + 3j)/
√

10, −‖∇f(−1,−3)‖ = −2
√

10.

62. ∇f(x, y) = yexyi + xexyj; ∇f(2, 3) = e6(3i + 2j), u = −(3i + 2j)/
√

13, −‖∇f(2, 3)‖ = −
√

13e6.

63. ∇f(x, y) = −3 sin(3x − y)i + sin(3x − y)j, ∇f(π/6, π/4) = (−3i + j)/
√

2, u = (3i− j)/
√

10, −‖∇f(π/6, π/4)‖ =
−
√

5.

64. ∇f(x, y) =
y

(x+ y)2

√
x+ y

x− y i−
x

(x+ y)2

√
x+ y

x− y j, ∇f(3, 1) = (
√

2/16)(i− 3j), u = −(i− 3j)/
√

10, −‖∇f(3, 1)‖ =

−
√

5/8.

65. ∇f(5, 7, 6) = −i + 11j− 12k, u = (i− 11j + 12k)/
√

266, −‖∇f(5, 7, 6)‖ = −
√

266.
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66. ∇f(0, 1, π/4) = 2
√

2(i− k), u = −(i− k)/
√

2, −‖∇f(0, 1, π/4)‖ = −4.

67. False; actually they are equal: Dv(f) = ∇f · v/‖v‖ = ∇f · 2‖u‖/2 = Du(f).

68. True: let u = (x, x2). Then 0 = Dfu = fx(0, 0) · 1 + fy(0, 0) · 0 = fx(0, 0).

69. False; f(x, y) = x and u = j.

70. False, for example f(x, y) = sinx, (x0, y0) = (0, 0) and (x1, y1) = (3π/2, 0).

71. ∇f(4,−5) = 2i− j, u = (5i + 2j)/
√

29, Duf = 8/
√

29.

72. Let u = u1i + u2j where u2
1 + u2

2 = 1, but Duf = ∇f · u = u1 − 2u2 = −2 so u1 = 2u2 − 2, (2u2 − 2)
2

+ u2
2 = 1,

5u2
2 − 8u2 + 3 = 0, u2 = 1 or u2 = 3/5 thus u1 = 0 or u1 = −4/5; u = j or u = −4

5
i +

3

5
j.

73. (a) At (1, 2) the steepest ascent seems to be in the direction i + j and the slope in that direction seems to be

0.5/(
√

2/2) = 1/
√

2, so ∇f ≈ 1

2
i +

1

2
j, which has the required direction and magnitude.

(b) The direction of −∇f(4, 4) appears to be −i− j and its magnitude appears to be 1/0.8 = 5/4.

5

5

x

y

−∇f (4, 4)

74.

500

P

0 ft

100
200

300 400

Depart from each contour line in a direction orthogonal to that contour line, as an approximation to the optimal
path.

75. ∇z = 6xi− 2yj, ‖∇z‖ =
√

36x2 + 4y2 = 6 if 36x2 + 4y2 = 36; all points on the ellipse 9x2 + y2 = 9.

76. ∇z = 3i + 2yj, ‖∇z‖ =
√

9 + 4y2, so ∇‖∇z‖ =
4y√

9 + 4y2
j, and ∇‖∇z‖

∣∣∣∣
(x,y)=(5,2)

=
8

5
j.

77. r = ti− t2j, dr/dt = i− 2tj = i− 4j at the point (2,−4), u = (i− 4j)/
√

17; ∇z = 2xi + 2yj = 4i− 8j at (2,−4),
hence dz/ds = Duz = ∇z · u = 36/

√
17.

78. (a) ∇T (x, y) =
y
(
1− x2 + y2

)

(1 + x2 + y2)
2 i +

x
(
1 + x2 − y2

)

(1 + x2 + y2)
2 j, ∇T (1, 1) = (i + j)/9, u = (2i− j)/

√
5, DuT = 1/

(
9
√

5
)
.

(b) u = −(i + j)/
√

2, opposite to ∇T (1, 1).
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79. (a) ∇V (x, y) = −2e−2x cos 2yi− 2e−2x sin 2yj, E = −∇V (π/4, 0) = 2e−π/2i.

(b) V (x, y) decreases most rapidly in the direction of −∇V (x, y) which is E.

80. ∇z = −0.04xi− 0.08yj, if x = −20 and y = 5 then ∇z = 0.8i− 0.4j.

(a) u = −i points due west, Duz = −0.8, the climber will descend because z is decreasing.

(b) u = (i + j)/
√

2 points northeast, Duz = 0.2
√

2, the climber will ascend at the rate of 0.2
√

2 m per m of travel
in the xy−plane.

(c) The climber will travel a level path in a direction perpendicular to ∇z = 0.8i−0.4j, by inspection ±(i+2j)/
√

5
are unit vectors in these directions; (i + 2j)/

√
5 makes an angle of tan−1(1/2) ≈ 27◦ with the positive y-axis so

−(i+2j)/
√

5 makes the same angle with the negative y-axis. The compass direction should be N 27◦ E or S 27◦

W.

81. Let u be the unit vector in the direction of a, then Duf(3,−2, 1) = ∇f(3,−2, 1) · u = ‖∇f(3,−2, 1)‖ cos θ =
5 cos θ = −5, cos θ = −1, θ = π so ∇f(3,−2, 1) is oppositely directed to u; ∇f(3,−2, 1) = −5u = −10/3i+ 5/3j+
10/3k.

82. (a) ∇T (1, 1, 1) = (i + j + k)/8, u = −(i + j + k)/
√

3, DuT = −
√

3/8.

(b) (i + j + k)/
√

3. (c)
√

3/8.

83. (a) ∇r =
x√

x2 + y2
i +

y√
x2 + y2

j = r/r.

(b) ∇f(r) =
∂f(r)

∂x
i +

∂f(r)

∂y
j = f ′(r)

∂r

∂x
i + f ′(r)

∂r

∂y
j = f ′(r)∇r.

84. (a) ∇
(
re−3r

)
=

(1− 3r)

r
e−3rr.

(b) 3r2r =
f ′(r)
r

r so f ′(r) = 3r3, f(r) =
3

4
r4 + C, f(2) = 12 + C = 1, C = −11; f(r) =

3

4
r4 − 11.

85. ur = cos θi+sin θj, uθ = − sin θi+cos θj, ∇z =
∂z

∂x
i+
∂z

∂y
j =

(
∂z

∂r
cos θ − 1

r

∂z

∂θ
sin θ

)
i+

(
∂z

∂r
sin θ +

1

r

∂z

∂θ
cos θ

)
j =

∂z

∂r
(cos θi + sin θj) +

1

r

∂z

∂θ
(− sin θi + cos θj) =

∂z

∂r
ur +

1

r

∂z

∂θ
uθ.

86. (a) ∇(f + g) = (fx + gx) i + (fy + gy) j = (fxi + fyj) + (gxi + gyj) = ∇f +∇g.

(b) ∇(cf) = (cfx) i + (cfy) j = c (fxi + fyj) = c∇f .

(c) ∇(fg) = (fgx + gfx) i + (fgy + gfy) j = f (gxi + gyj) + g (fxi + fyj) = f∇g + g∇f .

(d) ∇(f/g) =
gfx − fgx

g2
i +

gfy − fgy
g2

j =
g (fxi + fyj)− f (gxi + gyj)

g2
=
g∇f − f∇g

g2
.

(e) ∇ (fn) =
(
nfn−1fx

)
i +
(
nfn−1fy

)
j = nfn−1 (fxi + fyj) = nfn−1∇f .

87. r′(t) = v(t) = k(x, y)∇T = −8k(x, y)xi− 2k(x, y)yj;
dx

dt
= −8kx,

dy

dt
= −2ky. Divide and solve to get y4 = 256x;

one parametrization is x(t) = e−8t, y(t) = 4e−2t.
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88. r′(t) = v(t) = k∇T = −2k(x, y)xi − 4k(x, y)yj. Divide and solve to get y =
3

25
x2; one parametrization is

x(t) = 5e−2t, y(t) = 3e−4t.

89.

-3 3

-5

5

x

y

C = 0

C = –5

C = –10

C = –15

90.

4

-4

-6 6

T = 80
T = 95

T = 97

(5, 3)

T = 90

91. (a)

z

x
y

(c) ∇f = [2x− 2x(x2 + 3y2)]e−(x2+y2)i + [6y − 2y(x2 + 3y2)]e−(x2+y2)j.

(d) ∇f = 0 if x = y = 0 or x = 0, y = ±1 or x = ±1, y = 0.

92. dz/dt = (∂z/∂x)(dx/dt) + (∂z/∂y)(dy/dt) = (∂z/∂xi + ∂z/∂yj) · (dx/dti + dy/dtj) = ∇z · r′(t).

93. ∇f(x, y) = fx(x, y)i+ fy(x, y)j, if ∇f(x, y) = 0 throughout the region then fx(x, y) = fy(x, y) = 0 throughout the
region, the result follows from Exercise 69, Section 13.5.

94. Let u1 and u2 be nonparallel unit vectors for which the directional derivative is zero. Let u be any other unit
vector, then u = c1u1 + c2u2 for some choice of scalars c1 and c2, Duf(x, y) = ∇f(x, y) · u = c1∇f(x, y) · u1 +
c2∇f(x, y) · u2 = c1Du1

f(x, y) + c2Du2
f(x, y) = 0.

95. ∇f(u, v, w) =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k =

(
∂f

∂u

∂u

∂x
+
∂f

∂v

∂v

∂x
+
∂f

∂w

∂w

∂x

)
i +

(
∂f

∂u

∂u

∂y
+
∂f

∂v

∂v

∂y
+
∂f

∂w

∂w

∂y

)
j+

+

(
∂f

∂u

∂u

∂z
+
∂f

∂v

∂v

∂z
+
∂f

∂w

∂w

∂z

)
k =

∂f

∂u
∇u+

∂f

∂v
∇v +

∂f

∂w
∇w.
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Exercise Set 13.7

1. (a) f(x, y, z) = x2 + y2 + 4z2,∇f = 2xi + 2yj + 8zk,∇f(2, 2, 1) = 4i + 4j + 8k,n = i + j + 2k, x+ y + 2z = 6.

(b) r(t) = 2i + 2j + k + t(i + j + 2k), x(t) = 2 + t, y(t) = 2 + t, z(t) = 1 + 2t.

(c) cos θ =
n · k
‖n‖ =

√
2√
3
, θ ≈ 35.26◦.

2. (a) f(x, y, z) = xz − yz3 + yz2, n = ∇f(2,−1, 1) = i + 3k; tangent plane x+ 3z = 5.

(b) Normal line x = 2 + t, y = −1, z = 1 + 3t.

(c) cos θ =
n · k
‖n‖ =

3√
10
, θ ≈ 18.43◦.

3. ∇F = 〈2x, 2y, 2z〉, so n = 〈−6, 0, 8〉, so the tangent plane is given by −6(x+ 3) + 8(z − 4) = 0 or 3x− 4z = −25,
normal line x = −3− 6t, y = 0, z = 4 + 8t.

4. ∇F = 〈2xy, x2,−8z〉, so n = 〈−6, 9, 16〉, so the tangent plane is given by −6x + 9y + 16z = −5, normal line
x = −3− 6t, y = 1 + 9t, z = −2 + 16t.

5. ∇F = 〈2x− yz,−xz,−xy〉, so n = 〈−18, 8, 20〉, so the tangent plane is given by −18x + 8y + 20z = 152, normal
line x = −4− 18t, y = 5 + 8t, z = 2 + 20t.

6. At P , ∂z/∂x = 4 and ∂z/∂y = −6, tangent plane 4x−6y−z = 13, normal line x = 2+4t, y = −3−6t, z = 13− t.

7. At P , ∂z/∂x = 48 and ∂z/∂y = −14, tangent plane 48x − 14y − z = 64, normal line x = 1 + 48t, y = −2 − 14t,
z = 12− t.

8. At P , ∂z/∂x = 14 and ∂z/∂y = −2, tangent plane 14x−2y−z = 16, normal line x = 2+14t, y = 4−2t, z = 4− t.

9. At P , ∂z/∂x = 1 and ∂z/∂y = −1, tangent plane x− y − z = 0, normal line x = 1 + t, y = −t, z = 1− t.

10. At P , ∂z/∂x = −1 and ∂z/∂y = 0, tangent plane x+ z = −1, normal line x = −1− t, y = 0, z = −t.

11. At P , ∂z/∂x = 0 and ∂z/∂y = 3, tangent plane 3y − z = −1, normal line x = π/6, y = 3t, z = 1− t.

12. At P , ∂z/∂x = 1/4 and ∂z/∂y = 1/6, tangent plane 3x+ 2y − 12z = −30, normal line x = 4 + t/4, y = 9 + t/6,
z = 5− t.

13. The tangent plane is horizontal if the normal ∂z/∂xi + ∂z/∂yj − k is parallel to k which occurs when ∂z/∂x =
∂z/∂y = 0.

(a) ∂z/∂x = 3x2y2, ∂z/∂y = 2x3y; 3x2y2 = 0 and 2x3y = 0 for all (x, y) on the x-axis or y-axis, and z = 0 for
these points, the tangent plane is horizontal at all points on the x-axis or y-axis.

(b) ∂z/∂x = 2x− y − 2, ∂z/∂y = −x+ 2y + 4; solve the system 2x− y − 2 = 0, −x+ 2y + 4 = 0, to get x = 0,
y = −2. z = −4 at (0,−2), the tangent plane is horizontal at (0,−2,−4).

14. ∂z/∂x = 6x, ∂z/∂y = −2y, so 6x0i − 2y0j− k is normal to the surface at a point (x0, y0, z0) on the surface.
6i + 4j− k is normal to the given plane. The tangent plane and the given plane are parallel if their normals are
parallel so 6x0 = 6, x0 = 1 and −2y0 = 4, y0 = −2. z = −1 at (1,−2), the point on the surface is (1,−2,−1).

15. ∂z/∂x = −6x, ∂z/∂y = −4y so −6x0i − 4y0j− k is normal to the surface at a point (x0, y0, z0) on the surface.
This normal must be parallel to the given line and hence to the vector −3i+ 8j− k which is parallel to the line so
−6x0 = −3, x0 = 1/2 and −4y0 = 8, y0 = −2. z = −3/4 at (1/2,−2). The point on the surface is (1/2,−2,−3/4).
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16. (3, 4, 5) is a point of intersection because it satisfies both equations. Both surfaces have (3/5)i + (4/5)j− k as a
normal so they have a common tangent plane at (3, 4, 5).

17. (a) 2t+ 7 = (−1 + t)2 + (2 + t)2, t2 = 1, t = ±1 so the points of intersection are (−2, 1, 5) and (0, 3, 9).

(b) ∂z/∂x = 2x, ∂z/∂y = 2y so at (−2, 1, 5) the vector n = −4i + 2j− k is normal to the surface. v = i + j+2k
is parallel to the line; n · v = −4 so the cosine of the acute angle is [n · (−v)]/(‖n‖ ‖ − v‖) = 4/

(√
21
√

6
)

=

4/
(
3
√

14
)
. Similarly, at (0,3,9) the vector n = 6j− k is normal to the surface, n · v = 4 so the cosine of the acute

angle is 4/
(√

37
√

6
)

= 4/
√

222.

18. z = xf(u) where u = x/y, ∂z/∂x = xf ′(u)∂u/∂x + f(u) = (x/y)f ′(u) + f(u) = uf ′(u) + f(u), ∂z/∂y =
xf ′(u)∂u/∂y = −(x2/y2)f ′(u) = −u2f ′(u). If (x0, y0, z0) is on the surface then, with u0 = x0/y0,

[u0f
′ (u0) + f (u0)] i − u2

0f
′ (u0) j− k is normal to the surface so the tangent plane is [u0f

′ (u0) + f (u0)]x −
u2

0f
′(u0)y−z = [u0f

′(u0)+f(u0)]x0−u2
0f
′(u0)y0−z0 =

[
x0

y0
f ′ (u0) + f (u0)

]
x0−

x2
0

y2
0

f ′ (u0) y0−z0 = x0f (u0)−z0 =

0, so all tangent planes pass through the origin.

19. False, they only need to be parallel.

20. False, fx(1, 1) = −1/2, fy(1, 1) = 1/2.

21. True, see Section 13.4 equation (15).

22. True, see equation (5) in Theorem 13.7.2.

23. Set f(x, y, z) = z+x−z4(y−1), then f(x, y, z) = 0,n = ±∇f(3, 5, 1) = ±(i− j−15k), unit vectors ± 1√
227

(i− j−
15k).

24. f(x, y, z) = sinxz − 4 cos yz, ∇f(π, π, 1) = −i− πk; unit vectors ± 1√
1 + π2

(i + πk).

25. f(x, y, z) = x2 + y2 + z2, if (x0, y0, z0) is on the sphere then ∇f (x0, y0, z0) = 2 (x0i + y0j + z0k) is normal to the
sphere at (x0, y0, z0), the normal line is x = x0 + x0t, y = y0 + y0t, z = z0 + z0t which passes through the origin
when t = −1.

26. f(x, y, z) = 2x2 + 3y2 + 4z2, if (x0, y0, z0) is on the ellipsoid then ∇f (x0, y0, z0) = 2 (2x0i + 3y0j + 4z0k) is normal
there and hence so is n1 = 2x0i + 3y0j + 4z0k; n1 must be parallel to n2 = i − 2j + 3k which is normal to the
given plane so n1 = cn2 for some constant c. Equate corresponding components to get x0 = c/2, y0 = −2c/3, and
z0 = 3c/4; substitute into the equation of the ellipsoid yields 2

(
c2/4

)
+ 3

(
4c2/9

)
+ 4

(
9c2/16

)
= 9, c2 = 108/49,

c = ±6
√

3/7. The points on the ellipsoid are
(
3
√

3/7,−4
√

3/7, 9
√

3/14
)

and
(
−3
√

3/7, 4
√

3/7,−9
√

3/14
)
.

27. f(x, y, z) = x2 + y2 − z2, if (x0, y0, z0) is on the surface then ∇f (x0, y0, z0) = 2 (x0i + y0j− z0k) is normal there

and hence so is n1 = x0i+ y0j− z0k; n1 must be parallel to
−→
PQ= 3i+ 2j− 2k so n1 = c

−→
PQ for some constant c.

Equate components to get x0 = 3c, y0 = 2c and z0 = 2c which when substituted into the equation of the surface
yields 9c2 + 4c2 − 4c2 = 1, c2 = 1/9, c = ±1/3 so the points are (1, 2/3, 2/3) and (−1,−2/3,−2/3).

28. f1(x, y, z) = 2x2 + 3y2 + z2, f2(x, y, z) = x2 + y2 + z2 − 6x − 8y − 8z + 24, n1 = ∇f1(1, 1, 2) = 4i + 6j + 4k,
n2 = ∇f2(1, 1, 2) = −4i− 6j− 4k, n1 = −n2 so n1 and n2 are parallel. Note that (1, 1, 2) lies on each of the two
surfaces.

29. n1 = 2i − 2j− k,n2 = 2i − 8j + 4k,n1 × n2 = −16i − 10j − 12k is tangent to the line, so x(t) = 1 + 8t, y(t) =
−1 + 5t, z(t) = 2 + 6t.
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30. f(x, y, z) =
√
x2 + y2− z,n1 = ∇f(4, 3, 5) =

4

5
i+

3

5
j−k,n2 = i+ 2j+ 2k,n1×n2 = (16i− 13j+ 5k)/5 is tangent

to the line, x(t) = 4 + 16t, y(t) = 3− 13t, z(t) = 5 + 5t. The point (4, 3, 5) lies on both surfaces.

31. f(x, y, z) = x2 + z2−25, g(x, y, z) = y2 + z2−25,n1 = ∇f(3,−3, 4) = 6i+ 8k,n2 = ∇g(3,−3, 4) = −6j+ 8k,n1×
n2 = 48i − 48j − 36k is tangent to the line, x(t) = 3 + 4t, y(t) = −3 − 4t, z(t) = 4 − 3t. The point (3,−3, 4) lies
on both surfaces.

32. (a) f(x, y, z) = z − 8 + x2 + y2, g(x, y, z) = 4x+ 2y − z,n1 = 4j + k,n2 = 4i + 2j− k,n1 × n2 = −6i + 4j− 16k
is tangent to the line, x(t) = 3t, y(t) = 2− 2t, z(t) = 4 + 8t.

33. Use implicit differentiation to get ∂z/∂x = −c2x/
(
a2z
)
, ∂z/∂y = −c2y/

(
b2z
)
. At (x0, y0, z0), z0 6= 0, a normal

to the surface is −
[
c2x0/

(
a2z0

)]
i−
[
c2y0/

(
b2z0

)]
j− k so the tangent plane is −c

2x0

a2z0
x− c2y0

b2z0
y − z = −c

2x2
0

a2z0
−

c2y2
0

b2z0
− z0,

x0x

a2
+
y0y

b2
+
z0z

c2
=
x2

0

a2
+
y2

0

b2
+
z2

0

c2
= 1.

34. ∂z/∂x = 2x/a2, ∂z/∂y = 2y/b2. At (x0, y0, z0) the vector
(
2x0/a

2
)
i +
(
2y0/b

2
)
j− k is normal to the surface so

the tangent plane is
(
2x0/a

2
)
x+

(
2y0/b

2
)
y − z = 2x2

0/a
2 + 2y2

0/b
2 − z0, but z0 = x2

0/a
2 + y2

0/b
2 so

(
2x0/a

2
)
x+(

2y0/b
2
)
y − z = 2z0 − z0 = z0, 2x0x/a

2 + 2y0y/b
2 = z + z0.

35. n1 = fx (x0, y0) i + fy (x0, y0) j− k and n2 = gx (x0, y0) i + gy (x0, y0) j− k are normal, respectively, to z =
f(x, y) and z = g(x, y) at P ; n1 and n2 are perpendicular if and only if n1 · n2 = 0, fx (x0, y0) gx (x0, y0) +
fy (x0, y0) gy (x0, y0) + 1 = 0, fx (x0, y0) gx (x0, y0) + fy (x0, y0) gy (x0, y0) = −1.

36. fx = x/
√
x2 + y2, fy = y/

√
x2 + y2, gx = −x/

√
x2 + y2, gy = −y/

√
x2 + y2, fxgx+fygy = −(x2+y2)/(x2+y2) =

−1, so by Exercise 35 the normal lines are perpendicular.

37. ∇f = fxi + fyj + fzk and ∇g = gxi + gyj + gzk evaluated at (x0, y0, z0) are normal, respectively, to the surfaces
f(x, y, z) = 0 and g(x, y, z) = 0 at (x0, y0, z0). The surfaces are orthogonal at (x0, y0, z0) if and only if ∇f · ∇g = 0
so fxgx + fygy + fzgz = 0.

38. f(x, y, z) = x2+y2+z2−a2 = 0, g(x, y, z) = z2−x2−y2 = 0, fxgx+fygy+fzgz = −4x2−4y2+4z2 = 4g(x, y, z) = 0.

39. z =
k

xy
; at a point

(
a, b,

k

ab

)
on the surface,

〈
− k

a2b
,− k

ab2
,−1

〉
and hence

〈
bk, ak, a2b2

〉
is normal to the surface

so the tangent plane is bkx + aky + a2b2z = 3abk. The plane cuts the x, y, and z-axes at the points 3a, 3b, and
3k

ab
, respectively, so the volume of the tetrahedron that is formed is V =

1

3

(
3k

ab

)[
1

2
(3a)(3b)

]
=

9

2
k, which does

not depend on a and b.

Exercise Set 13.8

1. (a) Minimum at (2,−1), no maxima. (b) Maximum at (0, 0), no minima. (c) No maxima or minima.

2. (a) Maximum at (−1, 5), no minima. (b) No maxima or minima. (c) No maxima or minima.

3. f(x, y) = (x− 3)2 + (y + 2)2, minimum at (3,−2), no maxima.

4. f(x, y) = −(x+ 1)2 − 2(y − 1)2 + 4, maximum at (−1, 1), no minima.

5. fx = 6x+ 2y = 0, fy = 2x+ 2y = 0; critical point (0,0); D = 8 > 0 and fxx = 6 > 0 at (0,0), relative minimum.

6. fx = 3x2 − 3y = 0, fy = −3x − 3y2 = 0; critical points (0,0) and (−1, 1); D = −9 < 0 at (0,0), saddle point;
D = 27 > 0 and fxx = −6 < 0 at (−1, 1), relative maximum.
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7. fx = 2x−2xy = 0, fy = 4y−x2 = 0; critical points (0,0) and (±2, 1); D = 8 > 0 and fxx = 2 > 0 at (0,0), relative
minimum; D = −16 < 0 at (±2, 1), saddle points.

8. fx = 3x2 − 3 = 0, fy = 3y2 − 3 = 0; critical points (−1,±1) and (1,±1); D = −36 < 0 at (−1, 1) and (1,−1),
saddle points; D = 36 > 0 and fxx = 6 > 0 at (1,1), relative minimum; D = 36 > 0 and fxx = −36 < 0 at
(−1,−1), relative maximum.

9. fx = y + 2 = 0, fy = 2y + x+ 3 = 0; critical point (1,−2); D = −1 < 0 at (1,−2), saddle point.

10. fx = 2x+ y − 2 = 0, fy = x− 2 = 0; critical point (2,−2); D = −1 < 0 at (2,−2), saddle point.

11. fx = 2x + y − 3 = 0, fy = x + 2y = 0; critical point (2,−1); D = 3 > 0 and fxx = 2 > 0 at (2,−1), relative
minimum.

12. fx = y − 3x2 = 0, fy = x − 2y = 0; critical points (0,0) and (1/6, 1/12); D = −1 < 0 at (0,0), saddle point;
D = 1 > 0 and fxx = −1 < 0 at (1/6, 1/12), relative maximum.

13. fx = 2x− 2/
(
x2y
)

= 0, fy = 2y − 2/
(
xy2
)

= 0; critical points (−1,−1) and (1, 1); D = 32 > 0 and fxx = 6 > 0
at (−1,−1) and (1, 1), relative minima.

14. fx = ey = 0 is impossible, no critical points.

15. fx = 2x = 0, fy = 1− ey = 0; critical point (0, 0); D = −2 < 0 at (0, 0), saddle point.

16. fx = y− 2/x2 = 0, fy = x− 4/y2 = 0; critical point (1,2); D = 3 > 0 and fxx = 4 > 0 at (1, 2), relative minimum.

17. fx = ex sin y = 0, fy = ex cos y = 0, sin y = cos y = 0 is impossible, no critical points.

18. fx = y cosx = 0, fy = sinx = 0; sinx = 0 if x = nπ for n = 0,±1,±2, . . . and cosx 6= 0 for these values of x so
y = 0; critical points (nπ, 0) for n = 0,±1,±2, . . .; D = −1 < 0 at (nπ, 0), saddle points.

19. fx = −2(x+1)e−(x2+y2+2x) = 0, fy = −2ye−(x2+y2+2x) = 0; critical point (−1, 0); D = 4e2 > 0 and fxx = −2e < 0
at (−1, 0), relative maximum.

20. fx = y−a3/x2 = 0, fy = x− b3/y2 = 0; critical point
(
a2/b, b2/a

)
; if ab > 0 then D = 3 > 0 and fxx = 2b3/a3 > 0

at
(
a2/b, b2/a

)
, relative minimum; if ab < 0 then D = 3 > 0 and fxx = 2b3/a3 < 0 at

(
a2/b, b2/a

)
, relative

maximum.

21. ∇f = (4x− 4y)i− (4x− 4y3)j = 0 when x = y, x = y3, so x = y = 0 or x = y = ±1. At (0, 0), D = −16, a saddle
point; at (1, 1) and (−1,−1), D = 32 > 0, fxx = 4, a relative minimum.

-2 -1 0 1 2
-2

-1

0

1

2

22. ∇f = (2y2 − 2xy + 4y)i + (4xy − x2 + 4x)j = 0 when 2y2 − 2xy + 4y = 0, 4xy − x2 + 4x = 0, with solutions
(0, 0), (0,−2), (4, 0), (4/3,−2/3). At (0, 0), D = −16, a saddle point. At (0,−2), D = −16, a saddle point. At
(4, 0), D = −16, a saddle point. At (4/3,−2/3), D = 16/3, fxx = 4/3 > 0, a relative minimum.
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23. False, e.g. f(x, y) = x.

24. False; f(x, y) = (x2 + y2 − 1/4)2, every point on x2 + y2 = 1/4 is a critical point of f .

25. True, Theorem 13.8.6.

26. True, Theorem 13.8.6.

27. (a) Critical point (0,0); D = 0.

(b) f(0, 0) = 0, x4 + y4 ≥ 0 so f(x, y) ≥ f(0, 0), relative minimum.

28. (a) fx(x, y) = 4x3, fy(x, y) = −4y3, both equal zero only at (0, 0) where D = 0.

(b) The trace of the surface z = x4 − y4 in the xz-plane has a relative minimum at the origin, whereas the trace
in the yz-plane has a relative maximum there. Therefore, f has a saddle point at (0, 0).

29. (a) fx = 3ey − 3x2 = 3
(
ey − x2

)
= 0, fy = 3xey − 3e3y = 3ey

(
x− e2y

)
= 0, ey = x2 and e2y = x, x4 = x,

x
(
x3 − 1

)
= 0 so x = 0, 1; critical point (1, 0); D = 27 > 0 and fxx = −6 < 0 at (1, 0), relative maximum.

(b) lim
x→−∞

f(x, 0) = lim
x→−∞

(
3x− x3 − 1

)
= +∞ so no absolute maximum.

30. fx = 8xey − 8x3 = 8x(ey − x2) = 0, fy = 4x2ey − 4e4y = 4ey(x2 − e3y) = 0, x2 = ey and x2 = e3y, e3y = ey,
e2y = 1, so y = 0 and x = ±1; critical points (1,0) and (−1, 0). D = 128 > 0 and fxx = −16 < 0 at both points
so a relative maximum occurs at each one.

31. fx = y − 1 = 0, fy = x − 3 = 0; critical point (3, 1). Along y = 0: u(x) = −x; no critical points, along x = 0:

v(y) = −3y; no critical points, along y = −4

5
x+ 4: w(x) = −4

5
x2 +

27

5
x− 12; critical point (27/8, 13/10).

(x, y) (3, 1) (0, 0) (5, 0) (0, 4) (27/8, 13/10)
f(x, y) −3 0 −5 −12 −231/80

Absolute maximum value is 0, absolute minimum value is −12.

32. fx = y − 2 = 0, fy = x = 0; critical point (0, 2), but (0, 2) is not in the interior of R. Along y = 0: u(x) = −2x;
no critical points, along x = 0: v(y) = 0; along y = 4− x: w(x) = 2x− x2; critical point (1, 3).

(x, y) (0, 0) (0, 4) (4, 0) (1, 3)
f(x, y) 0 0 −8 1

Absolute maximum value is 1, absolute minimum value is −8.



664 Chapter 13

33. fx = 2x− 2 = 0, fy = −6y + 6 = 0; critical point (1, 1). Along y = 0: u1(x) = x2 − 2x; critical point (1, 0), along
y = 2: u2(x) = x2 − 2x; critical point (1, 2), along x = 0: v1(y) = −3y2 + 6y; critical point (0, 1), along x = 2:
v2(y) = −3y2 + 6y; critical point (2, 1).

(x, y) (1, 1) (1, 0) (1, 2) (0, 1) (2, 1) (0, 0) (0, 2) (2, 0) (2, 2)
f(x, y) 2 −1 −1 3 3 0 0 0 0

Absolute maximum value is 3, absolute minimum value is −1.

34. fx = ey − 2x = 0, fy = xey − ey = ey(x− 1) = 0; critical point (1, ln 2). Along y = 0: u1(x) = x− x2 − 1; critical
point (1/2, 0), along y = 1: u2(x) = ex − x2 − e; critical point (e/2, 1), along x = 0: v1(y) = −ey; no critical
points, along x = 2: v2(y) = ey − 4; no critical points.

(x, y) (0, 0) (0, 1) (2, 1) (2, 0) (1, ln 2) (1/2, 0) (e/2, 1)
f(x, y) −1 −e e− 4 −3 −1 −3/4 e(e− 4)/4 ≈ −0.87

Absolute maximum value is −3/4, absolute minimum value is −3.

35. fx = 2x − 1 = 0, fy = 4y = 0; critical point (1/2, 0). Along x2 + y2 = 4: y2 = 4 − x2, u(x) = 8 − x − x2 for
−2 ≤ x ≤ 2; critical points (−1/2,±

√
15/2).

(x, y) (1/2, 0)
(
−1/2,

√
15/2

) (
−1/2,−

√
15/2

)
(−2, 0) (2, 0)

f(x, y) −1/4 33/4 33/4 6 2

Absolute maximum value is 33/4, absolute minimum value is −1/4.

36. fx = y2 = 0, fy = 2xy = 0; no critical points in the interior of R. Along y = 0: u(x) = 0; along x = 0: v(y) = 0;

along x2 + y2 = 1: w(x) = x− x3 for 0 ≤ x ≤ 1; critical point
(

1/
√

3,
√

2/3
)

.

(x, y) (0, 0) (0, 1) (1, 0)
(

1/
√

3,
√

2/3
)

f(x, y) 0 0 0 2
√

3/9

Absolute maximum value is
2

9

√
3, absolute minimum value is 0.

37. Maximize P = xyz subject to x + y + z = 48, x > 0, y > 0, z > 0. z = 48 − x − y so P = xy(48 − x − y) =
48xy − x2y − xy2, Px = 48y − 2xy − y2 = 0, Py = 48x− x2 − 2xy = 0. But x 6= 0 and y 6= 0 so 48− 2x− y = 0
and 48− x− 2y = 0; critical point (16,16). PxxPyy − P 2

xy > 0 and Pxx < 0 at (16, 16), relative maximum. z = 16
when x = y = 16, the product is maximum for the numbers 16, 16, 16.

38. Minimize S = x2+y2+z2 subject to x+y+z = 27, x > 0, y > 0, z > 0. z = 27−x−y so S = x2+y2+(27−x−y)2,
Sx = 4x + 2y − 54 = 0, Sy = 2x + 4y − 54 = 0; critical point (9, 9); SxxSyy − S2

xy = 12 > 0 and Sxx = 4 > 0 at
(9, 9), relative minimum. z = 9 when x = y = 9, the sum of the squares is minimum for the numbers 9, 9, 9.

39. Maximize w = xy2z2 subject to x+ y+ z = 5, x > 0, y > 0, z > 0. x = 5− y− z so w = (5− y− z)y2z2 = 5y2z2−
y3z2−y2z3, wy = 10yz2−3y2z2−2yz3 = yz2(10−3y−2z) = 0, wz = 10y2z−2y3z−3y2z2 = y2z(10−2y−3z) = 0,
10− 3y− 2z = 0 and 10− 2y− 3z = 0; critical point when y = z = 2; wyywzz −w2

yz = 320 > 0 and wyy = −24 < 0
when y = z = 2, relative maximum. x = 1 when y = z = 2, xy2z2 is maximum at (1, 2, 2).

40. Minimize w = D2 = x2 + y2 + z2 subject to x2 − yz = 5. x2 = 5 + yz so w = 5 + yz + y2 + z2, wy = z + 2y = 0,
wz = y + 2z = 0; critical point when y = z = 0; wyywzz − w2

yz = 3 > 0 and wyy = 2 > 0 when y = z = 0, relative

minimum. x2 = 5, x = ±
√

5 when y = z = 0. The points
(
±
√

5, 0, 0
)

are closest to the origin.
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41. The diagonal of the box must equal the diameter of the sphere, thus we maximize V = xyz or, for convenience,
w = V 2 = x2y2z2 subject to x2 + y2 + z2 = 4a2, x > 0, y > 0, z > 0; z2 = 4a2 − x2 − y2 hence w =
4a2x2y2 − x4y2 − x2y4, wx = 2xy2(4a2 − 2x2 − y2) = 0, wy = 2x2y

(
4a2 − x2 − 2y2

)
= 0, 4a2 − 2x2 − y2 = 0

and 4a2 − x2 − 2y2 = 0; critical point
(
2a/
√

3, 2a/
√

3
)
; wxxwyy − w2

xy =
4096

27
a8 > 0 and wxx = −128

9
a4 < 0 at

(
2a/
√

3, 2a/
√

3
)
, relative maximum. z = 2a/

√
3 when x = y = 2a/

√
3, the dimensions of the box of maximum

volume are 2a/
√

3, 2a/
√

3, 2a/
√

3.

42. Maximize V = xyz subject to x+ y + z = 129, x > 0, y > 0, z > 0. z = 129− x− y so V = 129xy − x2y − xy2,
Vx = y(129 − 2x − y) = 0, Vy = x(129 − x − 2y) = 0, 129 − 2x − y = 0 and 129 − x − 2y = 0; critical point
(43, 43); VxxVyy − V 2

xy = 7439 > 0 and Vxx = −86 < 0 at (43, 43), relative maximum. The maximum volume is
V = (43)(43)(43) = 79,507 cm3.

43. Let x, y, and z be, respectively, the length, width, and height of the box. Minimize C = 10(2xy) + 5(2xz+ 2yz) =
10(2xy + xz + yz) subject to xyz = 16. z = 16/(xy), so C = 20(xy + 8/y + 8/x), Cx = 20(y − 8/x2) = 0,
Cy = 20(x − 8/y2) = 0; critical point (2,2); CxxCyy − C2

xy = 1200 > 0 and Cxx = 40 > 0 at (2,2), relative
minimum. z = 4 when x = y = 2. The cost of materials is minimum if the length and width are 2 ft and the
height is 4 ft.

44. Maximize the profit P = 500(y−x)(x−40)+[45, 000+500(x−2y)](y−60) = 500(−x2−2y2+2xy−20x+170y−5400).
Px = 1000(−x+ y − 10) = 0, Py = 1000(−2y + x+ 85) = 0; critical point (65,75); PxxPyy − P 2

xy = 1,000,000 > 0
and Pxx = −1000 < 0 at (65,75), relative maximum. The profit will be maximum when x = 65 and y = 75.

45. (a) x = 0 : f(0, y) = −3y2, minimum −3, maximum 0;x = 1, f(1, y) = 4 − 3y2 + 2y,
∂f

∂y
(1, y) = −6y + 2 = 0

at y = 1/3, minimum 3, maximum 13/3; y = 0, f(x, 0) = 4x2, minimum 0, maximum 4; y = 1, f(x, 1) =

4x2 + 2x− 3,
∂f

∂x
(x, 1) = 8x+ 2 6= 0 for 0 < x < 1, minimum −3, maximum 3.

(b) f(x, x) = 3x2, minimum 0, maximum 3; f(x, 1−x) = −x2 +8x−3,
d

dx
f(x, 1−x) = −2x+8 6= 0 for 0 < x < 1,

maximum 4, minimum −3.

(c) fx(x, y) = 8x+ 2y = 0, fy(x, y) = −6y+ 2x = 0, solution is (0, 0), which is not an interior point of the square,
so check the sides: minimum −3, maximum 13/3.

46. Maximize A = ab sinα subject to 2a+ 2b = `, a > 0, b > 0, 0 < α < π. b = (`−2a)/2 so A = (1/2)(`a−2a2) sinα,
Aa = (1/2)(`− 4a) sinα, Aα = (a/2)(`− 2a) cosα; sinα 6= 0 so from Aa = 0 we get a = `/4 and then from Aα = 0
we get cosα = 0, α = π/2. AaaAαα − A2

aα = `2/8 > 0 and Aaa = −2 < 0 when a = `/4 and α = π/2, the area is
maximum.

47. Minimize S = xy+2xz+2yz subject to xyz = V , x > 0, y > 0, z > 0 where x, y, and z are, respectively, the length,
width, and height of the box. z = V/(xy) so S = xy + 2V/y + 2V/x, Sx = y − 2V/x2 = 0, Sy = x − 2V/y2 = 0;

critical point ( 3
√

2V , 3
√

2V ); SxxSyy − S2
xy = 3 > 0 and Sxx = 2 > 0 at this point so there is a relative minimum

there. The length and width are each 3
√

2V , the height is z = 3
√

2V /2.

48. The altitude of the trapezoid is x sinφ and the lengths of the lower and upper bases are, respectively, 27 − 2x
and 27− 2x+ 2x cosφ so we want to maximize A = (1/2)(x sinφ)[(27− 2x) + (27− 2x+ 2x cosφ)] = 27x sinφ−
2x2 sinφ + x2 sinφ cosφ. Ax = sinφ(27 − 4x + 2x cosφ), Aφ = x(27 cosφ − 2x cosφ − x sin2 φ + x cos2 φ) =
x(27 cosφ − 2x cosφ + 2x cos2 φ − x). sinφ 6= 0 so from Ax = 0 we get cosφ = (4x − 27)/(2x), x 6= 0 so from
Aφ = 0 we get (27−2x+ 2x cosφ) cosφ−x = 0 which, for cosφ = (4x−27)/(2x), yields 4x−27−x = 0, x = 9. If
x = 9 then cosφ = 1/2, φ = π/3. The critical point occurs when x = 9 and φ = π/3; AxxAφφ −A2

xφ = 729/2 > 0

and Axx = −3
√

3/2 < 0 there, the area is maximum when x = 9 and φ = π/3.

49. (a)
∂g

∂m
=

n∑

i=1

2 (mxi + b− yi)xi = 2

(
m

n∑

i=1

x2
i + b

n∑

i=1

xi −
n∑

i=1

xiyi

)
= 0 if

(
n∑

i=1

x2
i

)
m +

(
n∑

i=1

xi

)
b =
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n∑

i=1

xiyi,
∂g

∂b
=

n∑

i=1

2 (mxi + b− yi) = 2

(
m

n∑

i=1

xi + bn−
n∑

i=1

yi

)
= 0 if

(
n∑

i=1

xi

)
m+ nb =

n∑

i=1

yi.

(b)
n∑

i=1

(xi − x̄)
2

=
n∑

i=1

(
x2
i − 2x̄xi + x̄2

)
=

n∑

i=1

x2
i − 2x̄

n∑

i=1

xi + nx̄2 =
n∑

i=1

x2
i −

2

n

(
n∑

i=1

xi

)2

+
1

n

(
n∑

i=1

xi

)2

=

n∑

i=1

x2
i −

1

n

(
n∑

i=1

xi

)2

≥ 0 so n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

≥ 0. This is an equality if and only if
n∑

i=1

(xi − x̄)2 = 0, which

means xi = x̄ for each i.

(c) The system of equations Am+Bb = C,Dm+Eb = F in the unknowns m and b has a unique solution provided

AE 6= BD, and if so the solution is m =
CE −BF
AE −BD, b =

F −Dm
E

, which after the appropriate substitution yields

the desired result.

50. (a) gmm = 2

n∑

i=1

x2
i , gbb = 2n, gmb = 2

n∑

i=1

xi, D = gmmgbb − g2
mb = 4


n

n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

 > 0 and gmm > 0.

(b) g(m, b) is of the second-degree in m and b so the graph of z = g(m, b) is a quadric surface.

(c) The function z = g(m, b), as a function of m and b, has only one critical point, found in Exercise 49, and
tends to +∞ as either |m| or |b| tends to infinity, since gmm and gbb are both positive. Thus the only critical point
must be a minimum.

51. n = 3,

3∑

i=1

xi = 3,

3∑

i=1

yi = 7,

3∑

i=1

xiyi = 13,

3∑

i=1

x2
i = 11, y =

3

4
x+

19

12
.

52. n = 4,
4∑

i=1

xi = 7,
4∑

i=1

yi = 4,
4∑

i=1

x2
i = 21,

4∑

i=1

xiyi = −2, y = −36

35
x+

14

5
.

53.
4∑

i=1

xi = 10,
4∑

i=1

yi = 8.2,
4∑

i=1

x2
i = 30,

4∑

i=1

xiyi = 23, n = 4; m = 0.5, b = 0.8, y = 0.5x+ 0.8.

54.
5∑

i=1

xi = 15,
5∑

i=1

yi = 15.1,
5∑

i=1

x2
i = 55,

5∑

i=1

xiyi = 39.8, n = 5;m = −0.55, b = 4.67, y = 4.67− 0.55x.

55. (a) y ≈ 79.225 + 0.1571t. (b)
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A48 Answers to Odd-Numbered Exercises

17. no critical points 19. relative maximum at (−1, 0)

21. saddle point at (0, 0);
relative minima at (1, 1)

and (−1, −1)

−2 −1 0 1 2
−2

−1

0

1

2

Responses to True–False questions may be abridged to save space.
23. False; let f(x, y) = y.
25. True; this follows from Theorem 13.8.6.
27. (b) relative minimum at (0, 0)

31. absolute maximum 0,
absolute minimum −12

33. absolute maximum 3,
absolute minimum −1

35. absolute maximum 33
4 ,

absolute minimum − 1
4

37. 16, 16, 16
39. maximum at (1, 2, 2)

41. 2a/
√

3, 2a/
√

3, 2a/
√

3
43. length and width 2 ft, height 4 ft

45. (a) x = 0: minimum −3, maximum 0;
x = 1: minimum 3, maximum 13/3;
y = 0: minimum 0, maximum 4;
y = 1: minimum −3, maximum 3
(b) y = x: minimum 0, maximum 3;
y = 1 − x: maximum 4, minimum −3
(c) minimum −3, maximum 13/3

47. length and width 3√2V , height 3√2V/2 51. y = 3
4 x + 19

12
53. y = 0.5x + 0.8
55. (a) y = 79.22 + 0.1571t

(c) about 81.6 years
(b)

t

y

1

79.2

79.6

80.0

80.4

2 3 4 5 76

57. (a) P = 2798
21

+ 171
350

T

(c) T ≈ −272.7096◦ C

(b)

1200
130

190

! Exercise Set 13.9 (Page 000)
1. (a) 4 3. (a)

31.5−31.5

−27

15 (c) maximum 101
4 ,

minimum −5

5. maximum
√

2 at (−
√

2, −1) and (
√

2, 1),
minimum −

√
2 at (−

√
2, 1) and (

√
2, −1)

7. maximum
√

2 at (1/
√

2, 0), minimum −
√

2 at (−1/
√

2, 0)

9. maximum 6 at
( 4

3 , 2
3 , − 4

3

)
, minimum −6 at

(
− 4

3 , − 2
3 , 4

3

)

11. maximum is 1/(3
√

3) at (1/
√

3, 1/
√

3, 1/
√

3),

(1/
√

3, −1/
√

3, −1/
√

3), (−1/
√

3, 1/
√

3, −1/
√

3), and
(−1/

√
3, −1/

√
3, 1/

√
3); minimum is −1/(3

√
3) at

(1/
√

3, 1/
√

3, −1/
√

3), (1/
√

3, −1/
√

3, 1/
√

3),

(−1/
√

3, 1/
√

3, 1/
√

3), and (−1/
√

3, −1/
√

3, −1/
√

3)

Responses to True–False questions may be abridged to save space.
13. False; a Lagrange multiplier is a scalar.
15. False; we must solve three equations in three unknowns.
17.

( 3
10 , − 3

5

)
19.

( 1
6 , 1

3 , 1
6

)

21. (3, 6) is closest and (−3, −6) is farthest 23. 5(i + j + k)/
√

3
25. 9, 9, 9 27. (±

√
5, 0, 0) 29. length and width 2 ft, height 4 ft

33. (a) α = β = γ = π/3, maximum 1/8
(b) z

x y

! Chapter 13 Review Exercises (Page 000)
1. (a) xy (b) er+s ln(rs)

5. (a) not defined on line y = x (b) not continuous
9. (a) 12 Pa/min (b) 240 Pa/min

15. df (the differential of f ) is an approximation for %f (the change in f )
17. dV = −0.06667 m3; %V = −0.07267 m3 19. 2

21.
−f 2

y fxx + 2fxfyfxy − f 2
x fyz

f 3
y

25.
7
2

+ 4
5

ln 2 27. −7/
√

5

29. (0, 0, 2), (1, 1, 1), (−1,−1, 1) 31.
(
− 1

3 , − 1
2 , 2

)

33. relative minimum at (15, −8)

35. saddle point at (0, 0), relative minimum at (3, 9)

37. absolute maximum of 4 at (±1, ±2), absolute minimum of 0 at
(±

√
2, 0) and (0, ±2

√
2)

39. I1 : I2 : I3 = 1
R1

: 1
R2

: 1
R3

41. (a) ∂P/∂L = cαLα−1Kβ, ∂P/∂K = cβLαKβ−1

! Chapter 13 Making Connections (Page 000)

Answers are provided in the Student Solutions Manual.
(c) y ≈ 81.6.

56. (a) y ≈ 119.84− 1.13x. (b)

90

60
35 50

(c) About 52 units.
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57. (a) P =
2798

21
+

171

350
T . (b)

1200
130

190

(c) T ≈ −272.7096◦ C.

58. (a) For example, z = y.

(b) For example, on 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 let z =

{
y if 0 < x < 1, 0 < y < 1;

1/2 if x = 0, 1 or y = 0, 1.

59. f (x0, y0) ≥ f(x, y) for all (x, y) inside a circle centered at (x0, y0) by virtue of Definition 14.8.1. If r is the radius
of the circle, then in particular f (x0, y0) ≥ f (x, y0) for all x satisfying |x − x0| < r so f (x, y0) has a relative
maximum at x0. The proof is similar for the function f(x0, y).

Exercise Set 13.9

1. (a) xy = 4 is tangent to the line, so the maximum value of f is 4.

(b) xy = 2 intersects the curve and so gives a smaller value of f .

(c) Maximize f(x, y) = xy subject to the constraint g(x, y) = x + y − 4 = 0,∇f = λ∇g, yi + xj = λ(i + j), so
solve the equations y = λ, x = λ with solution x = y = λ, but x+ y = 4, so x = y = 2, and the maximum value of
f is f = xy = 4.

2. (a) x2 + y2 = 25 is tangent to the line at (3, 4), so the minimum value of f is 25.

(b) A larger value of f yields a circle of a larger radius, and hence intersects the line.

(c) Minimize f(x, y) = x2+y2 subject to the constraint g(x, y) = 3x+4y−25 = 0,∇f = λ∇g, 2xi+2yj = 3λi+4λj,
so solve 2x = 3λ, 2y = 4λ and 3x+ 4y − 25 = 0; solution is x = 3, y = 4, minimum = 25.

3. (a)

31.5-31.5

-27

15

(b) One extremum at (0, 5) and one at approximately (±5, 0), so minimum value −5, maximum value ≈ 25.

(c) Find the minimum and maximum values of f(x, y) = x2− y subject to the constraint g(x, y) = x2 + y2−25 =
0,∇f = λ∇g, 2xi− j = 2λxi+ 2λyj, so solve 2x = 2λx,−1 = 2λy, x2 + y2− 25 = 0. If x = 0 then y = ±5, f = ∓5,
and if x 6= 0 then λ = 1, y = −1/2, x2 = 25− 1/4 = 99/4, f = 99/4 + 1/2 = 101/4, so the maximum value of f is
101/4 at (±3

√
11/2,−1/2) and the minimum value of f is −5 at (0, 5).
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4. (a) 0 1 2 3 4 5 6
0

1

2

3

4

5

6

(b) f ≈ 15.

(d) Set f(x, y) = x3 +y3−3xy, g(x, y) = (x−4)2 +(y−4)2−4; minimize f subject to the constraint g = 0 : ∇f =
λg, (3x2−3y)i+(3y2−3x)j = 2λ(x−4)i+2λ(y−4)j, so solve (use a CAS) 3x2−3y = 2λ(x−4), 3y2−3x = 2λ(y−4)
and (x− 4)2 + (y − 4)2 − 4 = 0; minimum value f = 14.52 at (2.5858, 2.5858).

5. y = 8xλ, x = 16yλ; y/(8x) = x/(16y), x2 = 2y2 so 4
(
2y2
)

+ 8y2 = 16, y2 = 1, y = ±1. Test
(
±
√

2,−1
)

and

(±
√

2, 1). f
(
−
√

2,−1
)

= f
(√

2, 1
)

=
√

2, f
(
−
√

2, 1
)

= f
(√

2,−1
)

= −
√

2. Maximum
√

2 at
(
−
√

2,−1
)

and(√
2, 1
)
, minimum −

√
2 at

(
−
√

2, 1
)

and
(√

2,−1
)
.

6. 2x = 2xλ,−2y = 2yλ, x2 + y2 = 25. If x 6= 0 then λ = 1 and y = 0 so x2 + 02 = 25, x = ±5. If x = 0 then
02 + y2 = 25, y = ±5. Test (±5, 0) and (0,±5): f(±5, 0) = 25, f(0,±5) = −25, maximum 25 at (±5, 0), minimum
−25 at (0,±5).

7. 12x2 = 4xλ, 2y = 2yλ. If y 6= 0 then λ = 1 and 12x2 = 4x, 12x(x−1/3) = 0, x = 0 or x = 1/3 so from 2x2 +y2 = 1
we find that y = ±1 when x = 0, y = ±

√
7/3 when x = 1/3. If y = 0 then 2x2+(0)2 = 1, x = ±1/

√
2. Test (0,±1),(

1/3,±
√

7/3
)
, and

(
±1/
√

2, 0
)
. f(0,±1) = 1, f

(
1/3,±

√
7/3
)

= 25/27, f
(
1/
√

2, 0
)

=
√

2, f
(
−1/
√

2, 0
)

= −
√

2.

Maximum
√

2 at
(
1/
√

2, 0
)
, minimum −

√
2 at

(
−1/
√

2, 0
)
.

8. 1 = 2xλ, −3 = 6yλ; 1/(2x) = −1/(2y), y = −x so x2 + 3(−x)2 = 16, x = ±2. Test (−2, 2) and (2,−2).
f(−2, 2) = −9, f(2,−2) = 7. Maximum 7 at (2,−2), minimum −9 at (−2, 2).

9. 2 = 2xλ, 1 = 2yλ,−2 = 2zλ; 1/x = 1/(2y) = −1/z thus x = 2y, z = −2y so (2y)2 +y2 +(−2y)2 = 4, y2 = 4/9, y =
±2/3. Test (−4/3,−2/3, 4/3) and (4/3, 2/3,−4/3). f(−4/3,−2/3, 4/3) = −6, f(4/3, 2/3,−4/3) = 6. Maximum
6 at (4/3, 2/3,−4/3), minimum −6 at (−4/3,−2/3, 4/3).

10. 3 = 4xλ, 6 = 8yλ, 2 = 2zλ; 3/(4x) = 3/(4y) = 1/z thus y = x, z = 4x/3, so 2x2 + 4x2 + (4x/3)2 = 70, x2 = 9,
x = ±3. Test (−3,−3,−4) and (3, 3, 4). f(−3,−3,−4) = −35, f(3, 3, 4) = 35. Maximum 35 at (3, 3, 4), minimum
−35 at (−3,−3,−4).

11. yz = 2xλ, xz = 2yλ, xy = 2zλ; yz/(2x) = xz/(2y) = xy/(2z) thus y2 = x2, z2 = x2 so x2 + x2 + x2 = 1,
x = ±1/

√
3. Test the eight possibilities with x = ±1/

√
3, y = ±1/

√
3, and z = ±1/

√
3 to find the maximum is

1/
(
3
√

3
)

at
(
1/
√

3, 1/
√

3, 1/
√

3
)
,
(
1/
√

3,−1/
√

3,−1/
√

3
)
,
(
−1/
√

3, 1/
√

3,−1/
√

3
)
, and

(
−1/
√

3,−1/
√

3, 1/
√

3
)
;

the minimum is −1/
(
3
√

3
)

at
(
1/
√

3, 1/
√

3,−1/
√

3
)
,
(
1/
√

3,−1/
√

3, 1/
√

3
)
,
(
−1/
√

3, 1/
√

3, 1/
√

3
)
, and

(
−1/
√

3,−1/
√

3,−1/
√

3
)
.

12. 4x3 = 2λx, 4y3 = 2λy, 4z3 = 2λz; if x (or y or z) 6= 0 then λ = 2x2 (or 2y2 or 2z2). Assume for the moment that
|x| ≤ |y| ≤ |z|. Then:

Case I: x, y, z 6= 0 so λ = 2x2 = 2y2 = 2z2, x = ±y = ±z, 3x2 = 1, x = ±1/
√

3, f(x, y, z) = 3/9 = 1/3.

Case II: x = 0, y, z 6= 0; then y = ±z, 2y2 = 1, y = ±z = ±1/
√

2, f(x, y, z) = 2/4 = 1/2.

Case III: x = y = 0, z 6= 0; then z2 = 1, z = ±1, f(x, y, z) = 1.

Case IV: all other cases follow by symmetry.

Thus f has a maximum value of 1 at (0, 0,±1), (0,±1, 0), and (±1, 0, 0) and a minimum value of 1/3 at

(±1/
√

3,±1/
√

3,±1/
√

3).
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13. False, it is a scalar.

14. False, they must be parallel, not necessarily equal.

15. False, there are three equations in three unknowns.

16. True, see the discussion before equation (3).

17. f(x, y) = x2 + y2; 2x = 2λ, 2y = −4λ; y = −2x so 2x− 4(−2x) = 3, x = 3/10. The point is (3/10,−3/5).

18. f(x, y) = (x− 4)2 + (y − 2)2, g(x, y) = y − 2x− 3; 2(x− 4) = −2λ, 2(y − 2) = λ; x− 4 = −2(y − 2), x = −2y + 8
so y = 2(−2y + 8) + 3, y = 19/5. The point is (2/5, 19/5).

19. f(x, y, z) = x2 + y2 + z2; 2x = λ, 2y = 2λ, 2z = λ; y = 2x, z = x so x + 2(2x) + x = 1, x = 1/6. The point is
(1/6, 1/3, 1/6).

20. f(x, y, z) = (x− 1)2 + (y + 1)2 + (z − 1)2; 2(x− 1) = 4λ, 2(y + 1) = 3λ, 2(z − 1) = λ; x = 4z − 3, y = 3z − 4 so
4(4z − 3) + 3(3z − 4) + z = 2, z = 1. The point is (1,−1, 1).

21. f(x, y) = (x− 1)2 + (y − 2)2; 2(x− 1) = 2xλ, 2(y − 2) = 2yλ; (x− 1)/x = (y − 2)/y, y = 2x so x2 + (2x)2 = 45,
x = ±3. f(−3,−6) = 80 and f(3, 6) = 20 so (3, 6) is closest and (−3,−6) is farthest.

22. f(x, y, z) = x2 +y2 +z2; 2x = yλ, 2y = xλ, 2z = −2zλ. If z 6= 0 then λ = −1 so 2x = −y and 2y = −x, x = y = 0;
substitute into xy − z2 = 1 to get z2 = −1 which has no real solution. If z = 0 then xy − (0)2 = 1, y = 1/x,
and also (from 2x = yλ and 2y = xλ), 2x/y = 2y/x, y2 = x2 so (1/x)2 = x2, x4 = 1, x = ±1. Test (1, 1, 0) and
(−1,−1, 0) to see that they are both closest to the origin.

23. f(x, y, z) = x+y+z, x2+y2+z2 = 25 where x, y, and z are the components of the vector; 1 = 2xλ, 1 = 2yλ, 1 = 2zλ;
1/(2x) = 1/(2y) = 1/(2z); y = x, z = x so x2 + x2 + x2 = 25, x = ±5/

√
3. f

(
−5/
√

3,−5/
√

3,−5/
√

3
)

= −5
√

3

and f
(
5/
√

3, 5/
√

3, 5/
√

3
)

= 5
√

3 so the vector is 5(i + j + k)/
√

3.

24. x2 + y2 = 25 is the constraint; solve 8x − 4y = 2xλ, −4x + 2y = 2yλ. If x = 0 then y = 0 and conversely; but
x2+y2 = 25, so x and y are nonzero. Thus λ = (4x−2y)/x = (−2x+y)/y, so 0 = 2x2+3xy−2y2 = (2x−y)(x+2y),
hence y = 2x or x = −2y. If y = 2x then x2 +(2x)2 = 25, x = ±

√
5. If x = −2y then

(
−2y2

)
+y2 = 25, y = ±

√
5.

T
(
−
√

5,−2
√

5
)

= T
(√

5, 2
√

5
)

= 0 and T
(
2
√

5,−
√

5
)

= T
(
−2
√

5,
√

5
)

= 125. The highest temperature is 125
and the lowest is 0.

25. Minimize f = x2 + y2 + z2 subject to g(x, y, z) = x+ y + z − 27 = 0. ∇f = λ∇g, 2xi + 2yj + 2zk = λi + λj + λk,
solution x = y = z = 9, minimum value 243.

26. Maximize f(x, y, z) = xy2z2 subject to g(x, y, z) = x + y + z − 5 = 0,∇f = λ∇g = λ(i + j + k), λ = y2z2 =
2xyz2 = 2xy2z, λ = 0 is impossible, hence x, y, z 6= 0, and z = y = 2x, 5x − 5 = 0, x = 1, y = z = 2, maximum
value 16 at (1, 2, 2).

27. Minimize f = x2 + y2 + z2 subject to x2 − yz = 5,∇f = λ∇g, 2x = 2xλ, 2y = −zλ, 2z = −yλ. If λ 6= ±2, then
y = z = 0, x = ±

√
5, f = 5; if λ = ±2 then x = 0, and since −yz = 5, y = −z = ±

√
5, f = 10, thus the minimum

value is 5 at (±
√

5, 0, 0).

28. The diagonal of the box must equal the diameter of the sphere so maximize V = xyz or, for convenience, maximize
f = V 2 = x2y2z2 subject to g(x, y, z) = x2 +y2 +z2−4a2 = 0,∇f = λ∇g, 2xy2z2 = 2λx, 2x2yz2 = 2λy, 2x2y2z =
2λz. Since V 6= 0 it follows that x, y, z 6= 0, hence x = y = z, 3x2 = 4a2, x = 2a/

√
3, maximum volume 8a3/(3

√
3).

29. Let x, y, and z be, respectively, the length, width, and height of the box. Minimize f(x, y, z) = 10(2xy) +
5(2xz + 2yz) = 10(2xy + xz + yz) subject to g(x, y, z) = xyz − 16 = 0, ∇f = λ∇g, 20y + 10z = λyz, 20x+ 10z =
λxz, 10x + 10y = λxy. Since V = xyz = 16, x, y, z 6= 0, thus λz = 20 + 10(z/y) = 20 + 10(z/x), so x = y.
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From this and 10x + 10y = λxy it follows that 20 = λx, so 10z = 20x, z = 2x = 2y, V = 2x3 = 16 and thus
x = y = 2 ft, z = 4 ft, f(2, 2, 4) = 240 cents.

30. (a) If g(x, y) = x = 0 then 8x+2y = λ,−6y+2x = 0; but x = 0, so y = λ = 0, f(0, 0) = 0 maximum, f(0, 1) = −3,
minimum. If g(x, y) = x − 1 = 0 then 8x + 2y = λ,−6y + 2x = 0; but x = 1, so y = 1/3, f(1, 1/3) = 13/3
maximum, f(1, 0) = 4, f(1, 1) = 3 minimum. If g(x, y) = y = 0 then 8x + 2y = 0,−6y + 2x = λ; but y = 0 so
x = λ = 0, f(0, 0) = 0 minimum, f(1, 0) = 4, maximum. If g(x, y) = y − 1 = 0 then 8x + 2y = 0,−6y + 2x = λ;
but y = 1 so x = −1/4, no solution, f(0, 1) = −3 minimum, f(1, 1) = 3 maximum.

(b) If g(x, y) = x − y = 0 then 8x + 2y = λ,−6y + 2x = −λ; but x = y so solution x = y = λ = 0, f(0, 0) = 0
minimum, f(1, 1) = 3 maximum. If g(x, y) = 1− x− y = 0 then 8x+ 2y = −1,−6y + 2x = −1; but x+ y = 1 so
solution is x = −2/13, y = 3/2 which is not on diagonal, f(0, 1) = −3 minimum, f(1, 0) = 4 maximum.

31. Maximize A(a, b, α) = ab sinα subject to g(a, b, α) = 2a+ 2b− ` = 0,∇(a,b,α)A = λ∇(a,b,α)g, b sinα = 2λ, a sinα =
2λ, ab cosα = 0 with solution a = b (= `/4), α = π/2 maximum value if parallelogram is a square.

32. Minimize f(x, y, z) = xy + 2xz + 2yz subject to g(x, y, z) = xyz − V = 0,∇f = λ∇g, y + 2z = λyz, x + 2z =
λxz, 2x+ 2y = λxy;λ = 0 leads to x = y = z = 0, impossible, so solve for λ = 1/z+ 2/x = 1/z+ 2/y = 2/y+ 2/x,
so x = y = 2z, x3 = 2V , minimum value 3(2V )2/3.

33. (a) Maximize f(α, β, γ) = cosα cosβ cos γ subject to g(α, β, γ) = α+β+γ−π = 0,∇f = λ∇g,− sinα cosβ cos γ =
λ,− cosα sinβ cos γ = λ,− cosα cosβ sin γ = λ with solution α = β = γ = π/3, maximum value 1/8.

(b) For example, f(α, β) = cosα cosβ cos(π − α− β).

f

! "

34. Find maxima and minima z = x2 + 4y2 subject to the constraint g(x, y) = x2 + y2− 1 = 0, ∇z = λ∇g, 2xi+ 8yj =
2λxi + 2λyj, solve 2x = 2λx, 8y = 2λy. If y 6= 0 then λ = 4, x = 0, y2 = 1 and z = x2 + 4y2 = 4. If y = 0 then
x2 = 1 and z = 1, so the maximum height is obtained for (x, y) = (0,±1), z = 4 and the minimum height is z = 1
at (±1, 0).

Chapter 13 Review Exercises

1. (a) f(ln y, ex) = eln y ln ex = xy. (b) f(r + s, rs) = er+s ln(rs).

2. (a)

x

y

y = 1x

(b)

x

y

–1 1

3. z =
√
x2 + y2 = c implies x2 + y2 = c2, which is the equation of a circle; x2 + y2 = c is also the equation of a

circle (for c > 0).
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-3 3

-3

3

x

y

z = x2 + y2

-3 3

-3

3

x

y

z = √x2 + y2

4. (b) f(x, y, z) = z − x2 − y2.

5. x4 − x+ y − x3y = (x3 − 1)(x− y), limit = −1, not defined on the line y = x so not continuous at (0, 0).

6. If (x, y) 6= (0, 0), then
x4 − y4

x2 + y2
= x2 − y2, limit: lim

(x,y)→(0,0)
(x2 − y2) = 0, continuous.

7. (a) They approximate the profit per unit of any additional sales of the standard or high-resolution monitors,
respectively.

(b) The rates of change with respect to the two directions x and y, and with respect to time.

9. (a) P =
10T

V
,
dP

dt
=
∂P

∂T

dT

dt
+
∂P

∂V

dV

dt
=

10

V
· 3− 10T

V 2
· 0 =

30

V
=

30

2.5
= 12 N/(m2min) = 12 Pa/min.

(b)
dP

dt
=
∂P

∂T

dT

dt
+
∂P

∂V

dV

dt
=

10

V
· 0− 10T

V 2
· (−3) =

30T

V 2
=

30 · 50

(2.5)2
= 240 Pa/min.

10. (a) z = 1− y2, slope =
∂z

∂y
= −2y = 4. (b) z = 1− 4x2,

∂z

∂x
= −8x = −8.

11. wx = 2x sec2(x2 +y2)+
√
y, wxy = 8xy sec2(x2 +y2) tan(x2 +y2)+

1

2
y−1/2, wy = 2y sec2(x2 +y2)+

1

2
xy−1/2, wyx =

8xy sec2(x2 + y2) tan(x2 + y2) +
1

2
y−1/2.

12. ∂w/∂x =
1

x− y − sin(x + y), ∂2w/∂x2 = − 1

(x− y)2
− cos(x + y), ∂w/∂y = − 1

x− y − sin(x + y), ∂2w/∂y2 =

− 1

(x− y)2
− cos(x+ y) = ∂2w/∂x2.

13. Fx = −6xz, Fxx = −6z, Fy = −6yz, Fyy = −6z, Fz = 6z2−3x2−3y2, Fzz = 12z, Fxx+Fyy+Fzz = −6z−6z+12z =
0.

14. fx = yz + 2x, fxy = z, fxyz = 1, fxyzx = 0; fz = xy − (1/z), fzx = y, fzxx = 0, fzxxy = 0.

16. ∆w = (1.1)2(−0.1) − 2(1.1)(−0.1) + (−0.1)2(1.1) − 0 = 0.11, dw = (2xy − 2y + y2)dx + (x2 − 2x + 2yx)dy =
−(−0.1) = 0.1.

17. dV =
2

3
xhdx+

1

3
x2dh =

2

3
2(−0.1) +

1

3
(0.2) = −0.06667 m3; ∆V = −0.07267 m3.

18. fx

(
1

3
, π

)
= π cos

π

3
=
π

2
, fy

(
1

3
, π

)
=

1

3
cos

π

3
=

1

6
, so L(x, y) =

√
3

2
+
π

2

(
x− 1

3

)
+

1

6
(y − π).
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19.
dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
, so when t = 0, 4

(
−1

2

)
+ 2

dy

dt
= 2. Solve to obtain

dy

dt

∣∣∣∣
t=0

= 2.

20. (a)
dy

dx
= −6x− 5y + y sec2 xy

−5x+ x sec2 xy
. (b)

dy

dx
= − ln y + cos(x− y)

x/y − cos(x− y)
.

21.
dy

dx
= −fx

fy
,
d2y

dx2
= −fy(d/dx)fx − fx(d/dx)fy

f2
y

= −fy(fxx + fxy(dy/dx))− fx(fxy + fyy(dy/dx))

f2
y

=

= −fy(fxx + fxy(−fx/fy))− fx(fxy + fyy(−fx/fy))

f2
y

=
−f2

y fxx + 2fxfyfxy − f2
xfyy

f3
y

.

22. (a)
d

dt

(
∂z

∂x

)
=

∂

∂x

(
∂z

∂x

)
dx

dt
+

∂

∂y

(
∂z

∂x

)
dy

dt
=

∂2z

∂x2

dx

dt
+

∂2z

∂y∂x

dy

dt
by the Chain Rule, and

d

dt

(
∂z

∂y

)
=

∂

∂x

(
∂z

∂y

)
dx

dt
+

∂

∂y

(
∂z

∂y

)
dy

dt
=

∂2z

∂x∂y

dx

dt
+
∂2z

∂y2

dy

dt
.

(b)
dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
,
d2z

dt2
=
dx

dt

(
∂2z

∂x2

dx

dt
+

∂2z

∂y∂x

dy

dt

)
+
∂z

∂x

d2x

dt2
+
dy

dt

(
∂2z

∂x∂y

dx

dt
+
∂2z

∂y2

dy

dt

)
+
∂z

∂y

d2y

dt2
.

25. ∇f =
y

x+ y
i+

(
ln(x+ y) +

y

x+ y

)
j, so when (x, y) = (−3, 5),

∂f

∂u
= ∇f ·u =

[
5

2
i +

(
ln 2 +

5

2

)
j

]
·
[

3

5
i +

4

5
j

]
=

3

2
+ 2 +

4

5
ln 2 =

7

2
+

4

5
ln 2.

26. (a) u is a unit vector parallel to the gradient, so u =
2

5

(
2i +

3

2
j

)
=

4

5
i+

3

5
j. The maximum value is ∇f(0, 0)·u =

8

5
+

9

10
=

5

2
.

(b) The unit vector to give the minimum has the opposite sense of the vector in Part(a), so u = −4

5
i − 3

5
j and

∇f(0, 0) · u = −5

2
.

27. Use the unit vectors u = 〈 1√
2
,

1√
2
〉,v = 〈0,−1〉,w = 〈− 1√

5
,− 2√

5
〉 = −

√
2√
5
u+

1√
5
v, so that Dwf = −

√
2√
5
Duf +

1√
5
Dvf = −

√
2√
5

2
√

2 +
1√
5

(−3) = − 7√
5

.

28. (a) n = zxi + zyj− k = 8i + 8j− k, tangent plane 8x + 8y − z = 4 + 8 ln 2, normal line x(t) = 1 + 8t, y(t) =
ln 2 + 8t, z(t) = 4− t.

(b) n = 3i+10j−14k, tangent plane 3x+10y−14z = 30, normal line x(t) = 2+3t, y(t) = 1+10t, z(t) = −1−14t.

29. The origin is not such a point, so assume that the normal line at (x0, y0, z0) 6= (0, 0, 0) passes through the origin,
then n = zxi + zyj− k = −y0i− x0j− k; the line passes through the origin and is normal to the surface if it has
the form r(t) = −y0ti− x0tj− tk and (x0, y0, z0) = (x0, y0, 2− x0y0) lies on the line if −y0t = x0,−x0t = y0,−t =
2− x0y0, with solutions x0 = y0 = −1, x0 = y0 = 1, x0 = y0 = 0; thus the points are (0, 0, 2), (1, 1, 1), (−1,−1, 1).

30. n =
2

3
x
−1/3
0 i +

2

3
y
−1/3
0 j +

2

3
z
−1/3
0 k, tangent plane x

−1/3
0 x+ y

−1/3
0 y + z

−1/3
0 z = x

2/3
0 + y

2/3
0 + z

2/3
0 = 1; intercepts

are x = x
1/3
0 , y = y

1/3
0 , z = z

1/3
0 , sum of squares of intercepts is x

2/3
0 + y

2/3
0 + z

2/3
0 = 1.

31. The line is tangent to 6i+ 4j + k, a normal to the surface is n = 18xi+ 8yj− k, so solve 18x = 6k, 8y = 4k,−1 =
k; k = −1, x = −1/3, y = −1/2, z = 2.
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32. Solve (t − 1)2/4 + 16e−2t + (2 −
√
t)2 = 1 for t to get t = 1.833223, 2.839844; the particle strikes the surface

at the points P1(0.83322, 0.639589, 0.646034), P2(1.83984, 0.233739, 0.314816). The velocity vectors are given by

v =
dx

dt
i+

dy

dt
j+

dz

dt
k = i−4e−tj−1/(2

√
t)k, and a normal to the surface is n = ∇(x2/4+y2+z2) = x/2i+2yj+2zk.

At the points Pi these are v1 = i−0.639589j−0.369286k,v2 = i−0.233739j−0.296704k;n1 = 0.41661i+1.27918j+
1.29207k and n2 = 0.91992i+ 0.46748j+ 0.62963k so cos−1[(vi · ni)/(‖vi‖ ‖ni‖)] = 112.3◦, 61.1◦; the acute angles
are 67.7◦, 61.1◦.

33. ∇f = (2x+ 3y − 6)i + (3x+ 6y + 3)j = 0 if 2x+ 3y = 6, x+ 2y = −1, x = 15, y = −8, D = 3 > 0, fxx = 2 > 0, so
f has a relative minimum at (15,−8).

34. ∇f = (2xy−6x)i+(x2−12y)j = 0 if 2xy−6x = 0, x2−12y = 0; if x = 0 then y = 0, and if x 6= 0 then y = 3, x = ±6,
thus the gradient vanishes at (0, 0), (−6, 3), (6, 3); fxx = 2y− 6, fyy = −12, fxy = 2x, so D = −24y+ 72− 4x2, so
(±6, 3) are saddle points, and (0, 0) is a relative maximum.

35. ∇f = (3x2 − 3y)i − (3x − y)j = 0 if y = x2, 3x = y, so x = y = 0 or x = 3, y = 9; at x = y = 0, D = −9, saddle
point; at x = 3, y = 9, D = 9, fxx = 18 > 0, relative minimum.

36. ∇f = (8x − 12y)i + (−12x + 18y)j = 0 if y =
2

3
x; fxx = 8, fxy = −12, fyy = 18, D = 0, from which we can draw

no conclusion. Upon inspection, however, f(x, y) = (2x− 3y)2, so f has a relative (and an absolute) minimum of

0 at every point on the line y =
2

3
x, no relative maximum.

37. (a) y2 = 8 − 4x2, find extrema of f(x) = x2(8 − 4x2) = −4x4 + 8x2 defined for −
√

2 ≤ x ≤
√

2. Then
f ′(x) = −16x3 + 16x = 0 when x = 0,±1, f ′′(x) = −48x2 + 16, so f has a relative maximum at x = ±1, y = ±2
and a relative minimum at x = 0, y = ±2

√
2. At the endpoints x = ±

√
2, y = 0 we obtain the minimum f = 0

again.

(b) f(x, y) = x2y2, g(x, y) = 4x2 + y2 − 8 = 0,∇f = 2xy2i + 2x2yj = λ∇g = 8λxi + 2λyj, so solve 2xy2 =
λ8x, 2x2y = λ2y. If x = 0 then y = ±2

√
2, and if y = 0 then x = ±

√
2. In either case f has a relative and absolute

minimum. Assume x, y 6= 0, then y2 = 4λ, x2 = λ, use g = 0 to obtain x2 = 1, x = ±1, y = ±2, and f = 4 is a
relative and absolute maximum at (±1,±2).

38. Let the first octant corner of the box be (x, y, z), so that (x/a)2 + (y/b)2 + (z/c)2 = 1. Maximize V = 8xyz
subject to g(x, y, z) = (x/a)2 + (y/b)2 + (z/c)2 = 1, solve ∇V = λ∇g, or 8(yzi + xzj + xyk) = (2λx/a2)i +
(2λy/b2)j + (2λz/c2)k, 8a2yz = 2λx, 8b2xz = 2λy, 8c2xy = 2λz. For the maximum volume, x, y, z 6= 0; divide
the first equation by the second to obtain a2y2 = b2x2; the first by the third to obtain a2z2 = c2x2, and finally
b2z2 = c2y2. From g = 1 get 3(x/a)2 = 1, x = ±a/

√
3, and then y = ±b/

√
3, z = ±c/

√
3. The dimensions of the

box are
2a√

3
× 2b√

3
× 2c√

3
, and the maximum volume is 8abc/(3

√
3).

39. Denote the currents I1, I2, I3 by x, y, z respectively. Then minimize F (x, y, z) = x2R1 + y2R2 + z2R3 subject to
g(x, y, z) = x+y+z−I = 0, so solve ∇F = λ∇g, 2xR1i+2yR2j+2zR3k = λ(i + j + k), λ = 2xR1 = 2yR2 = 2zR3,

so the minimum value of F occurs when I1 : I2 : I3 =
1

R1
:

1

R2
:

1

R3
.

40. (a)

P = 1

P = 3

P = 2

1 2 3 4 5

1

2

3

4

5

L

K

(b) 0 1 2 3 4 5
0

1

2

3

4

5
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41. (a) ∂P/∂L = cαLα−1Kβ , ∂P/∂K = cβLαKβ−1.

(b) The rates of change of output with respect to labor and capital equipment, respectively.

(c) K(∂P/∂K) + L(∂P/∂L) = cβLαKβ + cαLαKβ = (α+ β)P = P .

42. (a) Maximize P = 1000L0.6K0.4 subject to 50L + 100K = 200,000 or L + 2K = 4000. 600

(
K

L

)0.4

=

λ, 400

(
L

K

)0.6

= 2λ, L + 2K = 4000; so
2

3

(
L

K

)
= 2, thus L = 3K, L = 2400,K = 800, P (2400, 800) =

1000 · 24000.6 · 8000.4 = 1000 · 30.6 · 800 = 800,000 · 30.6 ≈ $1,546,545.64.

(b) The value of labor is 50L = 120,000 and the value of capital is 100K = 80,000.

Chapter 13 Making Connections

1.
∂z

∂r
=

∂z

∂x

∂x

∂r
+
∂z

∂y

∂y

∂r
= cos θ

∂z

∂x
+ sin θ

∂z

∂y
, multiply by r to get the first equation.

∂z

∂θ
=

∂z

∂x

∂x

∂θ
+
∂z

∂y

∂y

∂θ
=

−r sin θ
∂z

∂x
+ r cos θ

∂z

∂y
= −y ∂z

∂x
+ x

∂z

∂y
.

2. (a) f(tx, ty) = 3t2x2 + t2y2 = t2f(x, y); n = 2.

(b) f(tx, ty) =
√
t2x2 + t2y2 = tf(x, y); n = 1.

(c) f(tx, ty) = t3x2y − 2t3y3 = t3f(x, y); n = 3.

(d) f(tx, ty) = 5/
(
t2x2 + 2t2y2

)2
= t−4f(x, y); n = −4.

3. Suppose g(θ) exists such that f(x, y) = rng(θ) is homogeneous of degree n. Then f(tx, ty) = (tr)ng(θ) =
tn[rng(θ)] = tnf(x, y). Conversely if f(x, y) is homogeneous of degree n then let g(θ) = f(cos θ, sin θ). Then
f(x, y) = f(r cos θ, r sin θ) = rnf(cos θ, sin θ) = rng(θ); moreover, g(θ) has period 2π.

4. (a) If f(u, v) = tnf(x, y), then
∂f

∂u

du

dt
+
∂f

∂v

dv

dt
= ntn−1f(x, y), x

∂f

∂u
+ y

∂f

∂v
= ntn−1f(x, y); let t = 1 to get

x
∂f

∂x
+ y

∂f

∂y
= nf(x, y).

(b) Let f(x, y) be homogeneous of degree n, so that f(x, y) = rng(θ), where g has period 2π. Then fx =

nrn−1g(θ)
x

r
− rng′θ y

r2
, fy = nrn−1g(θ)

y

r
+ rng′(θ)

x

r2
, so

xfx + yfy = rn
(
ng(θ) cos2 θ + ng(θ) sin2 θ − g′(θ)[cos θ sin θ − sin θ cos θ]

)
= nrng(θ) = nf(x, y).

(c) If f(x, y) = 3x2 + y2 then xfx + yfy = 6x2 + 2y2 = 2f(x, y); if f(x, y) =
√
x2 + y2 then xfx + yfy =

x2/
√
x2 + y2 +y2/

√
x2 + y2 =

√
x2 + y2 = f(x, y); if f(x, y) = x2y−2y3 then xfx+yfy = 3x2y−6y3 = 3f(x, y);

if f(x, y) =
5

(x2 + 2y2)2
then xfx + yfy = x

5(−2)2x

(x2 + 2y2)3
+ y

5(−2)4y

(x2 + 2y2)3
= −4f(x, y).

5. Write f(x, y) = z(r, θ) in polar form. From the hypotheses and Exercise 1 of this section we see that r
∂z

∂r
−nz = 0.

Divide by rn+1 to obtain r−n
∂z

∂r
− nr−n−1z = 0,

∂

∂r
(r−nz) = 0. Thus r−nz is independent of r, say r−nz =

g(θ), z = rng(θ). From Exercise 3 it follows that f is homogeneous of degree n provided that g is 2π periodic; but
this follows from the fact that z is defined in terms of sines and cosines.



Multiple Integrals

Exercise Set 14.1

1.

∫ 1

0

∫ 2

0

(x+ 3) dy dx =

∫ 1

0

(2x+ 6) dx = 7.

2.

∫ 3

1

∫ 1

−1

(2x− 4y) dy dx =

∫ 3

1

4x dx = 16.

3.

∫ 4

2

∫ 1

0

x2y dx dy =

∫ 4

2

1

3
y dy = 2.

4.

∫ 0

−2

∫ 2

−1

(x2 + y2) dx dy =

∫ 0

−2

(3 + 3y2) dy = 14.

5.

∫ ln 3

0

∫ ln 2

0

ex+y dy dx =

∫ ln 3

0

ex dx = 2.

6.

∫ 2

0

∫ 1

0

y sinx dy dx =

∫ 2

0

1

2
sinx dx =

1− cos 2

2
.

7.

∫ 0

−1

∫ 5

2

dx dy =

∫ 0

−1

3 dy = 3.

8.

∫ 6

4

∫ 7

−3

dy dx =

∫ 6

4

10 dx = 20.

9.

∫ 1

0

∫ 1

0

x

(xy + 1)2
dy dx =

∫ 1

0

(
1− 1

x+ 1

)
dx = 1− ln 2.

10.

∫ π

π/2

∫ 2

1

x cosxy dy dx =

∫ π

π/2

(sin 2x− sinx) dx = −2.

11.

∫ ln 2

0

∫ 1

0

xy ey
2x dy dx =

∫ ln 2

0

1

2
(ex − 1) dx =

1− ln 2

2
.

12.

∫ 4

3

∫ 2

1

1

(x+ y)2
dy dx =

∫ 4

3

(
1

x+ 1
− 1

x+ 2

)
dx = ln(25/24).

13.

∫ 1

−1

∫ 2

−2

4xy3 dy dx =

∫ 1

−1

0 dx = 0.

14.

∫ 1

0

∫ 1

0

xy√
x2 + y2 + 1

dy dx =

∫ 1

0

[x(x2 + 2)1/2 − x(x2 + 1)1/2] dx =
1

3
(3
√

3− 4
√

2 + 1).

675
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15.

∫ 1

0

∫ 3

2

x
√

1− x2 dy dx =

∫ 1

0

x(1− x2)1/2 dx =
1

3
.

16.

∫ π/2

0

∫ π/3

0

(x sin y − y sinx)dy dx =

∫ π/2

0

(
x

2
− π2

18
sinx

)
dx =

π2

144
.

17. (a) x∗k = k/2 − 1/4, k = 1, 2, 3, 4; y∗l = l/2 − 1/4, l = 1, 2, 3, 4,

∫∫

R

f(x, y) dx dy ≈
4∑

k=1

4∑

l=1

f(x∗k, y
∗
l )∆Akl =

4∑

k=1

4∑

l=1

[(
k

2
− 1

4

)2

+

(
l

2
− 1

4

)](
1

2

)2

=
37

4
.

(b)

∫ 2

0

∫ 2

0

(x2 + y) dx dy =
28

3
; the error is

∣∣∣∣
37

4
− 28

3

∣∣∣∣ =
1

12
.

18. (a) x∗k = k/2 − 1/4, k = 1, 2, 3, 4; y∗l = l/2 − 1/4, l = 1, 2, 3, 4,

∫∫

R

f(x, y) dx dy ≈
4∑

k=1

4∑

l=1

f(x∗k, y
∗
l )∆Akl =

4∑

k=1

4∑

l=1

[(
k

2
− 1

4

)
− 2

(
l

2
− 1

4

)](
1

2

)2

= −4.

(b)

∫ 2

0

∫ 2

0

(x− 2y) dx dy = −4; the error is zero.

19. The solid is a rectangular box with sides of length 1, 5, and 4, so its volume is 1 · 5 · 4 = 20;
∫ 5

0

∫ 2

1

4 dx dy =

∫ 5

0

4x
]2
x=1

dy =

∫ 5

0

4 dy = 20.

(1, 0, 4)

(2, 5, 0)

x

y

z

20. Two copies of the solid will fit together to form a rectangular box whose base is a square of side 1 and whose
height is 2, so the solid’s volume is (12 · 2)/2 = 1;
∫ 1

0

∫ 1

0

(2− x− y) dx dy =

∫ 1

0

[
2x− 1

2
x2 − xy

]1

x=0

dy =

∫ 1

0

(
3

2
− y
)
dy =

[
3

2
y − 1

2
y2

]1

0

= 1.

(1, 1, 0)

(0, 0, 2)

x

y

z
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21.

(0, 0, 5)

(3, 0, 4)

(3, 4, 0)

(0, 4, 3)

z

x

y

22.

(2, 2, 0)

(2, 2, 8)

x

y

z

23. False. ∆Ak represents the area of such a region.

24. True.

∫∫

R

f(x, y) dA =

∫ 4

1

∫ 3

0

f(x, y) dy dx =

∫ 4

1

2x dx = x2
]4

1
= 15.

25. False.

∫∫

R

f(x, y) dA =

∫ 5

1

∫ 4

2

f(x, y) dy dx.

26. True, by equation (12).

27.

∫∫

R

f(x, y) dA =

∫ b

a

[∫ d

c

g(x)h(y) dy

]
dx =

∫ b

a

g(x)

[∫ d

c

h(y) dy

]
dx =

[∫ b

a

g(x) dx

][∫ d

c

h(y) dy

]
.

28. The integral of tanx (an odd function) over the interval [−1, 1] is zero, so the iterated integral is also zero.

29. V =

∫ 5

3

∫ 2

1

(2x+ y) dy dx =

∫ 5

3

(
2x+

3

2

)
dx = 19.

30. V =

∫ 3

1

∫ 2

0

(3x3 + 3x2y) dy dx =

∫ 3

1

(6x3 + 6x2) dx = 172.

31. V =

∫ 2

0

∫ 3

0

x2 dy dx =

∫ 2

0

3x2 dx = 8.

32. V =

∫ 3

0

∫ 4

0

5
(

1− x

3

)
dy dx =

∫ 3

0

5

(
4− 4x

3

)
dx = 30.

33.

∫ 1/2

0

∫ π

0

x cos(xy) cos2 πx dy dx =

∫ 1/2

0

cos2 πx sin(xy)
]π

0
dx =

∫ 1/2

0

cos2 πx sinπx dx = − 1

3π
cos3 πx

]1/2
0

=
1

3π
.

34. (a)

y

x

z

5

3

(0, 2, 2)

(5, 3, 0)
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(b) V =

∫ 5

0

∫ 2

0

y dy dx+

∫ 5

0

∫ 3

2

(−2y + 6) dy dx = 10 + 5 = 15.

35. fave =
1

48

∫ 6

0

∫ 8

0

xy2 dx dy =
1

48

∫ 6

0

(
1

2
x2y2

]x=8

x=0

)
dy =

1

48

∫ 6

0

32y2 dy = 48.

36. fave =
1

18

∫ 6

0

∫ 3

0

x2 + 7y dx dy =
1

18

∫ 6

0

(
1

3
x3 + 7yx

]x=3

x=0

)
dy =

1

18

∫ 6

0

9 + 21y dy = 24.

37. fave =
2

π

∫ π/2

0

∫ 1

0

y sinxy dx dy =
2

π

∫ π/2

0

(
− cosxy

]x=1

x=0

)
dy =

2

π

∫ π/2

0

(1− cos y) dy = 1− 2

π
.

38. fave =
1

3

∫ 3

0

∫ 1

0

x(x2 + y)1/2 dx dy =

∫ 3

0

1

9
[(1 + y)3/2 − y3/2] dy =

2

45
(31− 9

√
3).

39. Tave =
1

2

∫ 1

0

∫ 2

0

(
10− 8x2 − 2y2

)
dy dx =

1

2

∫ 1

0

(
44

3
− 16x2

)
dx =

(
14

3

)◦
C.

40. fave =
1

A(R)

∫ b

a

∫ d

c

k dy dx =
1

A(R)
(b− a)(d− c)k = k.

41. 1.381737122

42. 2.230985141

43. The first integral equals 1/2, the second equals −1/2. This does not contradict Theorem 14.1.3 because the

integrand is not continuous at (x, y) = (0, 0); if f(x, y) =
y − x

(x+ y)3
, then lim

x→0
f(x, 0) = lim

x→0

−1

x2
→ −∞.

44. V =

∫ 1

0

∫ π

0

xy3 sin(xy) dx dy =

∫ 1

0

[
y sin(xy)− xy2 cos(xy)

]π
x=0

dy =

∫ 1

0

[y sin(πy)− πy2 cos(πy)] dy =

=

[
3

π2
sin(πy)− 3

π
y cos(πy)− y2 sin(πy)

]1

0

=
3

π
.

45. If R is a rectangular region defined by a ≤ x ≤ b, c ≤ y ≤ d, then the volume given in equation (5) can be written

as an iterated integral: V =

∫∫

R

f(x, y) dA =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx. The inner integral,

∫ d

c

f(x, y) dy, is the

area A(x) of the cross-section with x-coordinate x of the solid enclosed between R and the surface z = f(x, y). So

V =

∫ b

a

A(x) dx, as found in Section 6.2.

Exercise Set 14.2

1.

∫ 1

0

∫ x

x2

xy2 dy dx =

∫ 1

0

1

3
(x4 − x7) dx =

1

40
.

2.

∫ 3/2

1

∫ 3−y

y

y dx dy =

∫ 3/2

1

(3y − 2y2)dy =
7

24
.

3.

∫ 3

0

∫ √9−y2

0

y dx dy =

∫ 3

0

y
√

9− y2 dy = 9.
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4.

∫ 1

1/4

∫ x

x2

√
x/y dy dx =

∫ 1

1/4

∫ x

x2

x1/2y−1/2 dy dx =

∫ 1

1/4

2(x− x3/2) dx =
13

80
.

5.

∫ √2π

√
π

∫ x3

0

sin(y/x) dy dx =

∫ √2π

√
π

[−x cos(x2) + x] dx =
π

2
.

6.

∫ 1

−1

∫ x2

−x2

(x2 − y) dy dx =

∫ 1

−1

2x4 dx =
4

5
.

7.

∫ 1

0

∫ x

0

y
√
x2 − y2 dy dx =

∫ 1

0

1

3
x3 dx =

1

12
.

8.

∫ 2

1

∫ y2

0

ex/y
2

dx dy =

∫ 2

1

(e− 1)y2 dy =
7(e− 1)

3
.

9. (a)

∫ 2

0

∫ x2

0

f(x, y) dy dx. (b)

∫ 4

0

∫ 2

√
y

f(x, y) dx dy.

10. (a)

∫ 1

0

∫ √x

x2

f(x, y) dy dx. (b)

∫ 1

0

∫ √y

y2
f(x, y) dx dy.

11. (a)

∫ 2

1

∫ 3

−2x+5

f(x, y) dy dx+

∫ 4

2

∫ 3

1

f(x, y) dy dx+

∫ 5

4

∫ 3

2x−7

f(x, y) dy dx.

(b)

∫ 3

1

∫ (y+7)/2

(5−y)/2

f(x, y) dx dy.

12. (a)

∫ 1

−1

∫ √1−x2

−
√

1−x2

f(x, y) dy dx. (b)

∫ 1

−1

∫ √1−y2

−
√

1−y2
f(x, y) dx dy.

13. (a)

∫ 2

0

∫ x2

0

xy dy dx =

∫ 2

0

1

2
x5 dx =

16

3
.

(b)

∫ 3

1

∫ (y+7)/2

(5−y)/2

xy dx dy =

∫ 3

1

(3y2 + 3y) dy = 38.

14. (a)

∫ 1

0

∫ √x

x2

(x+ y) dy dx =

∫ 1

0

(
x3/2 +

x

2
− x3 − x4

2

)
dx =

3

10
.

(b)

∫ 1

−1

∫ √1−x2

−
√

1−x2

x dy dx+

∫ 1

−1

∫ √1−x2

−
√

1−x2

y dy dx =

∫ 1

−1

2x
√

1− x2 dx+ 0 = 0.

15. (a)

∫ 8

4

∫ x

16/x

x2dy dx =

∫ 8

4

(x3 − 16x) dx = 576.

(b)

∫ 4

2

∫ 8

16/y

x2 dx dy +

∫ 8

4

∫ 8

y

x2 dx dy =

∫ 8

4

[
512

3
− 4096

3y3

]
dy +

∫ 8

4

512− y3

3
dy =

640

3
+

1088

3
= 576.

16. (a)

∫ 1

0

∫ 2

1

xy2 dy dx+

∫ 2

1

∫ 2

x

xy2 dy dx =

∫ 1

0

7x/3 dx+

∫ 2

1

8x− x4

3
dx =

7

6
+

29

15
=

31

10
.
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(b)

∫ 2

1

∫ y

0

xy2 dx dy =

∫ 2

1

1

2
y4 dy =

31

10
.

17. (a)

∫ 1

−1

∫ √1−x2

−
√

1−x2

(3x− 2y) dy dx =

∫ 1

−1

6x
√

1− x2 dx = 0.

(b)

∫ 1

−1

∫ √1−y2

−
√

1−y2
(3x− 2y) dx dy =

∫ 1

−1

−4y
√

1− y2 dy = 0.

18. (a)

∫ 5

0

∫ √25−x2

5−x
y dy dx =

∫ 5

0

(5x− x2) dx =
125

6
.

(b)

∫ 5

0

∫ √25−y2

5−y
y dx dy =

∫ 5

0

y
(√

25− y2 − 5 + y
)
dy =

125

6
.

19.

∫ 4

0

∫ √y

0

x(1 + y2)−1/2 dx dy =

∫ 4

0

1

2
y(1 + y2)−1/2 dy =

√
17− 1

2
.

20.

∫ π

0

∫ x

0

x cos y dy dx =

∫ π

0

x sinx dx = π.

21.

∫ 2

0

∫ 6−y

y2
xy dx dy =

∫ 2

0

1

2
(36y − 12y2 + y3 − y5) dy =

50

3
.

22.

∫ π/4

0

∫ 1/
√

2

sin y

x dx dy =

∫ π/4

0

1

4
cos 2y dy =

1

8
.

23.

∫ 1

0

∫ x

x3

(x− 1) dy dx =

∫ 1

0

(−x4 + x3 + x2 − x) dx = − 7

60
.

24.

∫ 1/
√

2

0

∫ 2x

x

x2 dy dx+

∫ 1

1/
√

2

∫ 1/x

x

x2 dy dx =

∫ 1/
√

2

0

x3 dx+

∫ 1

1/
√

2

(x− x3)dx =
1

8
.

25.

∫ 2

0

∫ y2

0

sin(y3) dx dy =

∫ 2

0

y2 sin(y3) dy =
1− cos 8

3
.

26.

∫ 1

0

∫ e

ex
x dy dx =

∫ 1

0

(ex− xex) dx =
e

2
− 1.

27. (a)
–1–2 0.5 1.5

x

y

1

2

3

4

(b) (−1.8414, 0.1586), (1.1462, 3.1462).
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(c)

∫∫

R

x dA ≈
∫ 1.1462

−1.8414

∫ x+2

ex
x dy dx =

∫ 1.1462

−1.8414

x(x+ 2− ex) dx ≈ −0.4044.

(d)

∫∫

R

x dA ≈
∫ 3.1462

0.1586

∫ ln y

y−2

x dx dy =

∫ 3.1462

0.1586

[
ln2 y

2
− (y − 2)2

2

]
dy ≈ −0.4044.

28. (a) 1 2 3

5

15

25

x

y

R

(b) (1, 3), (3, 27).

(c)

∫ 3

1

∫ 4x3−x4

3−4x+4x2

x dy dx =

∫ 3

1

x[(4x3 − x4)− (3− 4x+ 4x2)] dx =
224

15
.

29. A =

∫ π/4

0

∫ cos x

sin x

dy dx =

∫ π/4

0

(cosx− sinx) dx =
√

2− 1.

30. A =

∫ 1

−4

∫ −y2

3y−4

dx dy =

∫ 1

−4

(−y2 − 3y + 4) dy =
125

6
.

31. A =

∫ 3

−3

∫ 9−y2

1−y2/9
dx dy =

∫ 3

−3

8

(
1− y2

9

)
dy = 32.

32. A =

∫ 1

0

∫ cosh x

sinh x

dy dx =

∫ 1

0

(coshx− sinhx) dx = 1− e−1.

33. False. The expression on the right side doesn’t make sense. To evaluate an integral of the form

∫ 2x

x2

g(y) dy, x

must have a fixed value. But then we can’t use x as a variable in defining g(y) =

∫ 1

0

f(x, y) dx.

34. True. This is Theorem 14.2.2(a).

35. False. For example, if f(x, y) = x then

∫∫

R

f(x, y) dA =

∫ 1

−1

∫ 1

x2

x dy dx =

∫ 1

−1

xy
]1
y=x2

dx =

∫ 1

−1

x(1 − x2) dx =

[
1

2
x2 − 1

4
x4

]1

−1

= 0, but 2

∫ 1

0

∫ 1

x2

x dy dx =

∫ 1

0

xy
]1
y=x2

dx =

∫ 1

0

x(1− x2) dx =

[
1

2
x2 − 1

4
x4

]1

0

=
1

4
.

36. False. For example, if R is the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, then the area of R is 1, but

∫∫

R

xy dA =

∫ 1

0

∫ 1

0

xy dy dx =

∫ 1

0

1

2
xy2
]1
y=0

dx =

∫ 1

0

1

2
x dx =

1

4
x2
]1

0
=

1

4
.

37.

∫ 4

0

∫ 6−3x/2

0

(
3− 3x

4
− y

2

)
dy dx =

∫ 4

0

[(
3− 3x

4

)(
6− 3x

2

)
− 1

4

(
6− 3x

2

)2
]
dx = 12.
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38.

∫ 2

0

∫ √4−x2

0

√
4− x2 dy dx =

∫ 2

0

(4− x2) dx =
16

3
.

39. V =

∫ 3

−3

∫ √9−x2

−
√

9−x2

(3− x) dy dx =

∫ 3

−3

(
6
√

9− x2 − 2x
√

9− x2
)
dx = 27π.

40. V =

∫ 1

0

∫ x

x2

(x2 + 3y2) dy dx =

∫ 1

0

(2x3 − x4 − x6) dx =
11

70
.

41. V =

∫ 3

0

∫ 2

0

(9x2 + y2) dy dx =

∫ 3

0

(
18x2 +

8

3

)
dx = 170.

42. V =

∫ 1

−1

∫ 1

y2
(1− x) dx dy =

∫ 1

−1

(
1

2
− y2 +

y4

2

)
dy =

8

15
.

43. V =

∫ 3/2

−3/2

∫ √9−4x2

−
√

9−4x2

(y + 3) dy dx =

∫ 3/2

−3/2

6
√

9− 4x2 dx =
27π

2
.

44. V =

∫ 3

0

∫ 3

y2/3

(9− x2) dx dy =

∫ 3

0

(
18− 3y2 +

y6

81

)
dy =

216

7
.

45. V = 4

∫ 1

0

∫ √1−x2

0

(1− x2 − y2) dy dx =
8

3

∫ 1

0

(1− x2)3/2 dx =
π

2
.

46. V =

∫ 2

0

∫ √4−x2

0

(x2 + y2) dy dx =

∫ 2

0

[
x2
√

4− x2 +
1

3
(4− x2)3/2

]
dx = 2π.

47.

∫ √2

0

∫ 2

y2
f(x, y) dx dy.

48.

∫ 8

0

∫ x/2

0

f(x, y) dy dx.

49.

∫ e2

1

∫ 2

ln x

f(x, y) dy dx.

50.

∫ 1

0

∫ e

ey
f(x, y) dx dy.

51.

∫ π/2

0

∫ sin x

0

f(x, y) dy dx.

52.

∫ 1

0

∫ √x

x2

f(x, y) dy dx.

53.

∫ 4

0

∫ y/4

0

e−y
2

dx dy =

∫ 4

0

1

4
ye−y

2

dy =
1− e−16

8
.

54.

∫ 1

0

∫ 2x

0

cos(x2) dy dx =

∫ 1

0

2x cos(x2) dx = sin 1.
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55.

∫ 2

0

∫ x2

0

ex
3

dy dx =

∫ 2

0

x2ex
3

dx =
e8 − 1

3
.

56.

∫ ln 3

0

∫ 3

ey
x dx dy =

1

2

∫ ln 3

0

(9− e2y) dy =
9 ln 3− 4

2
.

57. (a)

∫ 4

0

∫ 2

√
x

sin
(
πy3
)
dy dx; the inner integral is non-elementary.

∫ 2

0

∫ y2

0

sin
(
πy3
)
dx dy =

∫ 2

0

y2 sin
(
πy3
)
dy = − 1

3π
cos
(
πy3
) ]2

0

= 0.

(b)

∫ 1

0

∫ π/2

sin−1 y

sec2(cosx) dx dy; the inner integral is non-elementary.

∫ π/2

0

∫ sin x

0

sec2(cosx) dy dx =

∫ π/2

0

sec2(cosx) sinx dx = tan 1.

58. V = 4

∫ 2

0

∫ √4−x2

0

(x2 + y2) dy dx = 4

∫ 2

0

(
x2
√

4− x2 +
1

3
(4− x2)3/2

)
dx =

=

∫ π/2

0

(
64

3
+

64

3
sin2 θ − 128

3
sin4 θ

)
dθ =

64

3

π

2
+

64

3

π

4
− 128

3

π

2

1 · 3
2 · 4 = 8π (by substituting x = 2 sin θ).

59. The region is symmetric with respect to the y-axis, and the integrand is an odd function of x, hence the answer
is zero.

60. This is the volume in the first octant under the surface z =
√

1− x2 − y2, so 1/8 of the volume of the sphere of

radius 1, thus
π

6
.

61. Area of triangle is 1/2, so fave = 2

∫ 1

0

∫ 1

x

1

1 + x2
dy dx = 2

∫ 1

0

[
1

1 + x2
− x

1 + x2

]
dx =

π

2
− ln 2.

62. Area =

∫ 2

0

(3x−x2−x) dx =
4

3
, so fave =

3

4

∫ 2

0

∫ 3x−x2

x

(x2−xy) dy dx =
3

4

∫ 2

0

(
−2x3 + 2x4 − x5

2

)
dx = −3

4

8

15
=

−2

5
.

63. Tave =
1

A(R)

∫∫

R

(5xy + x2) dA. The diamond has corners (±2, 0), (0,±4) and thus has area A(R) = 4
1

2
2(4) =

16m2. Since 5xy is an odd function of x (as well as y),

∫∫

R

5xy dA = 0. Since x2 is an even function of both x

and y, Tave =
4

16

∫∫

R
x,y>0

x2 dA =
1

4

∫ 2

0

∫ 4−2x

0

x2 dy dx =
1

4

∫ 2

0

(4− 2x)x2 dx =
1

4

[
4

3
x3 − 1

2
x4

]2

0

=

(
2

3

)◦
C.

64. The area of the lens is πR2 = 4π and the average thickness Tave is Tave =
4

4π

∫ 2

0

∫ √4−x2

0

(
1− x2 + y2

4

)
dy dx =

1

π

∫ 2

0

1

6
(4− x2)3/2 dx =

8

3π

∫ π/2

0

sin4 θ dθ =
8

3π

1 · 3
2 · 4

π

2
=

1

2
in (by substituting x = 2 cos θ).

65. y = sinx and y = x/2 intersect at x = 0 and x = a ≈ 1.895494, so V =

∫ a

0

∫ sin x

x/2

√
1 + x+ y dy dx ≈ 0.676089.
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67. See Example 7. Given an iterated integral

∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy, draw the type II region R defined by c ≤ y ≤ d,

h1(y) ≤ x ≤ h2(y). If R is also a type I region, try to determine the numbers a and b and functions g1(x)

and g2(x) such that R is also described by a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x). Then

∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx. This isn’t always possible: R may not be a type I region. Even if it is, it may not be

possible to find formulas for g1(x) and g2(x).

Exercise Set 14.3

1.

∫ π/2

0

∫ sin θ

0

r cos θ dr dθ =

∫ π/2

0

1

2
sin2 θ cos θ dθ =

1

6
.

2.

∫ π

0

∫ 1+cos θ

0

r dr dθ =

∫ π

0

1

2
(1 + cos θ)2 dθ =

3π

4
.

3.

∫ π/2

0

∫ a sin θ

0

r2 dr dθ =

∫ π/2

0

a3

3
sin3 θ dθ =

2

9
a3.

4.

∫ π/6

0

∫ cos 3θ

0

r dr dθ =

∫ π/6

0

1

2
cos2 3θ dθ =

π

24
.

5.

∫ π

0

∫ 1−sin θ

0

r2 cos θ dr dθ =

∫ π

0

1

3
(1− sin θ)3 cos θ dθ = 0.

6.

∫ π/2

0

∫ cos θ

0

r3 dr dθ =

∫ π/2

0

1

4
cos4 θ dθ =

3π

64
.

7. A =

∫ 2π

0

∫ 1−cos θ

0

r dr dθ =

∫ 2π

0

1

2
(1− cos θ)2 dθ =

3π

2
.

8. A = 4

∫ π/2

0

∫ sin 2θ

0

r dr dθ = 2

∫ π/2

0

sin2 2θ dθ =
π

2
.

9. A =

∫ π/2

π/4

∫ 1

sin 2θ

r dr dθ =

∫ π/2

π/4

1

2
(1− sin2 2θ) dθ =

π

16
.

10. A = 2

∫ π/3

0

∫ 2

sec θ

r dr dθ =

∫ π/3

0

(4− sec2 θ) dθ =
4π

3
−
√

3.

11. A =

∫ 5π/6

π/6

∫ 4 sin θ

2

f(r, θ) r dr dθ.
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x

y

2

4

r = 2

r = 4 sin!

12. A =

∫ 3π/2

π/2

∫ 1

1+cos θ

f(r, θ)r dr dθ.

x

y

2

4

r = 1

r = 1 + cos!

13. V = 8

∫ π/2

0

∫ 3

1

r
√

9− r2 dr dθ.

14. V = 2

∫ π/2

0

∫ 2 sin θ

0

r2dr dθ.

15. V = 2

∫ π/2

0

∫ cos θ

0

(1− r2)r dr dθ.

16. V = 4

∫ π/2

0

∫ 3

1

dr dθ.

17. V = 8

∫ π/2

0

∫ 3

1

r
√

9− r2 dr dθ =
128

3

√
2

∫ π/2

0

dθ =
64

3

√
2π.

18. V = 2

∫ π/2

0

∫ 2 sin θ

0

r2dr dθ =
16

3

∫ π/2

0

sin3 θ dθ =
32

9
.

19. V = 2

∫ π/2

0

∫ cos θ

0

(1− r2)r dr dθ =
1

2

∫ π/2

0

(2 cos2 θ − cos4 θ) dθ =
5π

32
.

20. V = 4

∫ π/2

0

∫ 3

1

dr dθ = 8

∫ π/2

0

dθ = 4π.

21. V =

∫ π/2

0

∫ 3 sin θ

0

r2 sin θ dr dθ = 9

∫ π/2

0

sin4 θ dθ =
27π

16
.

22. V = 4

∫ π/2

0

∫ 2

2 cos θ

√
4− r2 r dr dθ + 4

∫ π

π/2

∫ 2

0

√
4− r2 r dr dθ =

∫ π/2

0

32

3
(1− cos2 θ)3/2θ dθ +

∫ π

π/2

32

3
dθ =

64

9
+

16π

3
.
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23.

∫ 2π

0

∫ 3

0

sin(r2)r dr dθ =
1

2
(1− cos 9)

∫ 2π

0

dθ = π(1− cos 9).

24.

∫ π/2

0

∫ 3

0

r
√

9− r2 dr dθ = 9

∫ π/2

0

dθ =
9π

2
.

25.

∫ π/4

0

∫ 2

0

1

1 + r2
r dr dθ =

1

2
ln 5

∫ π/4

0

dθ =
π

8
ln 5.

26.

∫ π/2

π/4

∫ 2 cos θ

0

2r2 sin θ dr dθ =
16

3

∫ π/2

π/4

cos3 θ sin θ dθ =
1

3
.

27.

∫ π/2

0

∫ 1

0

r3 dr dθ =
1

4

∫ π/2

0

dθ =
π

8
.

28.

∫ 2π

0

∫ 2

0

e−r
2

r dr dθ =
1

2
(1− e−4)

∫ 2π

0

dθ = (1− e−4)π.

29.

∫ π/2

0

∫ 2 cos θ

0

r2dr dθ =
8

3

∫ π/2

0

cos3 θ dθ =
16

9
.

30.

∫ π/2

0

∫ 1

0

cos(r2)r dr dθ =
1

2
sin 1

∫ π/2

0

dθ =
π

4
sin 1.

31.

∫ π/2

0

∫ a

0

r

(1 + r2)3/2
dr dθ =

π

2

(
1− 1√

1 + a2

)
.

32.

∫ π/4

0

∫ sec θ tan θ

0

r2 dr dθ =
1

3

∫ π/4

0

sec3 θ tan3 θ dθ =
2(
√

2 + 1)

45
.

33.

∫ π/4

0

∫ 2

0

r√
1 + r2

dr dθ =
π

4
(
√

5− 1).

34.

∫ 3π/2

π/2

∫ 4

0

3r2 cos θ dr dθ =

∫ 3π/2

π/2

64 cos θ dθ = −128.

35. True. It can be defined by the inequalities 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2.

36. False. The volume is

∫∫

R

f(r, θ) dA. The extra factor r isn’t introduced until we write this as an iterated integral

as in Theorem 14.3.3.

37. False. The integrand in the iterated integral should be multiplied by r:

∫∫

R

f(r, θ) dA =

∫ π/2

0

∫ 2

1

f(r, θ) r dr dθ.

38. False. The region is described by 0 ≤ θ ≤ π, 0 ≤ r ≤ sin θ, so A =

∫ π

0

∫ sin θ

0

r dr dθ.

39. V =

∫ 2π

0

∫ a

0

hr dr dθ =

∫ 2π

0

h
a2

2
dθ = πa2h.

40. V =

∫ 2π

0

∫ R

0

D(r)r dr dθ =

∫ 2π

0

∫ R

0

ke−rr dr dθ = −2πk(1 + r)e−r
]R

0

= 2πk[1− (R+ 1)e−R].
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41.

∫ tan−1(2)

tan−1(1/3)

∫ 2

0

r3 cos2 θ dr dθ = 4

∫ tan−1(2)

tan−1(1/3)

cos2 θ dθ = 2

∫ tan−1(2)

tan−1(1/3)

(1+cos(2θ)) dθ =
[
2θ+2 cos θ sin θ

]tan−1(2)

tan−1(1/3)
=

2 tan−1(2)+2 · 1√
5
· 2√

5
−2 tan−1(1/3)−2 · 3√

10
· 1√

10
= 2

(
tan−1(2)− tan−1(1/3)

)
+

1

5
= 2 tan−1(1)+

1

5
=
π

2
+

1

5
.

42. A =

∫ φ

0

∫ 2a sin θ

0

r dr dθ = 2a2

∫ φ

0

sin2 θ dθ = a2φ− 1

2
a2 sin 2φ.

43. (a) V = 8

∫ π/2

0

∫ a

0

c

a
(a2 − r2)1/2 r dr dθ = − 4c

3a
π(a2 − r2)3/2

]a

0

=
4

3
πa2c.

(b) V ≈ 4

3
π(6378.1370)26356.5231 km3 ≈ 1.0831682 · 1012 km3 = 1.0831682 · 1021 m3.

44. V = 2

∫ π/2

0

∫ a sin θ

0

c

a
(a2 − r2)1/2r dr dθ =

2

3
a2c

∫ π/2

0

(1− cos3 θ) dθ =
(3π − 4)a2c

9
.

45. A = 4

∫ π/4

0

∫ a
√

2 cos 2θ

0

r dr dθ = 4a2

∫ π/4

0

cos 2θ dθ = 2a2.

46. A =

∫ π/4

π/6

∫ 4 sin θ

√
8 cos 2θ

r dr dθ+

∫ π/2

π/4

∫ 4 sin θ

0

r dr dθ =

∫ π/4

π/6

(8 sin2 θ− 4 cos 2θ) dθ+

∫ π/2

π/4

8 sin2 θ dθ =
4π

3
+ 2
√

3− 2.

Exercise Set 14.4

1. z =
√

9− y2, zx = 0, zy = −y/
√

9− y2, z2
x + z2

y + 1 = 9/(9− y2), S =

∫ 2

0

∫ 3

−3

3√
9− y2

dy dx =

∫ 2

0

3π dx = 6π.

2. z = 8− 2x− 2y, z2
x + z2

y + 1 = 4 + 4 + 1 = 9, S =

∫ 4

0

∫ 4−x

0

3 dy dx =

∫ 4

0

3(4− x)dx = 24.

3. z2 = 4x2 + 4y2, 2zzx = 8x so zx = 4x/z; similarly zy = 4y/z so z2
x + z2

y + 1 = (16x2 + 16y2)/z2 + 1 = 5,

S =

∫ 1

0

∫ x

x2

√
5 dy dx =

√
5

∫ 1

0

(x− x2) dx =

√
5

6
.

4. zx = 2, zy = 2y, z2
x + z2

y + 1 = 5 + 4y2, S =

∫ 1

0

∫ y

0

√
5 + 4y2 dx dy =

∫ 1

0

y
√

5 + 4y2 dy =
27− 5

√
5

12
.

5. z2 = x2 +y2, zx = x/z, zy = y/z, z2
x+z2

y +1 = (x2 +y2)/z2 +1 = 2, S =

∫∫

R

√
2 dA = 2

∫ π/2

0

∫ 2 cos θ

0

√
2 r dr dθ =

4
√

2

∫ π/2

0

cos2 θ dθ =
√

2π.

6. zx = −2x, zy = −2y, z2
x + z2

y + 1 = 4x2 + 4y2 + 1, S =

∫∫

R

√
4x2 + 4y2 + 1 dA =

∫ 2π

0

∫ 1

0

r
√

4r2 + 1 dr dθ =

1

12
(5
√

5− 1)

∫ 2π

0

dθ =
π

6
(5
√

5− 1).

7. zx = y, zy = x, z2
x + z2

y + 1 = x2 + y2 + 1, S =

∫∫

R

√
x2 + y2 + 1 dA =

∫ π/6

0

∫ 3

0

r
√
r2 + 1 dr dθ =

1

3
(10
√

10 −

1)

∫ π/6

0

dθ =
π

18
(10
√

10− 1).
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8. zx = x, zy = y, z2
x+z2

y+1 = x2+y2+1, S =

∫∫

R

√
x2 + y2 + 1 dA =

∫ 2π

0

∫ √8

0

r
√
r2 + 1 dr dθ =

26

3

∫ 2π

0

dθ =
52π

3
.

9. On the sphere, zx = −x/z and zy = −y/z so z2
x+z2

y +1 = (x2 +y2 +z2)/z2 = 16/(16−x2−y2). The planes z = 1

and z = 2 intersect the sphere along the circles x2 + y2 = 15 and x2 + y2 = 12, so S =

∫∫

R

4√
16− x2 − y2

dA =

∫ 2π

0

∫ √15

√
12

4r√
16− r2

dr dθ = 4

∫ 2π

0

dθ = 8π.

10. On the sphere, zx = −x/z and zy = −y/z so z2
x + z2

y + 1 = (x2 + y2 + z2)/z2 = 8/(8− x2 − y2); the cone cuts the

sphere in the circle x2 + y2 = 4; S =

∫ 2π

0

∫ 2

0

2
√

2r√
8− r2

dr dθ = (8− 4
√

2)

∫ 2π

0

dθ = 8(2−
√

2)π.

11. (a)

z

x y (b)

x
y

z

(c)

x

y

z

12. (a)

y

x

z

(b)

z

y

x

(c)

z

y
x

13. (a) x = u, y = v, z =
5

2
+

3

2
u− 2v. (b) x = u, y = v, z = u2.

14. (a) x = u, y = v, z =
v

1 + u2
. (b) x = u, y = v, z =

1

3
v2 − 5

3
.

15. (a) x =
√

5 cosu, y =
√

5 sinu, z = v; 0 ≤ u ≤ 2π, 0 ≤ v ≤ 1.

(b) x = 2 cosu, y = v, z = 2 sinu; 0 ≤ u ≤ 2π, 1 ≤ v ≤ 3.

16. (a) x = u, y = 1− u, z = v;−1 ≤ v ≤ 1 (b) x = u, y = 5 + 2v, z = v; 0 ≤ u ≤ 3.

17. x = u, y = sinu cos v, z = sinu sin v.

18. x = u, y = eu cos v, z = eu sin v.

19. x = r cos θ, y = r sin θ, z =
1

1 + r2
.
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20. x = r cos θ, y = r sin θ, z = e−r
2

.

21. x = r cos θ, y = r sin θ, z = 2r2 cos θ sin θ.

22. x = r cos θ, y = r sin θ, z = r2(cos2 θ − sin2 θ).

23. x = r cos θ, y = r sin θ, z =
√

9− r2; r ≤
√

5.

24. x = r cos θ, y = r sin θ, z = r; r ≤ 3.

25. x =
1

2
ρ cos θ, y =

1

2
ρ sin θ, z =

√
3

2
ρ.

26. x = 3 cos θ, y = 3 sin θ, z = 3 cotφ.

27. z = x− 2y; a plane.

28. y = x2 + z2, 0 ≤ y ≤ 4; part of a circular paraboloid.

29. (x/3)2 + (y/2)2 = 1; 2 ≤ z ≤ 4; part of an elliptic cylinder.

30. z = x2 + y2; 0 ≤ z ≤ 4; part of a circular paraboloid.

31. (x/3)2 + (y/4)2 = z2; 0 ≤ z ≤ 1; part of an elliptic cone.

32. x2 + (y/2)2 + (z/3)2 = 1; an ellipsoid.

33. (a) I: x = r cos θ, y = r sin θ, z = r, 0 ≤ r ≤ 2; II: x = u, y = v, z =
√
u2 + v2; 0 ≤ u2 + v2 ≤ 4.

34. (a) I: x = r cos θ, y = r sin θ, z = r2, 0 ≤ r ≤
√

2; II: x = u, y = v, z = u2 + v2; u2 + v2 ≤ 2.

35. (a) 0 ≤ u ≤ 3, 0 ≤ v ≤ π. (b) 0 ≤ u ≤ 4, −π/2 ≤ v ≤ π/2.

36. (a) 0 ≤ u ≤ 6, −π ≤ v ≤ 0. (b) 0 ≤ u ≤ 5, π/2 ≤ v ≤ 3π/2.

37. (a) 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ 2π. (b) 0 ≤ φ ≤ π, 0 ≤ θ ≤ π.

38. (a) π/2 ≤ φ ≤ π, 0 ≤ θ ≤ 2π. (b) 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ π/2.

39. u = 1, v = 2, ru × rv = −2i− 4j + k; 2x+ 4y − z = 5.

40. u = 1, v = 2, ru × rv = −4i− 2j + 8k; 2x+ y − 4z = −6.

41. u = 0, v = 1, ru × rv = 6k; z = 0.

42. ru × rv = 2i− j− 3k; 2x− y − 3z = −4.

43. ru × rv =
1√
2
i− 1√

2
j +

1

2
k; x− y +

1√
2
z =

π
√

2

8
.

44. ru × rv = 2i− ln 2k; 2x− (ln 2)z = 0.

45. ru = cos v i + sin v j + 2u k, rv = −u sin v i + u cos v j, ‖ru × rv‖ = u
√

4u2 + 1; S =

∫ 2π

0

∫ 2

1

u
√

4u2 + 1 du dv =

π

6
(17
√

17− 5
√

5).
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46. ru = cos v i + sin v j + k, rv = −u sin v i + u cos v j, ‖ru × rv‖ =
√

2u; S =

∫ π/2

0

∫ 2v

0

√
2u du dv =

√
2

12
π3.

47. False. For example, if f(x, y) = 1 then the surface has the same area as R,

∫∫

R

dA, not

∫∫

R

√
2 dA.

48. True. q× r =

〈
−∂z
∂x
,−∂z

∂y
, 1

〉
, so

∫∫

R

‖q× r‖ dA =

∫∫

R

√(
∂z

∂x

)2

+

(
∂z

∂y

)2

+ 1 dA = S, by equation (2).

49. True, as explained before Definition 14.4.1.

50. True. ‖〈1, 0, a〉 × 〈0, 1, b〉‖ = ‖〈−a,−b, 1〉‖ =
√
a2 + b2 + 1 =

√(
∂z

∂x

)2

+

(
∂z

∂y

)2

+ 1, so the area of the surface

is

∫∫

R

√(
∂z

∂x

)2

+

(
∂z

∂y

)2

+ 1 dA =

∫∫

R

‖〈1, 0, a〉 × 〈0, 1, b〉‖ dA = ‖〈1, 0, a〉 × 〈0, 1, b〉‖ ·
∫∫

R

dA =

= ‖〈1, 0, a〉 × 〈0, 1, b〉‖·(area of R).

51. r(u, v) = a cosu sin vi+a sinu sin vj+a cos vk, ‖ru×rv‖ = a2 sin v, S =

∫ π

0

∫ 2π

0

a2 sin v du dv = 2πa2

∫ π

0

sin v dv =

4πa2.

52. r = r cosui + r sinuj + vk, ‖ru × rv‖ = r; S =

∫ h

0

∫ 2π

0

r du dv = 2πrh.

53. zx =
h

a

x√
x2 + y2

, zy =
h

a

y√
x2 + y2

, z2
x + z2

y + 1 =
h2x2 + h2y2

a2(x2 + y2)
+ 1 =

a2 + h2

a2
, S =

∫ 2π

0

∫ a

0

√
a2 + h2

a
r dr dθ =

1

2
a
√
a2 + h2

∫ 2π

0

dθ = πa
√
a2 + h2.

54. (a) Revolving a point (a0, 0, b0) of the xz-plane around the z-axis generates a circle, an equation of which is
r = a0 cosui + a0 sinuj + b0k, 0 ≤ u ≤ 2π. A point on the circle (x− a)2 + z2 = b2 which generates the torus can
be written r = (a+ b cos v)i+ b sin vk, 0 ≤ v ≤ 2π. Set a0 = a+ b cos v and b0 = a+ b sin v and use the first result:
any point on the torus can thus be written in the form r = (a+ b cos v) cosui+ (a+ b cos v) sinuj+ b sin vk, which
yields the result.

55. ru = −(a+b cos v) sinu i+(a+b cos v) cosu j, rv = −b sin v cosu i−b sin v sinu j+ b cos v k, ‖ru×rv‖ = b(a+b cos v);

S =

∫ 2π

0

∫ 2π

0

b(a+ b cos v) du dv = 4π2ab.

56. ‖ru × rv‖ =
√
u2 + 1;S =

∫ 4π

0

∫ 5

0

√
u2 + 1 du dv = 4π

∫ 5

0

√
u2 + 1 du ≈ 174.7199011.

57. z = −1 when v ≈ 0.27955, z = 1 when v ≈ 2.86204, ‖ru × rv‖ = | cos v|; S ≈
∫ 2π

0

∫ 2.86204

0.27955

| cos v| dv du ≈ 9.099.

58. (a) x = v cosu, y = v sinu, z = f(v), for example. (b) x = v cosu, y = v sinu, z = 1/v2.
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(c)

z

y
x

59.
(x
a

)2

+
(y
b

)2

+
(z
c

)2

= 1, ellipsoid.

60.
(x
a

)2

+
(y
b

)2

−
(z
c

)2

= 1, hyperboloid of one sheet.

61. −
(x
a

)2

−
(y
b

)2

+
(z
c

)2

= 1, hyperboloid of two sheets.

Exercise Set 14.5

1.

∫ 1

−1

∫ 2

0

∫ 1

0

(x2 + y2 + z2) dx dy dz =

∫ 1

−1

∫ 2

0

(1/3 + y2 + z2) dy dz =

∫ 1

−1

(10/3 + 2z2) dz = 8.

2.

∫ 1/2

1/3

∫ π

0

∫ 1

0

zx sinxy dz dy dx =

∫ 1/2

1/3

∫ π

0

1

2
x sinxy dy dx =

∫ 1/2

1/3

1

2
(1− cosπx) dx =

1

12
+

√
3− 2

4π
.

3.

∫ 2

0

∫ y2

−1

∫ z

−1

yz dx dz dy =

∫ 2

0

∫ y2

−1

(yz2 + yz) dz dy =

∫ 2

0

(
1

3
y7 +

1

2
y5 − 1

6
y

)
dy =

47

3
.

4.

∫ π/4

0

∫ 1

0

∫ x2

0

x cos y dz dx dy =

∫ π/4

0

∫ 1

0

x3 cos y dx dy =

∫ π/4

0

1

4
cos y dy =

√
2

8
.

5.

∫ 3

0

∫ √9−z2

0

∫ x

0

xy dy dx dz =

∫ 3

0

∫ √9−z2

0

1

2
x3dx dz =

∫ 3

0

1

8
(81− 18z2 + z4) dz =

81

5
.

6.

∫ 3

1

∫ x2

x

∫ ln z

0

xey dy dz dx =

∫ 3

1

∫ x2

x

(xz − x) dz dx =

∫ 3

1

(
1

2
x5 − 3

2
x3 + x2

)
dx =

118

3
.

7.

∫ 2

0

∫ √4−x2

0

∫ 3−x2−y2

−5+x2+y2
x dz dy dx =

∫ 2

0

∫ √4−x2

0

[2x(4− x2)− 2xy2] dy dx =

∫ 2

0

4

3
x(4− x2)3/2 dx =

128

15
.

8.

∫ 2

1

∫ 2

z

∫ √3y

0

y

x2 + y2
dx dy dz =

∫ 2

1

∫ 2

z

π

3
dy dz =

∫ 2

1

π

3
(2− z) dz =

π

6
.

9.

∫ π

0

∫ 1

0

∫ π/6

0

xy sin yz dz dy dx =

∫ π

0

∫ 1

0

x[1− cos(πy/6)] dy dx =

∫ π

0

(1− 3/π)x dx =
π(π − 3)

2
.

10.

∫ 1

−1

∫ 1−x2

0

∫ y

0

y dz dy dx =

∫ 1

−1

∫ 1−x2

0

y2 dy dx =

∫ 1

−1

1

3
(1− x2)3 dx =

32

105
.
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11.

∫ √2

0

∫ x

0

∫ 2−x2

0

xyz dz dy dx =

∫ √2

0

∫ x

0

1

2
xy(2− x2)2dy dx =

∫ √2

0

1

4
x3(2− x2)2 dx =

1

6
.

12.

∫ π/2

π/6

∫ π/2

y

∫ xy

0

cos(z/y) dz dx dy =

∫ π/2

π/6

∫ π/2

y

y sinx dx dy =

∫ π/2

π/6

y cos y dy =
5π − 6

√
3

12
.

13.

∫ 3

0

∫ 2

1

∫ 1

−2

√
x+ z2

y
dz dy dx ≈ 9.425.

14. 8

∫ 1

0

∫ √1−x2

0

∫ √1−x2−y2

0

e−x
2−y2−z2 dz dy dx ≈ 2.381.

15. V =

∫ 4

0

∫ (4−x)/2

0

∫ (12−3x−6y)/4

0

dz dy dx =

∫ 4

0

∫ (4−x)/2

0

1

4
(12− 3x− 6y) dy dx =

∫ 4

0

3

16
(4− x)2 dx = 4.

16. V =

∫ 1

0

∫ 1−x

0

∫ √y

0

dz dy dx =

∫ 1

0

∫ 1−x

0

√
y dy dx =

∫ 1

0

2

3
(1− x)3/2 dx =

4

15
.

17. V = 2

∫ 2

0

∫ 4

x2

∫ 4−y

0

dz dy dx = 2

∫ 2

0

∫ 4

x2

(4− y) dy dx = 2

∫ 2

0

(
8− 4x2 +

1

2
x4

)
dx =

256

15
.

18. V =

∫ 1

0

∫ y

0

∫ √1−y2

0

dz dx dy =

∫ 1

0

∫ y

0

√
1− y2 dx dy =

∫ 1

0

y
√

1− y2 dy =
1

3
.

19. The projection of the curve of intersection onto the xy-plane is x2 + y2 = 1,

(a)

∫ 1

−1

∫ √1−x2

−
√

1−x2

∫ 4−3y2

4x2+y2
f(x, y, z) dz dy dx. (b)

∫ 1

−1

∫ √1−y2

−
√

1−y2

∫ 4−3y2

4x2+y2
f(x, y, z) dz dx dy.

20. The projection of the curve of intersection onto the xy-plane is 2x2 + y2 = 4,

(a)

∫ √2

−
√

2

∫ √4−2x2

−
√

4−2x2

∫ 8−x2−y2

3x2+y2
f(x, y, z) dz dy dx. (b)

∫ 2

−2

∫ √(4−y2)/2

−
√

(4−y2)/2

∫ 8−x2−y2

3x2+y2
f(x, y, z) dz dx dy.

21. Let f(x, y, z) = 1 in Exercise 19(a). V =

∫ 1

−1

∫ √1−x2

−
√

1−x2

∫ 4−3y2

4x2+y2
dz dy dx = 4

∫ 1

0

∫ √1−x2

0

∫ 4−3y2

4x2+y2
dz dy dx.

22. Let f(x, y, z) = 1 in Exercise 20(a). V =

∫ √2

−
√

2

∫ √4−2x2

−
√

4−2x2

∫ 8−x2−y2

3x2+y2
dz dy dx = 4

∫ √2

0

∫ √4−2x2

0

∫ 8−x2−y2

3x2+y2
dz dy dx.

23. V = 2

∫ 3

−3

∫ √9−x2/3

0

∫ x+3

0

dz dy dx.

24. V = 8

∫ 1

0

∫ √1−x2

0

∫ √1−x2

0

dz dy dx.
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25. (a)

(0, 0, 1)

(0, 1, 0)(0, –1, 0)

z

y

x (b)

(0, 9, 9)

(3, 9, 0)

z

x
y

(c)

(0, 0, 1)

(1, 2, 0)

x

y

z

26. (a)

(3, 9, 0)

(0, 0, 2)

x

y

z

(b)

(0, 0, 2)

(0, 2, 0)

(2, 0, 0)

x

y

z

(c)

(2, 2, 0)

(0, 0, 4)

x

y

z

27. True, by changing the order of integration in Theorem 14.5.1.

28. False. For example, consider the simple xy-solid G defined by −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, 0 ≤ z ≤ x2 + y2.
Cross-sections of G parallel to the xy-plane with z > 0 are neither type I nor type II regions, so the triple integral
over G can’t be expressed as an integral whose outermost integration is performed with respect to z. (As shown
in Theorem 14.5.2, the triple integral can be expressed as an iterated integral whose innermost integration is
performed with respect to z.)

29. False. The middle integral (with respect to y) should be

∫ √1−x2

0

.

30. False. For example, let G be described by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, and let f(x, y, z) = 2x. Then
∫∫∫

G

2x dV =

∫ 1

0

∫ 1

0

∫ 1

0

2x dz dy dx =

∫ 1

0

∫ 1

0

2x dy dx =

∫ 1

0

2x dx = x2
]1

0
= 1 = volume of G.

31.

∫ b

a

∫ d

c

∫ `

k

f(x)g(y)h(z)dz dy dx =

∫ b

a

∫ d

c

f(x)g(y)

[∫ `

k

h(z) dz

]
dy dx =

[∫ b

a

f(x)

[∫ d

c

g(y) dy

]
dx

][∫ `

k

h(z) dz

]
=

[∫ b

a

f(x) dx

][∫ d

c

g(y)dy

][∫ `

k

h(z) dz

]
.

32. (a)

[∫ 1

−1

x dx

] [∫ 1

0

y2 dy

] [∫ π/2

0

sin z dz

]
= (0)(1/3)(1) = 0.

(b)

[∫ 1

0

e2x dx

] [∫ ln 3

0

ey dy

][∫ ln 2

0

e−zdz

]
= [(e2 − 1)/2](2)(1/2) = (e2 − 1)/2.

33. V =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

dz dy dx = 1/6, fave = 6

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

(x+ y + z) dz dy dx =
3

4
.

34. The integrand is an odd function of each of x, y, and z, so the average is zero.
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35. The volume V =
3π√

2
, and thus

rave =

√
2

3π

∫∫∫

G

√
x2 + y2 + z2 dV =

√
2

3π

∫ 1/
√

2

−1/
√

2

∫ √1−2x2

−
√

1−2x2

∫ 6−7x2−y2

5x2+5y2

√
x2 + y2 + z2 dz dy dx ≈ 3.291.

36. V = 1, dave =
1

V

∫ 1

0

∫ 1

0

∫ 1

0

√
(x− z)2 + (y − z)2 + z2 dx dy dz ≈ 0.771.

37. (a)

∫ a

0

∫ b(1−x/a)

0

∫ c(1−x/a−y/b)

0

dz dy dx,

∫ b

0

∫ a(1−y/b)

0

∫ c(1−x/a−y/b)

0

dz dx dy,

∫ c

0

∫ a(1−z/c)

0

∫ b(1−x/a−z/c)

0

dy dx dz,

∫ a

0

∫ c(1−x/a)

0

∫ b(1−x/a−z/c)

0

dy dz dx,

∫ c

0

∫ b(1−z/c)

0

∫ a(1−y/b−z/c)

0

dx dy dz,

∫ b

0

∫ c(1−y/b)

0

∫ a(1−y/b−z/c)

0

dx dz dy.

(b) Use the first integral in part (a) to get

∫ a

0

∫ b(1−x/a)

0

c
(

1− x

a
− y

b

)
dy dx =

∫ a

0

1

2
bc
(

1− x

a

)2

dx =
1

6
abc.

38. V = 8

∫ a

0

∫ b
√

1−x2/a2

0

∫ c
√

1−x2/a2−y2/b2

0

dz dy dx = 8

∫ a

0

∫ b
√

1−x2/a2

0

c

√
1− x2

a2
− y2

b2
dy dx =

=
8c

b

∫ a

0

∫ b
√

1−x2/a2

0

√
b2
(

1− x2

a2

)
− y2 dy dx =

=
8c

b

∫ a

0

[
y

2

√
b2
(

1− x2

a2

)
− y2 +

b2

2

(
1− x2

a2

)
sin−1 y√

b2(1− x2/a2)

]b√1−x2/a2

y=0

dx =

=
8c

b

∫ a

0

b2

2

(
1− x2

a2

)
π

2
dx = 2πbc

∫ a

0

(
1− x2

a2

)
dx = 2πbc

[
x− x3

3a2

]a

0

=
4πabc

3
, by Endpaper Integral Table

Formula 74.

39. (a)

∫ 2

0

∫ √4−x2

0

∫ 5

0

f(x, y, z) dz dy dx (b)

∫ 9

0

∫ 3−√x

0

∫ 3−√x

y

f(x, y, z) dz dy dx

(c)

∫ 2

0

∫ 4−x2

0

∫ 8−y

y

f(x, y, z) dz dy dx

40. (a)

∫ 3

0

∫ √9−x2

0

∫ √9−x2−y2

0

f(x, y, z) dz dy dx (b)

∫ 4

0

∫ x/2

0

∫ 2

0

f(x, y, z) dz dy dx

(c)

∫ 2

0

∫ 4−x2

0

∫ 4−y

x2

f(x, y, z) dz dy dx

41. See discussion after Theorem 14.5.2.

Exercise Set 14.6

1.

∫ 2π

0

∫ 1

0

∫ √1−r2

0

zr dz dr dθ =

∫ 2π

0

∫ 1

0

1

2
(1− r2)r dr dθ =

∫ 2π

0

1

8
dθ =

π

4
.

2.

∫ π/2

0

∫ cos θ

0

∫ r2

0

r sin θ dz dr dθ =

∫ π/2

0

∫ cos θ

0

r3 sin θ dr dθ =

∫ π/2

0

1

4
cos4 θ sin θ dθ =

1

20
.
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3.

∫ π/2

0

∫ π/2

0

∫ 1

0

ρ3 sinφ cosφdρ dφ dθ =

∫ π/2

0

∫ π/2

0

1

4
sinφ cosφdφ dθ =

∫ π/2

0

1

8
dθ =

π

16
.

4.

∫ 2π

0

∫ π/4

0

∫ a secφ

0

ρ2 sinφdρ dφ dθ =

∫ 2π

0

∫ π/4

0

1

3
a3 sec3 φ sinφdφ dθ =

∫ 2π

0

1

6
a3 dθ =

πa3

3
.

5. f(r, θ, z) = z

z

y

x 6. f(r, θ, z) = sin θ

0.0

0.5

1.0

x

0.0

0.2

0.4
y

0.0

0.5

1.0

z

7. f(ρ, θ, φ) = ρ cosφ

z

y

x 8. f(ρ, θ, φ) = 1

(0, 0,   )a

z

yx

9. V =

∫ 2π

0

∫ 3

0

∫ 9

r2
r dz dr dθ =

∫ 2π

0

∫ 3

0

r(9− r2) dr dθ =

∫ 2π

0

81

4
dθ =

81π

2
.

10. V =

∫ 2π

0

∫ 1/
√

2

0

∫ √1−r2

r

r dz dr dθ =

∫ 2π

0

∫ 1/
√

2

0

r
√

1− r2 − r2 dr dθ =

∫ 2π

0

1

6
(2−

√
2)dθ =

π

3
(2−

√
2).

11. r2 + z2 = 20 intersects z = r2 in a circle of radius 2; the volume consists of two portions, one inside the

cylinder r = 2 and one outside that cylinder: V =

∫ 2π

0

∫ 2

0

∫ r2

−
√

20−r2
r dz dr dθ +

∫ 2π

0

∫ √20

2

∫ √20−r2

−
√

20−r2
r dz dr dθ =

∫ 2π

0

∫ 2

0

r
(
r2 +

√
20− r2

)
dr dθ +

∫ 2π

0

∫ √20

2

2r
√

20− r2 dr dθ =
4

3
(10
√

5− 13)

∫ 2π

0

dθ +
128

3

∫ 2π

0

dθ =
152

3
π +

80

3
π
√

5.

12. z = hr/a intersects z = h in a circle of radius a, V =

∫ 2π

0

∫ a

0

∫ h

hr/a

r dz dr dθ =

∫ 2π

0

∫ a

0

h

a
(ar − r2) dr dθ =

∫ 2π

0

1

6
a2h dθ =

πa2h

3
.

13. V =

∫ 2π

0

∫ π/3

0

∫ 4

0

ρ2 sinφdρ dφ dθ =

∫ 2π

0

∫ π/3

0

64

3
sinφdφ dθ =

32

3

∫ 2π

0

dθ =
64π

3
.

14. V =

∫ 2π

0

∫ π/4

0

∫ 2

1

ρ2 sinφdρ dφ dθ =

∫ 2π

0

∫ π/4

0

7

3
sinφdφ dθ =

7

6
(2−

√
2)

∫ 2π

0

dθ =
7π

3
(2−

√
2).

15. In spherical coordinates the sphere and the plane z = a are ρ = 2a and ρ = a secφ, respectively. They intersect at

φ = π/3, V =

∫ 2π

0

∫ π/3

0

∫ a secφ

0

ρ2 sinφdρ dφ dθ +

∫ 2π

0

∫ π/2

π/3

∫ 2a

0

ρ2 sinφdρ dφ dθ =
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=

∫ 2π

0

∫ π/3

0

1

3
a3 sec3 φ sinφdφ dθ +

∫ 2π

0

∫ π/2

π/3

8

3
a3 sinφdφ dθ =

1

2
a3

∫ 2π

0

dθ +
4

3
a3

∫ 2π

0

dθ =
11πa3

3
.

16. V =

∫ 2π

0

∫ π/2

π/4

∫ 3

0

ρ2 sinφdρ dφ dθ =

∫ 2π

0

∫ π/2

π/4

9 sinφdφ dθ =
9
√

2

2

∫ 2π

0

dθ = 9
√

2π.

17.

∫ π/2

0

∫ a

0

∫ a2−r2

0

r3 cos2 θ dz dr dθ =

∫ π/2

0

∫ a

0

(a2r3 − r5) cos2 θ dr dθ =
1

12
a6

∫ π/2

0

cos2 θ dθ =
πa6

48
.

18.

∫ π

0

∫ π/2

0

∫ 1

0

e−ρ
3

ρ2 sinφdρ dφ dθ =
1

3
(1− e−1)

∫ π

0

∫ π/2

0

sinφdφ dθ =
π

3
(1− e−1).

19.

∫ π/2

0

∫ π/4

0

∫ √8

0

ρ4 cos2 φ sinφdρ dφ dθ =
32π

15
(2
√

2− 1).

20.

∫ 2π

0

∫ π

0

∫ 3

0

ρ3 sinφdρ dφ dθ = 81π.

21. False. The factor r2 should be just r.

22. True. If G is the spherical wedge then the volume of G is

∫∫∫

G

1 dV =

∫ θ2

θ1

∫ φ2

φ1

∫ ρ2

ρ1

ρ2 sinφdρ dφ dθ, by equation

(9).

23. True. The region is described by 0 ≤ φ ≤ π/4, 0 ≤ θ ≤ 2π, 1 ≤ ρ ≤ 3, so the volume is

∫∫∫

G

1 dV =

∫ π/4

0

∫ 2π

0

∫ 3

1

ρ2 sinφdρ dθ dφ.

24. False. The “sin θ” and “cos θ” in the iterated integral are reversed.

25. (a)

∫ 2

−2

∫ 4

1

∫ π/3

π/6

r tan3 θ√
1 + z2

dθ dr dz =

(∫ 2

−2

1√
1 + z2

dz

)(∫ 4

1

r dr

)(∫ π/3

π/6

tan3 θ dθ

)
=

= 2 ln(2 +
√

5) · 15

2
·
(

4

3
− 1

2
ln 3

)
=

5

2
(8− 3 ln 3) ln(2 +

√
5) ≈ 16.97774195.

(b) G is the cylindrical wedge π/6 ≤ θ ≤ π/3, 1 ≤ r ≤ 4, −2 ≤ z ≤ 2. Since dx dy dz = dV = r dθ dr dz, the

integrand in rectangular coordinates is
1

r
· r tan3 θ√

1 + z2
=

(y/x)3

√
1 + z2

, so f(x, y, z) =
y3

x3
√

1 + z2
.

x

yz

1

4

4
2

!2
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26.

∫ π/2

0

∫ π/4

0

1

18
cos37 θ cosφdφ dθ =

√
2

36

∫ π/2

0

cos37 θ dθ =
4,294,967,296

755,505,013,725

√
2 ≈ 0.008040.

27. (a) V = 2

∫ 2π

0

∫ a

0

∫ √a2−r2

0

r dz dr dθ =
4πa3

3
. (b) V =

∫ 2π

0

∫ π

0

∫ a

0

ρ2 sinφdρ dφ dθ =
4πa3

3
.

28. (a)

∫ 2

0

∫ √4−x2

0

∫ √4−x2−y2

0

xyz dz dy dx =

∫ 2

0

∫ √4−x2

0

1

2
xy(4− x2 − y2) dy dx =

1

8

∫ 2

0

x(4− x2)2 dx =
4

3
.

(b)

∫ π/2

0

∫ 2

0

∫ √4−r2

0

r3z sin θ cos θ dz dr dθ =

∫ π/2

0

∫ 2

0

1

2
(4r3 − r5) sin θ cos θ dr dθ =

8

3

∫ π/2

0

sin θ cos θ dθ =
4

3
.

(c)

∫ π/2

0

∫ π/2

0

∫ 2

0

ρ5 sin3 φ cosφ sin θ cos θ dρ dφ dθ =

∫ π/2

0

∫ π/2

0

32

3
sin3 φ cosφ sin θ cos θ dφ dθ =

=
8

3

∫ π/2

0

sin θ cos θ dθ =
4

3
.

29. V =

∫ π/2

0

∫ π/3

π/6

∫ 2

0

ρ2 sinφdρ dφ dθ =

∫ π/2

0

∫ π/3

π/6

8

3
sinφdφ dθ =

4

3
(
√

3− 1)

∫ π/2

0

dθ =
2π

3
(
√

3− 1).

30. (a) The sphere and cone intersect in a circle of radius ρ0 sinφ0, V =

∫ θ2

θ1

∫ ρ0 sinφ0

0

∫ √ρ20−r2

r cotφ0

r dz dr dθ =

∫ θ2

θ1

∫ ρ0 sinφ0

0

(
r
√
ρ2

0 − r2 − r2 cotφ0

)
dr dθ =

∫ θ2

θ1

1

3
ρ3

0(1− cos3 φ0 − sin3 φ0 cotφ0) dθ =

=
1

3
ρ3

0(1− cos3 φ0 − sin2 φ0 cosφ0)(θ2 − θ1) =
1

3
ρ3

0(1− cosφ0)(θ2 − θ1).

(b) From part (a), the volume of the solid bounded by θ = θ1, θ = θ2, φ = φ1, φ = φ2, and ρ = ρ0 is
1

3
ρ3

0(1− cosφ2)(θ2 − θ1)− 1

3
ρ3

0(1− cosφ1)(θ2 − θ1) =
1

3
ρ3

0(cosφ1 − cosφ2)(θ2 − θ1), so the volume of the spherical

wedge between ρ = ρ1 and ρ = ρ2 is ∆V =
1

3
ρ3

2(cosφ1 − cosφ2)(θ2 − θ1) − 1

3
ρ3

1(cosφ1 − cosφ2)(θ2 − θ1) =

1

3
(ρ3

2 − ρ3
1)(cosφ1 − cosφ2)(θ2 − θ1).

(c)
d

dφ
cosφ = − sinφ so from the Mean-Value Theorem cosφ2 − cosφ1 = −(φ2 − φ1) sinφ∗ where φ∗ is between

φ1 and φ2. Similarly
d

dρ
ρ3 = 3ρ2 so ρ3

2−ρ3
1 = 3ρ∗2(ρ2−ρ1) where ρ∗ is between ρ1 and ρ2. Thus cosφ1− cosφ2 =

sinφ∗∆φ and ρ3
2 − ρ3

1 = 3ρ∗2∆ρ so ∆V = ρ∗2 sinφ∗∆ρ∆φ∆θ.

31. The fact that none of the limits involves θ means that the solid is obtained by rotating a region in the xz-plane
about the z-axis, between two angles θ1 and θ2. If the integral is expressed in cylindrical coordinates, then the
plane region must be either a type I region or a type II region (with the role of y replaced by z); see Definition
14.2.1. If the integral is expressed in spherical coordinates, then the plane region may be a simple polar region
(with the roles of θ and r replaced by φ and ρ); see Definition 14.3.1. Or it may be described by inequalities of
the form ρ1 ≤ ρ ≤ ρ2, φ1(ρ) ≤ φ ≤ φ2(ρ) for some numbers ρ1 ≤ ρ2 and functions φ1(ρ) ≤ φ2(ρ).

Exercise Set 14.7

1.
∂(x, y)

∂(u, v)
=

∣∣∣∣
1 4
3 −5

∣∣∣∣ = −17.
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2.
∂(x, y)

∂(u, v)
=

∣∣∣∣
1 4v

4u −1

∣∣∣∣ = −1− 16uv.

3.
∂(x, y)

∂(u, v)
=

∣∣∣∣
cosu − sin v
sinu cos v

∣∣∣∣ = cosu cos v + sinu sin v = cos(u− v).

4.
∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣∣

2(v2 − u2)

(u2 + v2)2
− 4uv

(u2 + v2)2

4uv

(u2 + v2)2

2(v2 − u2)

(u2 + v2)2

∣∣∣∣∣∣∣∣∣
= 4/(u2 + v2)2.

5. x =
2

9
u+

5

9
v, y = −1

9
u+

2

9
v;
∂(x, y)

∂(u, v)
=

∣∣∣∣
2/9 5/9
−1/9 2/9

∣∣∣∣ =
1

9
.

6. x = lnu, y = uv;
∂(x, y)

∂(u, v)
=

∣∣∣∣
1/u 0
v u

∣∣∣∣ = 1.

7. x =

√
u+ v√

2
, y =

√
v − u√

2
;
∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣

1

2
√

2
√
u+ v

1

2
√

2
√
u+ v

− 1

2
√

2
√
v − u

1

2
√

2
√
v − u

∣∣∣∣∣∣∣∣
=

1

4
√
v2 − u2

.

8. x =
u3/2

v1/2
, y =

v1/2

u1/2
;
∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣∣

3u1/2

2v1/2
− u3/2

2v3/2

− v1/2

2u3/2

1

2u1/2v1/2

∣∣∣∣∣∣∣∣∣
=

1

2v
.

9.
∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣

3 1 0
1 0 −2
0 1 1

∣∣∣∣∣∣
= 5.

10.
∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣

1− v −u 0
v − vw u− uw −uv
vw uw uv

∣∣∣∣∣∣
= u2v.

11. y = v, x =
u

y
=
u

v
, z = w − x = w − u

v
;
∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣

1/v −u/v2 0
0 1 0
−1/v u/v2 1

∣∣∣∣∣∣
=

1

v
.

12. x =
v + w

2
, y =

u− w
2

, z =
u− v

2
;
∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣

0 1/2 1/2
1/2 0 −1/2
1/2 −1/2 0

∣∣∣∣∣∣
= −1

4
.

13. False. It is the area of the parallelogram.

14. False. If the mapping is not one-to-one, then the integral may be larger than the area. For example, let x = u,

y = (v− 3)2. Then R is the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 4, with area 8, but
∂(x, y)

∂(u, v)
=

∣∣∣∣
1 0
0 2(v − 3)

∣∣∣∣ = 2(v− 3),

so

∫ 5

1

∫ 2

0

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣ du dv =

∫ 5

1

∫ 2

0

2|v − 3| du dv =

∫ 5

1

4|v − 3| dv =

∫ 3

1

4(3 − v) dv +

∫ 5

3

4(v − 3) dv = (12v −

2v2)
]3

1
+ (2v2 − 12v)

]5
3

= 8 + 8 = 16.

15. False. The Jacobian is
∂(x, y)

∂(u, v)
=

∣∣∣∣
cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r(cos2 θ + sin2 θ) = r.
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16. True. See the solution of Exercise 14.7.48(b).

17.

x

y

(0, 2)

(–1, 0) (1, 0)

(0, 0)

18. 1 2 3

1

2

3

4

x

y

(0, 0) (4, 0)

(3, 4)

19.

–3 3

–3

3

x

y

(2, 0)

(0, 3)

20. 1 2

1

2

x

y

21. x =
1

5
u+

2

5
v, y = −2

5
u+

1

5
v,
∂(x, y)

∂(u, v)
=

1

5
;

1

5

∫∫

S

u

v
dAuv =

1

5

∫ 3

1

∫ 4

1

u

v
du dv =

3

2
ln 3.

22. x =
1

2
u+

1

2
v, y =

1

2
u− 1

2
v,
∂(x, y)

∂(u, v)
= −1

2
;

1

2

∫∫

S

veuv dAuv =
1

2

∫ 4

1

∫ 1

0

veuv du dv =
1

2
(e4 − e− 3).

23. x = u + v, y = u − v,
∂(x, y)

∂(u, v)
= −2; the boundary curves of the region S in the uv-plane are v = 0, v = u, and

u = 1 so 2

∫∫

S

sinu cos v dAuv = 2

∫ 1

0

∫ u

0

sinu cos v dv du = 1− 1

2
sin 2.

24. x =
√
v/u, y =

√
uv so, from Example 3,

∂(x, y)

∂(u, v)
= − 1

2u
; the boundary curves of the region S in the uv-plane are

u = 1, u = 3, v = 1, and v = 4 so

∫∫

S

uv2

(
1

2u

)
dAuv =

1

2

∫ 4

1

∫ 3

1

v2du dv = 21.

25. x = 3u, y = 4v,
∂(x, y)

∂(u, v)
= 12; S is the region in the uv-plane enclosed by the circle u2 + v2 = 1. Use polar

coordinates to obtain

∫∫

S

12
√
u2 + v2(12) dAuv = 144

∫ 2π

0

∫ 1

0

r2 dr dθ = 96π.

26. x = 2u, y = v,
∂(x, y)

∂(u, v)
= 2; S is the region in the uv-plane enclosed by the circle u2 +v2 = 1. Use polar coordinates

to obtain

∫∫

S

e−(4u2+4v2)(2) dAuv = 2

∫ 2π

0

∫ 1

0

re−4r2dr dθ =
π

2
(1− e−4).

27. Let S be the region in the uv-plane bounded by u2 + v2 = 1, so u = 2x, v = 3y, x = u/2, y = v/3,
∂(x, y)

∂(u, v)
=
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∣∣∣∣
1/2 0
0 1/3

∣∣∣∣ = 1/6, use polar coordinates to get
1

6

∫∫

S

sin(u2 + v2) dAuv =
1

6

∫ π/2

0

∫ 1

0

r sin r2 dr dθ =

=
π

24
(− cos r2)

]1
0

=
π

24
(1− cos 1).

28. u = x/a, v = y/b, x = au, y = bv;
∂(x, y)

∂(u, v)
= ab; A = ab

∫ 2π

0

∫ 1

0

r dr dθ = πab.

29. x = u/3, y = v/2, z = w,
∂(x, y, z)

∂(u, v, w)
= 1/6; S is the region in uvw-space enclosed by the sphere u2 + v2 +w2 = 36,

so

∫∫∫

S

u2

9

1

6
dVuvw =

1

54

∫ 2π

0

∫ π

0

∫ 6

0

(ρ sinφ cos θ)2ρ2 sinφdρ dφ dθ =
1

54

∫ 2π

0

∫ π

0

∫ 6

0

ρ4 sin3 φ cos2 θ dρ dφ dθ =

192π

5
.

30. Let G1 be the region u2 + v2 + w2 ≤ 1, with x = au, y = bv, z = cw,
∂(x, y, z)

∂(u, v, w)
= abc; then use spherical

coordinates in uvw-space:

∫∫∫

G

(y2 +z2) dVxyz = abc

∫∫∫

G1

(b2v2 + c2w2) dVuvw =

∫ 2π

0

∫ π

0

∫ 1

0

abc(b2 sin2 φ sin2 θ+

c2 cos2 φ)ρ4 sinφdρ dφ dθ =

∫ 2π

0

abc

15
(4b2 sin2 θ + 2c2) dθ =

4

15
πabc(b2 + c2).

31. u = θ =





cot−1(x/y) if y 6= 0
0 if y = 0, x > 0
π if y = 0, x < 0

, v = r =
√
x2 + y2. Other answers are possible.

32. u = r =
√
x2 + y2, v =

1

2
+
θ

π
=





1

2
+

1

π
tan−1(y/x) if x 6= 0

1 if x = 0, y > 0
0 if x = 0, y < 0

. Other answers are possible.

33. u =
3

7
x− 2

7
y, v = −1

7
x+

3

7
y. Other answers are possible.

34. u = −x+
4

3
y, v = y. Other answers are possible.

35. Let u = y−4x, v = y+ 4x, then x =
1

8
(v−u), y =

1

2
(v+u) so

∂(x, y)

∂(u, v)
= −1

8
;

1

8

∫∫

S

u

v
dAuv =

1

8

∫ 5

2

∫ 2

0

u

v
du dv =

1

4
ln

5

2
.

36. Let u = y+x, v = y−x, then x =
1

2
(u−v), y =

1

2
(u+v) so

∂(x, y)

∂(u, v)
=

1

2
; −1

2

∫∫

S

uv dAuv = −1

2

∫ 2

0

∫ 1

0

uv du dv =

−1

2
.

37. Let u = x−y, v = x+y, then x =
1

2
(v+u), y =

1

2
(v−u) so

∂(x, y)

∂(u, v)
=

1

2
; the boundary curves of the region S in the

uv-plane are u = 0, v = u, and v = π/4; thus
1

2

∫∫

S

sinu

cos v
dAuv =

1

2

∫ π/4

0

∫ v

0

sinu

cos v
du dv =

1

2

[
ln(
√

2 + 1)− π

4

]
.



Exercise Set 14.7 701

38. Let u = y − x, v = y + x, then x =
1

2
(v − u), y =

1

2
(u+ v) so

∂(x, y)

∂(u, v)
= −1

2
; the boundary curves of the region S

in the uv-plane are v = −u, v = u, v = 1, and v = 4; thus
1

2

∫∫

S

eu/vdAuv =
1

2

∫ 4

1

∫ v

−v
eu/vdu dv =

15

4
(e− e−1).

39. Let u =
y

x
, v =

x

y2
, then x =

1

u2v
, y =

1

uv
so

∂(x, y)

∂(u, v)
=

1

u4v3
;

∫∫

S

1

u4v3
dAuv =

∫ 4

1

∫ 2

1

1

u4v3
du dv =

35

256
.

40. Let x = 3u, y = 2v,
∂(x, y)

∂(u, v)
= 6; S is the region in the uv-plane enclosed by the circle u2 + v2 = 1, so

∫∫

R

(9− x−

y) dA =

∫∫

S

6(9− 3u− 2v) dAuv = 6

∫ 2π

0

∫ 1

0

(9− 3r cos θ − 2r sin θ)r dr dθ = 54π.

41. x = u, y =
w

u
, z = v +

w

u
,
∂(x, y, z)

∂(u, v, w)
= − 1

u
;

∫∫∫

S

v2w

u
dVuvw =

∫ 4

2

∫ 1

0

∫ 3

1

v2w

u
du dv dw = 2 ln 3.

42. u = xy, v = yz, w = xz, 1 ≤ u ≤ 2, 1 ≤ v ≤ 3, 1 ≤ w ≤ 4, x =
√
uw/v, y =

√
uv/w, z =

√
vw/u,

∂(x, y, z)

∂(u, v, w)
=

1

2
√
uvw

V =

∫∫∫

G

dV =

∫ 2

1

∫ 3

1

∫ 4

1

1

2
√
uvw

dw dv du = 4(
√

2− 1)(
√

3− 1).

43. (b)
∂(x, y)

∂(u, v)
· ∂(u, v)

∂(x, y)
=

∣∣∣∣
xu xv
yu yv

∣∣∣∣ ·
∣∣∣∣
ux uy
vx vy

∣∣∣∣ =

∣∣∣∣
xuux + xvvx xuuy + xvvy
yuux + yvvx yuuy + yvvy

∣∣∣∣ =

∣∣∣∣
xx xy
yx yy

∣∣∣∣ =

∣∣∣∣
1 0
0 1

∣∣∣∣ = 1.

44.
∂(u, v)

∂(x, y)
= 3xy4 = 3v so

∂(x, y)

∂(u, v)
=

1

3v
;

1

3

∫∫

S

sinu

v
dAuv =

1

3

∫ 2

1

∫ 2π

π

sinu

v
du dv = −2

3
ln 2.

45.
∂(u, v)

∂(x, y)
= 8xy so

∂(x, y)

∂(u, v)
=

1

8xy
; xy

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣ = xy · 1

8xy
=

1

8
so

1

8

∫∫

S

dAuv =
1

8

∫ 16

9

∫ 4

1

du dv =
21

8
.

46.
∂(u, v)

∂(x, y)
= −2(x2 +y2), so

∂(x, y)

∂(u, v)
= − 1

2(x2 + y2)
; (x4−y4)exy

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣ =
x4 − y4

2(x2 + y2)
exy =

1

2
(x2−y2)exy =

1

2
veu,

so
1

2

∫∫

S

veu dAuv =
1

2

∫ 4

3

∫ 3

1

veu du dv =
7

4
(e3 − e).

47. Set u = x+y+ 2z, v = x−2y+ z, w = 4x+y+ z, then
∂(u, v, w)

∂(x, y, z)
=

∣∣∣∣∣∣

1 1 2
1 −2 1
4 1 1

∣∣∣∣∣∣
= 18, and V =

∫∫∫

R

dx dy dz =

∫ 6

−6

∫ 2

−2

∫ 3

−3

∂(x, y, z)

∂(u, v, w)
du dv dw = 6 · 4 · 12 · 1

18
= 16.

48. (a)
∂(x, y, z)

∂(r, θ, z)
=

∣∣∣∣∣∣

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣
= r.

(b)
∂(x, y, z)

∂(ρ, φ, θ)
=

∣∣∣∣∣∣

sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ
sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ

cosφ −ρ sinφ 0

∣∣∣∣∣∣
= ρ2 sinφ.
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49. The main motivation is to change the region of integration to one that has a simple description in either rectangular,
polar, cylindrical, or spherical coordinates.

50. First consider the case in which R is defined by a ≤ u(x, y) ≤ b, c ≤ v(x, y) ≤ d, for some functions u and v. If we

can solve for x and y in terms of u and v, then we can write

∫∫

R

f(x, y) dAxy =

∫∫

S

f(x(u, v), y(u, v))

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣ dAuv,

where S is the rectangle a ≤ u ≤ b, c ≤ v ≤ d. For the more general case in which the boundary curves of R are
level curves of more than 2 functions, we can pick 2 of these functions, say u(x, y) and v(x, y), try to solve for x
and y in terms of u and v, and rewrite all of the inequalities in terms of u and v. This gives a region S in the
uv-plane, with one boundary curve which is a horizontal line segment and one which is a vertical line segment.
If we are very lucky, the other boundary curves may also be fairly simple and we may be able to compute the
resulting integral over S. See Examples 2 and 3.

Exercise Set 14.8

1. M =

∫ 1

0

∫ √x

0

(x + y) dy dx =
13

20
, Mx =

∫ 1

0

∫ √x

0

(x + y)y dy dx =
3

10
, My =

∫ 1

0

∫ √x

0

(x + y)x dy dx =
19

42
,

x =
My

M
=

190

273
, y =

Mx

M
=

6

13
; the mass is

13

20
and the center of gravity is at

(
190

273
,

6

13

)
.

2. M =

∫ π

0

∫ sin x

0

y dy dx =
π

4
, x =

π

2
from the symmetry of the density and the region, Mx =

∫ π

0

∫ sin x

0

y2 dy dx =

4

9
, y =

Mx

M
=

16

9π
; mass

π

4
, center of gravity

(
π

2
,

16

9π

)
.

3. M =

∫ π/2

0

∫ a

0

r3 sin θ cos θ dr dθ =
a4

8
, x = y from the symmetry of the density and the region,

My =

∫ π/2

0

∫ a

0

r4 sin θ cos2 θ dr dθ =
a5

15
, x =

8a

15
; mass

a4

8
, center of gravity

(
8a

15
,

8a

15

)
.

4. M =

∫ π

0

∫ 1

0

r3 dr dθ =
π

4
, x = 0 from the symmetry of density and region, Mx =

∫ π

0

∫ 1

0

r4 sin θ dr dθ =
2

5
,

y =
8

5π
; mass

π

4
, center of gravity

(
0,

8

5π

)
.

5. M =

∫∫

R

δ(x, y) dA =

∫ 1

0

∫ 1

0

|x + y − 1| dx dy =

∫ 1

0

[∫ 1−x

0

(1− x− y) dy +

∫ 1

1−x
(x+ y − 1) dy

]
dx =

1

3
. x =

3

∫ 1

0

∫ 1

0

xδ(x, y) dy dx = 3

∫ 1

0

[∫ 1−x

0

x(1− x− y) dy +

∫ 1

1−x
x(x+ y − 1) dy

]
dx =

1

2
. By symmetry, y =

1

2
as

well; center of gravity

(
1

2
,

1

2

)
.

6. x =
1

M

∫∫

G

xδ(x, y) dA, and the integrand is an odd function of x while the region is symmetric with respect to

the y-axis, thus x = 0; likewise y = 0.

7. V = 1, x =

∫ 1

0

∫ 1

0

∫ 1

0

x dz dy dx =
1

2
, similarly y = z =

1

2
; centroid

(
1

2
,

1

2
,

1

2

)
.

8. V = πr2h = 2π, x = y = 0 by symmetry,

∫∫∫

G

z dz dy dx =

∫ 2

0

∫ 2π

0

∫ 1

0

rz dr dθ dz = 2π, centroid = (0, 0, 1).
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9. True. This is the definition of “centroid”; see Section 6.7.

10. False. For example, suppose the lamina is the annulus 1 ≤ r ≤ 2 with constant density 1. The centroid is the
origin, which is not part of the annulus, so the density is 0 there. But the mass is not 0.

11. False. The coordinates are the first moments about the y- and x-axes, divided by the mass.

12. False. Density in 3-space has units of mass per unit volume.

13. Let x = r cos θ, y = r sin θ, and dA = r dr dθ in formulas (11) and (12).

14. x = 0 from the symmetry of the region, A =

∫ 2π

0

∫ a(1+sin θ)

0

r dr dθ =
3πa2

2
, y =

1

A

∫ 2π

0

∫ a(1+sin θ)

0

r2 sin θ dr dθ =

2

3πa2
· 5πa3

4
=

5a

6
; centroid

(
0,

5a

6

)
.

15. x = y from the symmetry of the region, A =

∫ π/2

0

∫ sin 2θ

0

r dr dθ =
π

8
, x =

1

A

∫ π/2

0

∫ sin 2θ

0

r2 cos θ dr dθ =

8

π
· 16

105
=

128

105π
; centroid

(
128

105π
,

128

105π

)
.

16. x = 0 from the symmetry of the region, A =
1

2
π(b2−a2), y =

1

A

∫ π

0

∫ b

a

r2 sin θ dr dθ =
1

A

2

3
(b3−a3) =

4(b3 − a3)

3π(b2 − a2)
;

centroid

(
0,

4(b3 − a3)

3π(b2 − a2)

)
.

17. y = 0 from the symmetry of the region, A =
1

2
πa2, x =

1

A

∫ π/2

−π/2

∫ a

0

r2 cos θ dr dθ =
1

A

2

3
a3 =

4a

3π
; centroid

(
4a

3π
, 0

)
.

18. x = 3/2 and y = 1 from the symmetry of the region,

∫∫

R

x dA = xA =
3

2
· 6 = 9,

∫∫

R

y dA = yA = 1 · 6 = 6.

19. x = y = z from the symmetry of the region, V = 1/6, x =
1

V

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

x dz dy dx = 6 · 1

24
=

1

4
; centroid

(
1

4
,

1

4
,

1

4

)
.

20. The solid is described by −1 ≤ y ≤ 1, 0 ≤ z ≤ 1 − y2, 0 ≤ x ≤ 1 − z; V =

∫ 1

−1

∫ 1−y2

0

∫ 1−z

0

dx dz dy =
4

5
, x =

1

V

∫ 1

−1

∫ 1−y2

0

∫ 1−z

0

x dx dz dy =
5

14
, y = 0 by symmetry, z =

1

V

∫ 1

−1

∫ 1−y2

0

∫ 1−z

0

z dx dz dy =
2

7
; the centroid is

(
5

14
, 0,

2

7

)
.

21. x = 1/2 and y = 0 from the symmetry of the region, V =

∫ 1

0

∫ 1

−1

∫ 1

y2
dz dy dx =

4

3
, z =

1

V

∫∫∫

G

z dV =
3

4
· 4
5

=
3

5
;

centroid

(
1

2
, 0,

3

5

)
.



704 Chapter 14

22. x = y from the symmetry of the region, V =

∫ 2

0

∫ 2

0

∫ xy

0

dz dy dx = 4, x =
1

V

∫∫∫

G

x dV =
1

4
· 16

3
=

4

3
,

z =
1

V

∫∫∫

G

z dV =
1

4
· 32

9
=

8

9
; centroid

(
4

3
,

4

3
,

8

9

)
.

23. x = y = z from the symmetry of the region, V = πa3/6, x =
1

V

∫ a

0

∫ √a2−x2

0

∫ √a2−x2−y2

0

x dz dy dx =

1

V

∫ a

0

∫ √a2−x2

0

x
√
a2 − x2 − y2 dy dx =

1

V

∫ π/2

0

∫ a

0

r2
√
a2 − r2 cos θ dr dθ =

6

πa3
· πa

4

16
=

3a

8
; this gives us the

centroid

(
3a

8
,

3a

8
,

3a

8

)
.

24. x = y = 0 from the symmetry of the region, V = 2πa3/3, z =
1

V

∫ a

−a

∫ √a2−x2

−
√
a2−x2

∫ √a2−x2−y2

0

z dz dy dx =

1

V

∫ a

−a

∫ √a2−x2

−
√
a2−x2

1

2
(a2 − x2 − y2) dy dx =

1

V

∫ 2π

0

∫ a

0

1

2
(a2 − r2)r dr dθ =

3

2πa3
· πa

4

4
=

3a

8
; centroid

(
0, 0,

3a

8

)
.

25. M =

∫ a

0

∫ a

0

∫ a

0

(a− x) dz dy dx =
a4

2
, y = z =

a

2
from the symmetry of density and region,

x =
1

M

∫ a

0

∫ a

0

∫ a

0

x(a− x) dz dy dx =
2

a4
· a

5

6
=
a

3
; mass

a4

2
, center of gravity

(a
3
,
a

2
,
a

2

)
.

26. M =

∫ a

−a

∫ √a2−x2

−
√
a2−x2

∫ h

0

(h − z) dz dy dx =
π

2
a2h2, x = y = 0 from the symmetry of density and region, z =

1

M

∫∫∫

G

z(h− z) dV =
2

πa2h2
· πa

2h3

6
=
h

3
; mass

πa2h2

2
, center of gravity

(
0, 0,

h

3

)
.

27. M =

∫ 1

−1

∫ 1

0

∫ 1−y2

0

yz dz dy dx =
1

6
, x = 0 by the symmetry of density and region, y =

1

M

∫∫∫

G

y2z dV =

6 · 8

105
=

16

35
, z =

1

M

∫∫∫

G

yz2 dV = 6 · 1

12
=

1

2
; mass

1

6
, center of gravity

(
0,

16

35
,

1

2

)
.

28. M =

∫ 3

0

∫ 9−x2

0

∫ 1

0

xz dz dy dx =
81

8
, x =

1

M

∫∫∫

G

x2z dV =
8

81
· 81

5
=

8

5
, y =

1

M

∫∫∫

G

xyz dV =
8

81
· 243

8
= 3,

z =
1

M

∫∫∫

G

xz2dV =
8

81
· 27

4
=

2

3
; mass

81

8
, center of gravity

(
8

5
, 3,

2

3

)
.

29. (a) M =

∫ 1

0

∫ 1

0

k(x2 + y2) dy dx =
2k

3
, x = y from the symmetry of density and region,

x =
1

M

∫∫

R

kx(x2 + y2)dA =
3

2k
· 5k

12
=

5

8
; center of gravity

(
5

8
,

5

8

)
.

(b) y = 1/2 from the symmetry of density and region, M =

∫ 1

0

∫ 1

0

kx dy dx =
k

2
, x =

1

M

∫∫

R

kx2 dA =
2

k
· k
3

=
2

3
,

center of gravity

(
2

3
,

1

2

)
.
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30. (a) x = y = z from the symmetry of density and region, M =

∫ 1

0

∫ 1

0

∫ 1

0

k(x2 + y2 + z2) dz dy dx = k, x =

1

M

∫∫∫

G

kx(x2 + y2 + z2) dV =
1

k
· 7k

12
=

7

12
; center of gravity

(
7

12
,

7

12
,

7

12

)
.

(b) x = y = z from the symmetry of density and region, M =

∫ 1

0

∫ 1

0

∫ 1

0

k(x + y + z) dz dy dx =
3k

2
, x =

1

M

∫∫∫

G

kx(x+ y + z) dV =
2

3k
· 5k

6
=

5

9
; center of gravity

(
5

9
,

5

9
,

5

9

)
.

31. V =

∫∫∫

G

dV =

∫ π

0

∫ sin x

0

∫ 1/(1+x2+y2)

0

dz dy dx ≈ 0.666633, x =
1

V

∫∫∫

G

x dV ≈ 1.177406, y =
1

V

∫∫∫

G

y dV ≈

0.353554, z =
1

V

∫∫∫

G

z dV ≈ 0.231557.

32. (b) Use polar coordinates for x and y to get V =

∫∫∫

G

dV =

∫ 2π

0

∫ a

0

∫ 1/(1+r2)

0

r dz dr dθ = π ln(1 + a2),

z =
1

V

∫∫∫

G

z dV =
a2

2(1 + a2) ln(1 + a2)
. Thus lim

a→0+
z =

1

2
; lim
a→+∞

z = 0. Also, lim
a→0+

z =
1

2
; lim
a→+∞

z = 0.

(c) Solve z = 1/4 for a to obtain a ≈ 1.980291. 2 4 6
a

z

(1.980, 1/4)
1/4

1/2

33. M =

∫ 2π

0

∫ 3

0

∫ 3

r

(3− z)r dz dr dθ =

∫ 2π

0

∫ 3

0

1

2
r(3− r)2 dr dθ =

27

8

∫ 2π

0

dθ =
27π

4
.

34. M =

∫ 2π

0

∫ a

0

∫ h

0

kzr dz dr dθ =

∫ 2π

0

∫ a

0

1

2
kh2r dr dθ =

1

4
ka2h2

∫ 2π

0

dθ =
πka2h2

2
.

35. M =

∫ 2π

0

∫ π

0

∫ a

0

kρ3 sinφdρ dφ dθ =

∫ 2π

0

∫ π

0

1

4
ka4 sinφdφ dθ =

1

2
ka4

∫ 2π

0

dθ = πka4.

36. M =

∫ 2π

0

∫ π

0

∫ 2

1

ρ sinφdρ dφ dθ =

∫ 2π

0

∫ π

0

3

2
sinφdφ dθ = 3

∫ 2π

0

dθ = 6π.

37. x̄ = ȳ = 0 from the symmetry of the region, V =

∫ 2π

0

∫ 1

0

∫ √2−r2

r2
r dz dr dθ =

∫ 2π

0

∫ 1

0

(r
√

2− r2 − r3) dr dθ =

π

6
(8
√

2− 7), z̄ =
1

V

∫ 2π

0

∫ 1

0

∫ √2−r2

r2
zr dz dr dθ =

6

(8
√

2− 7)π
· 7π

12
=

7

16
√

2− 14
; centroid

(
0, 0,

7

16
√

2− 14

)
.

38. x̄ = ȳ = 0 from the symmetry of the region, V = 8π/3, z̄ =
1

V

∫ 2π

0

∫ 2

0

∫ 2

r

zr dz dr dθ =
3

8π
· 4π =

3

2
; centroid

(
0, 0,

3

2

)
.
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39. ȳ = 0 from the symmetry of the region, V = 2

∫ π/2

0

∫ 2 cos θ

0

∫ r2

0

r dz dr dθ = 3π/2,

x̄ =
2

V

∫ π/2

0

∫ 2 cos θ

0

∫ r2

0

r2 cos θ dz dr dθ
4

3π
(π) = 4/3, z̄ =

1

V

∫ π/2

0

∫ 2 cos θ

0

∫ r2

0

zr dz dr dθ =
4

3π
(5π/6) = 10/9;

centroid (4/3, 0, 10/9).

40. M =

∫ π/2

0

∫ 2 cos θ

0

∫ 4−r2

0

zr dz dr dθ =

∫ π/2

0

∫ 2 cos θ

0

1

2
r(4−r2)2 dr dθ =

16

3

∫ π/2

0

(1−sin6 θ) dθ = (16/3)(11π/32) =

11π/6.

41. x̄ = ȳ = z̄ from the symmetry of the region, V = πa3/6, z̄ =
1

V

∫ π/2

0

∫ π/2

0

∫ a

0

ρ3 cosφ sinφdρ dφ dθ =
6

πa3
· πa

4

16
=

3a

8
; centroid

(
3a

8
,

3a

8
,

3a

8

)
.

42. x̄ = ȳ = 0 from the symmetry of the region, V =

∫ 2π

0

∫ π/3

0

∫ 4

0

ρ2 sinφdρ dφ dθ =
64π

3
,

z̄ =
1

V

∫ 2π

0

∫ π/3

0

∫ 4

0

ρ3 cosφ sinφdρ dφ dθ =
3

64π
· 48π =

9

4
; centroid

(
0, 0,

9

4

)
.

43. M =

∫ 2π

0

∫ π/4

0

∫ 1

0

ρ3 sinφdρ dφ dθ =

∫ 2π

0

∫ π/4

0

1

4
sinφdφ dθ =

1

8
(2−

√
2)

∫ 2π

0

dθ =
π

4
(2−

√
2).

44. x̄ = ȳ = 0 from the symmetry of density and region, M =

∫ 2π

0

∫ 1

0

∫ 1−r2

0

(r2 + z2)r dz dr dθ =
π

4
, z̄ =

1

M

∫ 2π

0

∫ 1

0

∫ 1−r2

0

z(r2 + z2)r dz dr dθ =
4

π
· 11π

120
=

11

30
; center of gravity

(
0, 0,

11

30

)
.

45. x̄ = ȳ = 0 from the symmetry of density and region, M =

∫ 2π

0

∫ 1

0

∫ r

0

zr dz dr dθ =
π

4
,

z̄ =
1

M

∫ 2π

0

∫ 1

0

∫ r

0

z2r dz dr dθ =
4

π
· 2π

15
=

8

15
; center of gravity

(
0, 0,

8

15

)
.

46. x̄ = ȳ = 0 from the symmetry of density and region, M =

∫ 2π

0

∫ π/2

0

∫ a

0

kρ3 sinφdρ dφ dθ =
πka4

2
, z̄ =

1

M

∫ 2π

0

∫ π/2

0

∫ a

0

kρ4 sinφ cosφdρ dφ dθ =
2

πka4
· πka

5

5
=

2a

5
; center of gravity

(
0, 0,

2a

5

)
.

47. x̄ = z̄ = 0 from the symmetry of the region, V = 54π/3−16π/3 = 38π/3, ȳ =
1

V

∫ π

0

∫ π

0

∫ 3

2

ρ3 sin2 φ sin θ dρ dφ dθ =

1

V

∫ π

0

∫ π

0

65

4
sin2 φ sin θ dφ dθ =

1

V

∫ π

0

65π

8
sin θ dθ =

3

38π
· 65π

4
=

195

152
; centroid

(
0,

195

152
, 0

)
.

48. M =

∫ 2π

0

∫ π

0

∫ R

0

δ0e
−(ρ/R)3ρ2 sinφdρ dφ dθ =

∫ 2π

0

∫ π

0

1

3
(1− e−1)R3δ0 sinφdφ dθ =

4π

3
(1− e−1)δ0R

3.

49. Ix =

∫ a

0

∫ b

0

y2δ dy dx =
δab3

3
, Iy =

∫ a

0

∫ b

0

x2δ dy dx =
δa3b

3
, Iz = Ix + Iy =

δab(a2 + b2)

3
.

50. Ix =

∫ 2π

0

∫ a

0

r3 sin2 θ δ dr dθ =
δπa4

4
; Iy =

∫ 2π

0

∫ a

0

r3 cos2 θ δ dr dθ =
δπa4

4
= Ix; Iz = Ix + Iy =

δπa4

2
.
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51. Iz =

∫ 2π

0

∫ a

0

∫ h

0

r2δ r dz dr dθ = δ

∫ 2π

0

∫ a

0

∫ h

0

r3dz dr dθ =
1

2
δπa4h.

52. Iy =

∫ 2π

0

∫ a

0

∫ h

0

(r2 cos2 θ + z2)δr dz dr dθ = δ

∫ 2π

0

∫ a

0

(hr3 cos2 θ +
1

3
h3r) dr dθ =

= δ

∫ 2π

0

(
1

4
a4h cos2 θ +

1

6
a2h3

)
dθ = δ

(π
4
a4h+

π

3
a2h3

)
.

53. Iz =

∫ 2π

0

∫ a2

a1

∫ h

0

r2δ r dz dr dθ = δ

∫ 2π

0

∫ a2

a1

∫ h

0

r3 dz dr dθ =
1

2
δπh(a4

2 − a4
1).

54. Iz =

∫ 2π

0

∫ π

0

∫ a

0

(ρ2 sin2 φ)δ ρ2 sinφdρ dφ dθ = δ

∫ 2π

0

∫ π

0

∫ a

0

ρ4 sin3 φdρ dφ dθ =
8

15
δπa5.

55. (a) The solid generated by Rk as it revolves about L is a cylinder of height ∆yk and radius x∗k +
1

2
∆xk from

which a cylinder of height ∆yk and radius x∗k −
1

2
∆xk has been removed, so its volume is π(x∗k +

1

2
∆xk)2 ∆yk −

π(x∗k −
1

2
∆xk)2 ∆yk = 2πx∗k ∆xk ∆yk = 2πx∗k ∆Ak.

(b) From part (a), V =

∫∫

R

2πx dA = 2π

∫∫

R

x dA. From equation (13), this equals 2π · x · [area of R].

56. (a) V =

[
1

2
πa2

] [
2π

(
a+

4a

3π

)]
=

1

3
π(3π + 4)a3.

(b) The distance between the centroid and the line is

√
2

2

(
a+

4a

3π

)
, so V =

[
1

2
πa2

] [
2π

√
2

2

(
a+

4a

3π

)]
=

1

6

√
2π(3π + 4)a3.

57. x = k so V = πab · 2πk = 2π2abk.

58. y = 4 from the symmetry of the region; A =

∫ 2

−2

∫ 8−x2

x2

dy dx =
64

3
. So V =

64

3
· 2π · 4 =

512π

3
.

59. The region generates a cone of volume
1

3
πab2 when it is revolved about the x-axis, the area of the region is

1

2
ab

so
1

3
πab2 =

1

2
ab · 2πy, y =

b

3
. A cone of volume

1

3
πa2b is generated when the region is revolved about the y-axis

so
1

3
πa2b =

1

2
ab · 2πx, x =

a

3
. The centroid is

(
a

3
,
b

3

)
.

60. The centroid of the circle which generates the tube travels a distance s =

∫ 4π

0

√
sin2 t+ cos2 t+

1

16
dt =

√
17π,

so V = π

(
1

2

)2√
17π =

√
17π2

4
.

61. It is the point P in the plane of the lamina such that the lamina will balance on any knife-edge passing through
P . (If P is in the lamina, then the lamina will also balance on a point of support at P .)
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Chapter 14 Review Exercises

3. (a)

∫∫

R

dA (b)

∫∫∫

G

dV (c)

∫∫

R

√(
∂z

∂x

)2

+

(
∂z

∂y

)2

+ 1 dA

4. (a) x = a sinφ cos θ, y = a sinφ sin θ, z = a cosφ, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π.

(b) x = a cos θ, y = a sin θ, z = z, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ h.

5.

∫ 1

0

∫ 1+
√

1−y2

1−
√

1−y2
f(x, y) dx dy

6.

∫ 2

0

∫ 2x

x

f(x, y) dy dx+

∫ 3

2

∫ 6−x

x

f(x, y) dy dx

7. (a) The transformation sends (1, 0) to (a, c) and (0, 1) to (b, d). There are two possibilities: either (a, c) = (2, 1)
and (b, d) = (1, 2) or (a, c) = (1, 2) and (b, d) = (2, 1). So either a = 2, b = 1, c = 1, d = 2 or a = 1, b = 2, c = 2,
d = 1.

(b) For either transformation in part (a),

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣ = 3, so the area is

∫∫

R

dA =

∫ 1

0

∫ 1

0

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣ du dv =

∫ 1

0

∫ 1

0

3 du dv = 3. The diagonals of R cut it into 4 congruent right triangles. One of these has vertices (0, 0),
(

3

2
,

3

2

)
, and (2, 1), so its bases have lengths

3

2

√
2 and

1

2

√
2 and its area is

1

2
· 3

2

√
2 · 1

2

√
2 =

3

4
; hence R has area

4 · 3

4
= 3.

8. If 0 < x, y < π then 0 < sin
√
xy ≤ 1, with equality only on the hyperbola xy = π2/4, so 0 =

∫ π

0

∫ π

0

0 dy dx <
∫ π

0

∫ π

0

sin
√
xy dy dx <

∫ π

0

∫ π

0

1 dy dx = π2.

9.

∫ 1

1/2

2x cos(πx2) dx =
1

π
sin(πx2)

]1
1/2

= − 1√
2π

.

10.

∫ 2

0

x2

2
ey

3

]2y

x=−y
dy =

3

2

∫ 2

0

y2ey
3

dy =
1

2
ey

3

]2

0

=
1

2

(
e8 − 1

)
.

11.

∫ 1

0

∫ 2

2y

exey dx dy

12.

∫ π

0

∫ x

0

sinx

x
dy dx
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13.
6

1

x

y

y = sin x

y = tan (x/2)

14. 0

p /2

p /6

r = a

r = a(1 + cos u)

15. 2

∫ 8

0

∫ y1/3

0

x2 sin y2 dx dy =
2

3

∫ 8

0

y sin y2 dy = −1

3
cos y2

]8

0

=
1

3
(1− cos 64) ≈ 0.20271.

16.

∫ π/2

0

∫ 2

0

(4− r2)r dr dθ = 2π.

17. sin 2θ = 2 sin θ cos θ =
2xy

x2 + y2
, and r = 2a sin θ is the circle x2 + (y− a)2 = a2, so

∫ a

0

∫ a+
√
a2−x2

a−
√
a2−x2

2xy

x2 + y2
dy dx =

∫ a

0

x
[
ln
(
a+

√
a2 − x2

)
− ln

(
a−

√
a2 − x2

)]
dx = a2.

18.

∫ π/2

π/4

∫ 2

0

4r2(cos θ sin θ) r dr dθ = −4 cos 2θ

]π/2

π/4

= 4.

19.

∫ 2

0

∫ 2−y/2

(y/2)1/3
dx dy =

∫ 2

0

(
2− y

2
−
(y

2

)1/3
)
dy =

(
2y − y2

4
− 3

2

(y
2

)4/3
)]2

0

=
3

2
.

20. A = 6

∫ π/6

0

∫ cos 3θ

0

r dr dθ = 3

∫ π/6

0

cos2 3θ =
π

4
.

21.

∫ 2π

0

∫ 2

0

∫ 16

r4
r2 cos2 θ r dz dr dθ =

∫ 2π

0

cos2 θ dθ

∫ 2

0

r3(16− r4) dr = 32π.

22.

∫ π/2

0

∫ π/2

0

∫ 1

0

1

1 + ρ2
ρ2 sinφdρ dφ dθ =

(
1− π

4

) π
2

∫ π/2

0

sinφdφ =
(

1− π

4

) π
2

(− cosφ)
]π/2

0
=
(

1− π

4

) π
2

.

23. (a)

∫ 2π

0

∫ π/3

0

∫ a

0

(ρ2 sin2 φ)ρ2 sinφdρ dφ dθ =

∫ 2π

0

∫ π/3

0

∫ a

0

ρ4 sin3 φdρ dφ dθ.

(b)

∫ 2π

0

∫ √3a/2

0

∫ √a2−r2

r/
√

3

r2 dz rdr dθ =

∫ 2π

0

∫ √3a/2

0

∫ √a2−r2

r/
√

3

r3 dz dr dθ.

(c)

∫ √3a/2

−
√

3a/2

∫ √(3a2/4)−x2

−
√

(3a2/4)−x2

∫ √a2−x2−y2

√
x2+y2/

√
3

(x2 + y2) dz dy dx.

24. (a)

∫ 4

0

∫ √4x−x2

−
√

4x−x2

∫ 4x

x2+y2
dz dy dx (b)

∫ π/2

−π/2

∫ 4 cos θ

0

∫ 4r cos θ

r2
r dz dr dθ

25. V =

∫ 2π

0

∫ a/
√

3

0

∫ a

√
3r

r dz dr dθ = 2π

∫ a/
√

3

0

r(a−
√

3r) dr =
πa3

9
.
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26. The intersection of the two surfaces projects onto the yz-plane as 2y2 + z2 = 1, so

V = 4

∫ 1/
√

2

0

∫ √1−2y2

0

∫ 1−y2

y2+z2
dx dz dy = 4

∫ 1/
√

2

0

∫ √1−2y2

0

(1−2y2−z2) dz dy = 4

∫ 1/
√

2

0

2

3
(1−2y2)3/2 dy =

√
2π

4
.

27. The triangular region R is described by 0 ≤ x ≤ 1, −x ≤ y ≤ x. Hence S =

∫∫

R

√
z2
x + z2

y + 1 dA =

∫ 1

0

∫ x

−x

√
(4x)2 + 32 + 1 dy dx =

∫ 1

0

∫ x

−x

√
16x2 + 10 dy dx =

∫ 1

0

2x
√

16x2 + 10 dx =
1

24
(16x2 + 10)3/2

]1

0

=

1

12
(13
√

26− 5
√

10) ≈ 4.20632.

28. ‖ru × rv‖ =
√

2u2 + 2v2 + 4, S =

∫∫

u2+v2≤4

√
2u2 + 2v2 + 4 dA =

∫ 2π

0

∫ 2

0

√
2r2 + 4 r dr dθ =

8π

3
(3
√

3− 1).

29. (ru × rv)
∣∣∣
u=1
v=2

= 〈−2,−4, 1〉, tangent plane 2x+ 4y − z = 5.

30. u = −3, v = 0, (ru × rv)
∣∣∣
u=−3
v=0

= 〈−18, 0,−3〉, tangent plane 6x+ z = −9.

32. x =
1

10
u +

3

10
v and y = − 3

10
u +

1

10
v, hence |J(u, v)| =

∣∣∣∣∣

(
1

10

)2

+

(
3

10

)2
∣∣∣∣∣ =

1

10
, and

∫∫

R

x− 3y

(3x+ y)2
dA =

1

10

∫ 3

1

∫ 4

0

u

v2
du dv =

1

10

∫ 3

1

1

v2
dv

∫ 4

0

u du =
1

10

2

3
8 =

8

15
.

33. (a) Add u and w to get x = ln(u + w) − ln 2; subtract w from u to get y =
1

2
u − 1

2
w, substitute these values

into v = y + 2z to get z = −1

4
u+

1

2
v +

1

4
w. Hence xu =

1

u+ w
, xv = 0, xw =

1

u+ w
; yu =

1

2
, yv = 0, yz = −1

2
;

zu = −1

4
, zv =

1

2
, zw =

1

4
, and thus

∂(x, y, z)

∂(u, v, w)
=

1

2(u+ w)
.

(b) V =

∫∫∫

G

dV =

∫ 3

1

∫ 2

1

∫ 4

0

1

2(u+ w)
dw dv du =

1

2
(7 ln 7− 5 ln 5− 3 ln 3) =

1

2
ln

823543

84375
≈ 1.139172308.

34. V =
4

3
πa3, d̄ =

3

4πa3

∫∫∫

ρ≤a

ρ dV =
3

4πa3

∫ π

0

∫ 2π

0

∫ a

0

ρ3 sinφdρ dθ dφ =
3

4πa3
· 2 · 2π · a

4

4
=

3

4
a.

35. A =

∫ 4

−4

∫ 2+y2/8

y2/4

dx dy =

∫ 4

−4

(
2− y2

8

)
dy =

32

3
; ȳ = 0 by symmetry;

∫ 4

−4

∫ 2+y2/8

y2/4

x dx dy =

∫ 4

−4

(
2 +

1

4
y2 − 3

128
y4

)
dy =

256

15
, x̄ =

3

32

256

15
=

8

5
; centroid

(
8

5
, 0

)
.

36. A = πab/2, x̄ = 0 by symmetry,

∫ a

−a

∫ b
√

1−x2/a2

0

y dy dx =
1

2

∫ a

−a
b2
(

1− x2

a2

)
dx =

2ab2

3
, centroid

(
0,

4b

3π

)
.

37. V =
1

3
πa2h, x̄ = ȳ = 0 by symmetry,

∫ 2π

0

∫ a

0

∫ h−rh/a

0

rz dz dr dθ = π

∫ a

0

rh2
(

1− r

a

)2

dr =
πa2h2

12
, centroid

(
0, 0,

h

4

)
.
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38. V =

∫ 2

−2

∫ 4

x2

∫ 4−y

0

dz dy dx =

∫ 2

−2

∫ 4

x2

(4 − y) dy dx =

∫ 2

−2

(
8− 4x2 +

1

2
x4

)
dx =

256

15
,

∫ 2

−2

∫ 4

x2

∫ 4−y

0

y dz dy dx =

∫ 2

−2

∫ 4

x2

(4y− y2) dy dx =

∫ 2

−2

(
1

3
x6 − 2x4 +

32

3

)
dx =

1024

35
,

∫ 2

−2

∫ 4

x2

∫ 4−y

0

z dz dy dx =

∫ 2

−2

∫ 4

x2

1

2
(4− y)2 dy dx =

∫ 2

−2

(
−x

6

6
+ 2x4 − 8x2 +

32

3

)
dx =

2048

105
, x̄ = 0 by symmetry, centroid

(
0,

12

7
,

8

7

)
.

Chapter 14 Making Connections

1. (a) I2 =

[∫ +∞

0

e−x
2

dx

] [∫ +∞

0

e−y
2

dy

]
=

∫ +∞

0

[∫ +∞

0

e−x
2

dx

]
e−y

2

dy =

∫ +∞

0

∫ +∞

0

e−x
2

e−y
2

dx dy =

=

∫ +∞

0

∫ +∞

0

e−(x2+y2) dx dy.

(b) I2 =

∫ π/2

0

∫ +∞

0

e−r
2

r dr dθ =
1

2

∫ π/2

0

dθ =
π

4
.

(c) Since I > 0, I =

√
π

4
=

√
π

2
.

2. The two quarter-circles with center at the origin and of radius A and
√

2A lie inside and outside of the square
with corners (0, 0), (A, 0), (A,A), (0, A), so the following inequalities hold:
∫ π/2

0

∫ A

0

1

(1 + r2)2
r dr dθ ≤

∫ A

0

∫ A

0

1

(1 + x2 + y2)2
dx dy ≤

∫ π/2

0

∫ √2A

0

1

(1 + r2)2
r dr dθ.

The integral on the left can be evaluated as
πA2

4(1 +A2)
and the integral on the right equals

2πA2

4(1 + 2A2)
. Since both

of these quantities tend to
π

4
as A→ +∞, it follows by sandwiching that

∫ +∞

0

∫ +∞

0

1

(1 + x2 + y2)2
dx dy =

π

4
.

3. (a) 1.173108605 (b)

∫ π

0

∫ 1

0

re−r
4

dr dθ = π

∫ 1

0

re−r
4

dr ≈ 1.173108605.

4. (a) At any point outside the closed sphere {x2 + y2 + z2 ≤ 1} the integrand is negative, so to maximize
the integral it suffices to include all points inside the sphere; hence the maximum value is taken on the region
G = {x2 + y2 + z2 ≤ 1}.

(b) 1.675516

(c)

∫ 2π

0

∫ π

0

∫ 1

0

(1− ρ2)ρ2 sinφdρ dφ dθ =
8π

15
.

5. (a) Let S1 be the set of points (x, y, z) which satisfy the equation x2/3 + y2/3 + z2/3 = a2/3, and let S2 be the
set of points (x, y, z) where x = a(sinφ cos θ)3, y = a(sinφ sin θ)3, z = a cos3 φ, 0 ≤ φ ≤ π, 0 ≤ θ < 2π. If (x, y, z)
is a point of S2 then x2/3 + y2/3 + z2/3 = a2/3[(sinφ cos θ)3 + (sinφ sin θ)3 + cos3 φ] = a2/3, so (x, y, z) belongs
to S1. If (x, y, z) is a point of S1 then x2/3 + y2/3 + z2/3 = a2/3. Let x1 = x1/3, y1 = y1/3, z1 = z1/3, a1 = a1/3.
Then x2

1 + y2
1 + z2

1 = a2
1, so in spherical coordinates x1 = a1 sinφ cos θ, y1 = a1 sinφ sin θ, z1 = a1 cosφ, with

θ = tan−1

(
y1

x1

)
= tan−1

(y
x

)1/3

, φ = cos−1 z1

a1
= cos−1

(z
a

)1/3

. Then x = x3
1 = a3

1(sinφ cos θ)3 = a(sinφ cos θ)3,

similarly y = a(sinφ sin θ)3, z = a cosφ so (x, y, z) belongs to S2. Thus S1 = S2.

(b) Let a = 1 and r = (cos θ sinφ)3 i + (sin θ sinφ)3 j + cos3 φk, then S = 8

∫ π/2

0

∫ π/2

0

‖rθ × rφ‖ dφ dθ =
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72

∫ π/2

0

∫ π/2

0

sin θ cos θ sin4 φ cosφ

√
cos2 φ+ sin2 φ sin2 θ cos2 θ dθ dφ ≈ 4.4506.

6.
∂(x, y, z)

∂(ρ, φ, θ)
=

∣∣∣∣∣∣

sin3 φ cos3 θ 3ρ sin2 φ cosφ cos3 θ −3ρ sin3 φ cos2 θ sin θ
sin3 φ sin3 θ 3ρ sin2 φ cosφ sin3 θ 3ρ sin3 φ sin2 θ cos θ

cos3 φ −3ρ cos2 φ sinφ 0

∣∣∣∣∣∣
= 9ρ2 cos2 θ sin2 θ cos2 φ sin5 φ, so

V = 9

∫ 2π

0

∫ π

0

∫ a

0

ρ2 cos2 θ sin2 θ cos2 φ sin5 φdρ dφ dθ =
4

35
πa3.



Topics in Vector Calculus

Exercise Set 15.1

1. (a) III, because the vector field is independent of y and the direction is that of the negative x-axis for negative
x, and positive for positive.

(b) IV, because the y-component is constant, and the x-component varies periodically with x.

2. (a) I, since the vector field is constant.

(b) II, since the vector field points away from the origin.

3. (a) True. (b) True. (c) True.

4. (a) False, the lengths are equal to 1. (b) False, the y-component is zero. (c) False, the x-component is zero.

5.

x

y

6.

x

y

7.

x

y

8.

x

y

9.

x

y

10.

x

y

11. False, the k-component is nonzero.

12. False, the power of ‖r‖ should be 3.

13. True (this example is the curl of F).

14. False, φ is the divergence of F.

713
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15. (a) ∇φ = φxi + φyj =
y

1 + x2y2
i +

x

1 + x2y2
j = F, so F is conservative for all x, y.

(b) ∇φ = φxi + φyj + φzk = 2xi− 6yj + 8zk = F so F is conservative for all x, y and z.

16. (a) ∇φ = φxi + φyj = (6xy − y3)i + (4y + 3x2 − 3xy2)j = F, so F is conservative for all x, y.

(b) ∇φ = φxi + φyj + φzk = (sin z + y cosx)i + (sinx+ z cos y)j + (x cos z + sin y)k = F, so F is conservative for
all x, y, and z.

17. div F = 2x+ y, curl F = zi.

18. div F = z3 + 8y3x2 + 10zy, curl F = 5z2i + 3xz2j + 4xy4k.

19. div F = 0, curl F = (40x2z4 − 12xy3)i + (14y3z + 3y4)j− (16xz5 + 21y2z2)k.

20. div F = yexy + sin y + 2 sin z cos z, curl F = −xexyk.

21. div F =
2√

x2 + y2 + z2
, curl F = 0.

22. div F =
1

x
+ xzexyz +

x

x2 + z2
, curl F = −xyexyzi +

z

x2 + z2
j + yzexyzk.

23. ∇ · (F×G) = ∇ · (−(z + 4y2)i + (4xy + 2xz)j + (2xy − x)k) = 4x.

24. ∇ · (F×G) = ∇ · ((x2yz2 − x2y2)i− xy2z2j + xy2zk) = −xy2.

25. ∇ · (∇× F) = ∇ · (− sin(x− y)k) = 0.

26. ∇ · (∇× F) = ∇ · (−zeyzi + xexzj + 3eyk) = 0.

27. ∇× (∇× F) = ∇× (xzi− yzj + yk) = (1 + y)i + xj.

28. ∇× (∇× F) = ∇× ((x+ 3y)i− yj− 2xyk) = −2xi + 2yj− 3k.

31. Let F = f i + gj + hk ; div (kF) = k
∂f

∂x
+ k

∂g

∂y
+ k

∂h

∂z
= k div F.

32. Let F = f i + gj + hk ; curl (kF) = k

(
∂h

∂y
− ∂g

∂z

)
i + k

(
∂f

∂z
− ∂h

∂x

)
j + k

(
∂g

∂x
− ∂f

∂y

)
k = k curl F.

33. Let F = f(x, y, z)i + g(x, y, z)j + h(x, y, z)k and G = P (x, y, z)i +Q(x, y, z)j +R(x, y, z)k, then

div (F+G) =

(
∂f

∂x
+
∂P

∂x

)
+

(
∂g

∂y
+
∂Q

∂y

)
+

(
∂h

∂z
+
∂R

∂z

)
=

(
∂f

∂x
+
∂g

∂y
+
∂h

∂z

)
+

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
= div F+

div G.

34. Let F = f(x, y, z)i + g(x, y, z)j + h(x, y, z)k and G = P (x, y, z)i +Q(x, y, z)j +R(x, y, z)k, then

curl (F+G) =

[
∂

∂y
(h+R)− ∂

∂z
(g +Q)

]
i+

[
∂

∂z
(f + P )− ∂

∂x
(h+R)

]
j+

[
∂

∂x
(g +Q)− ∂

∂y
(f + P )

]
k; expand

and rearrange terms to get curl F + curl G.

35. Let F = f i + gj + hk ; div (φF) =

(
φ
∂f

∂x
+
∂φ

∂x
f

)
+

(
φ
∂g

∂y
+
∂φ

∂y
g

)
+

(
φ
∂h

∂z
+
∂φ

∂z
h

)
= φ

(
∂f

∂x
+
∂g

∂y
+
∂h

∂z

)
+

(
∂φ

∂x
f +

∂φ

∂y
g +

∂φ

∂z
h

)
= φ div F +∇φ · F.
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36. Let F = f i+ gj+hk ; curl (φF) =

[
∂

∂y
(φh)− ∂

∂z
(φg)

]
i+

[
∂

∂z
(φf)− ∂

∂x
(φh)

]
j+

[
∂

∂x
(φg)− ∂

∂y
(φf)

]
k; use the

product rule to expand each of the partial derivatives, rearrange to get φ curl F +∇φ× F.

37. Let F = f i + gj + hk ; div(curl F) =
∂

∂x

(
∂h

∂y
− ∂g

∂z

)
+

∂

∂y

(
∂f

∂z
− ∂h

∂x

)
+

∂

∂z

(
∂g

∂x
− ∂f

∂y

)
=

∂2h

∂x∂y
− ∂2g

∂x∂z
+

∂2f

∂y∂z
− ∂2h

∂y∂x
+

∂2g

∂z∂x
− ∂2f

∂z∂y
= 0, assuming equality of mixed second partial derivatives, which follows from the

continuity assumptions.

38. curl (∇φ) =

(
∂2φ

∂y∂z
− ∂2φ

∂z∂y

)
i+

(
∂2φ

∂z∂x
− ∂2φ

∂x∂z

)
j+

(
∂2φ

∂x∂y
− ∂2φ

∂y∂x

)
k = 0, assuming equality of mixed second

partial derivatives, which follows from the continuity assumptions.

39. ∇ · (kF) = k∇ · F, ∇ · (F + G) = ∇ · F +∇ · G, ∇ · (φF) = φ∇ · F +∇φ · F, ∇ · (∇× F) = 0.

40. ∇× (kF) = k∇× F, ∇× (F + G) = ∇× F +∇×G, ∇× (φF) = φ∇× F +∇φ× F, ∇× (∇φ) = 0.

41. (a) curl r = 0i + 0j + 0k = 0.

(b) ∇‖r‖ = ∇
√
x2 + y2 + z2 =

x√
x2 + y2 + z2

i +
y√

x2 + y2 + z2
j +

z√
x2 + y2 + z2

k =
r

‖r‖ .

42. (a) div r = 1 + 1 + 1 = 3.

(b) ∇ 1

‖r‖ = ∇(x2 + y2 + z2)−1/2 = − xi + yj + zk

(x2 + y2 + z2)3/2
= − r

‖r‖3 .

43. (a) ∇f(r) = f ′(r)
∂r

∂x
i + f ′(r)

∂r

∂y
j + f ′(r)

∂r

∂z
k = f ′(r)∇r =

f ′(r)
r

r.

(b) div[f(r)r] = f(r)div r +∇f(r) · r = 3f(r) +
f ′(r)
r

r · r = 3f(r) + rf ′(r).

44. (a) curl[f(r)r] = f(r)curl r +∇f(r)× r = f(r)0 +
f ′(r)
r

r× r = 0 + 0 = 0.

(b) ∇2f(r) = div[∇f(r)] = div

[
f ′(r)
r

r

]
=
f ′(r)
r

div r +∇f
′(r)
r

· r = 3
f ′(r)
r

+
rf ′′(r)− f ′(r)

r3
r · r = 2

f ′(r)
r

+

f ′′(r).

45. f(r) = 1/r3, f ′(r) = −3/r4, div(r/r3) = 3(1/r3) + r(−3/r4) = 0.

46. Multiply 3f(r) + rf ′(r) = 0 through by r2 to obtain 3r2f(r) + r3f ′(r) = 0, d[r3f(r)]/dr = 0, r3f(r) = C, f(r) =
C/r3, so F = Cr/r3 (an inverse-square field).

47. (a) At the point (x, y) the slope of the line along which the vector −yi+ xj lies is −x/y; the slope of the tangent
line to C at (x, y) is dy/dx, so dy/dx = −x/y.

(b) ydy = −xdx, y2/2 = −x2/2 +K1, x
2 + y2 = K.
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48. dy/dx = x, y = x2/2 +K.

x

y

49. dy/dx = 1/x, y = lnx+K.

x

y

50. dy/dx = −y/x, (1/y)dy = (−1/x)dx, ln y = − lnx+K1, y = eK1e− ln x = K/x.
x

y

Exercise Set 15.2

1. (a)

∫

C

ds = length of line segment = 1. (b) 0, because sinxy = 0 along C.

2. (a)

∫

C

ds = length of line segment = 2. (b) 0, because x is constant and dx = 0.

3. Since F and r are parallel, F · r = ‖F‖‖r‖, and since F is constant,

∫

C

F · dr =

∫

C

d(F · r) =

∫

C

d(‖F‖‖r‖) =

√
2

∫ 4

−4

√
2dt = 16.

4.

∫

C

F · r = 0, since F is perpendicular to the curve.

5. By inspection the tangent vector in part (a) is given by T = j, so F ·T = F · j = sinx on C. But x = −π/2 on C,

thus sinx = −1, F ·T = −1 and

∫

C

F · dr =

∫

C

(−1)ds.

6. (a) Let α be the angle between F and T. Since ‖F‖ = 1, cosα = ‖F‖‖T‖ cosα = F · T, and

∫

C

F · T ds =
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∫

C

cosα(s) ds. From Figure 15.2.12(b) it is apparent that α is close to zero on most of the parabola, thus cosα ≈ 1

though cosα ≤ 1. Hence

∫

C

cosα(s) ds ≤
∫

C

ds and the first integral is close to the second.

(b) From Example 8(b)

∫

C

cosαds =

∫

C

F · dr ≈ 5.83629, and

∫

C

ds =

∫ 2

−1

√
1 + (2t)2 dt ≈ 6.125726619.

7.

∫

C

F · dr =

∫ 5

4

(8 · 0 + 8 · 1) dt = 8.

8.

∫

C

F · dr =

∫ 4

1

(2 · 1 + 5 · 0) dt = 6.

9.

∫

C

F · dr =

∫ 11

4

(0 · 0 + 2(−2) · 1) dt = −28.

10.

∫

C

F · dr =

∫ 6

−1

(−8(−t) · (−1) + 3(0) · 0) dt = −140.

11. (a) ds =

√(
dx

dt

)2

+

(
dy

dt

)2

dt, so

∫ 1

0

(2t−
√
t2)
√

4 + 4t2 dt =

∫ 1

0

2t
√

1 + t2 dt =
2

3
(1 + t2)3/2

]1

0

=
2

3
(2
√

2− 1).

(b)

∫ 1

0

(2t−
√
t2)2 dt = 1. (c)

∫ 1

0

(2t−
√
t2)2t dt =

2

3
.

12. (a)

∫ 1

0

t(3t2)(6t3)2
√

1 + 36t2 + 324t4 dt =
864

5
. (b)

∫ 1

0

t(3t2)(6t3)2 dt =
54

5
.

(c)

∫ 1

0

t(3t2)(6t3)26t dt =
648

11
. (d)

∫ 1

0

t(3t2)(6t3)218t2 dt = 162.

13. (a) C : x = t, y = t, 0 ≤ t ≤ 1;

∫ 1

0

6t dt = 3.

(b) C : x = t, y = t2, 0 ≤ t ≤ 1;

∫ 1

0

(3t+ 6t2 − 2t3)dt = 3.

(c) C : x = t, y = sin(πt/2), 0 ≤ t ≤ 1;

∫ 1

0

[3t+ 2 sin(πt/2) + πt cos(πt/2)− (π/2) sin(πt/2) cos(πt/2)]dt = 3.

(d) C : x = t3, y = t, 0 ≤ t ≤ 1;

∫ 1

0

(9t5 + 8t3 − t)dt = 3.

14. (a) C : x = t, y = t, z = t, 0 ≤ t ≤ 1;

∫ 1

0

(t+ t− t) dt =
1

2
.

(b) C : x = t, y = t2, z = t3, 0 ≤ t ≤ 1;

∫ 1

0

(t2 + t3(2t)− t(3t2)) dt = − 1

60
.

(c) C : x = cosπt, y = sinπt, z = t, 0 ≤ t ≤ 1;

∫ 1

0

(−π sin2 πt+ πt cosπt− cosπt) dt = −π
2
− 2

π
.
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15. False, a line integral is independent of the orientation of the curve.

16. False, it’s a scalar.

17. True, see (26).

18. True, since ∇f is normal to C; see (30).

19.

∫ 3

0

√
1 + t

1 + t
dt =

∫ 3

0

(1 + t)−1/2 dt = 2.

20.
√

5

∫ 1

0

1 + 2t

1 + t2
dt =

√
5(π/4 + ln 2).

21.

∫ 1

0

3(t2)(t2)(2t3/3)(1 + 2t2) dt = 2

∫ 1

0

t7(1 + 2t2) dt = 13/20.

22.

√
5

4

∫ 2π

0

e−t dt =
√

5(1− e−2π)/4.

23.

∫ π/4

0

(8 cos2 t− 16 sin2 t− 20 sin t cos t)dt = 1− π.

24.

∫ 1

−1

(
2

3
t− 2

3
t5/3 + t2/3

)
dt = 6/5.

25. C : x = (3− t)2/3, y = 3− t, 0 ≤ t ≤ 3;

∫ 3

0

1

3
(3− t)2dt = 3.

26. C : x = t2/3, y = t, −1 ≤ t ≤ 1;

∫ 1

−1

(
2

3
t2/3 − 2

3
t1/3 + t7/3

)
dt = 4/5.

27. C : x = cos t, y = sin t, 0 ≤ t ≤ π/2;

∫ π/2

0

(− sin t− cos2 t)dt = −1− π/4.

28. C : x = 3− t, y = 4− 3t, 0 ≤ t ≤ 1;

∫ 1

0

(−37 + 41t− 9t2)dt = −39/2.

29.

∫ 1

0

(−3)e3tdt = 1− e3.

30.

∫ π/2

0

(sin2 t cos t− sin2 t cos t+ t4(2t)) dt =
π6

192
.

31. (a)

∫ ln 2

0

(
e3t + e−3t

)√
e2t + e−2t dt =

63

64

√
17 +

1

4
ln(4 +

√
17)− 1

4
tanh−1

(
1

17

√
17

)
.

(b)

∫ π/2

0

[
et sin t cos t− (sin t− t) sin t+ (1 + t2)

]
dt =

1

24
π3 +

1

5
eπ/2 +

1

4
π +

6

5
.

32. (a)

∫ π/2

0

cos21 t sin9 t

√
(−3 cos2 t sin t)2 + (3 sin2 t cos t)2 dt = 3

∫ π/2

0

cos22 t sin10 t dt =
61,047

4,294,967,296
π.
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(b)

∫ e

1

(
t5 ln t+ 7t2(2t) + t4(ln t)

1

t

)
dt =

5

36
e6 +

59

16
e4 − 491

144
.

33. (a) C1 : (0, 0) to (1, 0);x = t, y = 0, 0 ≤ t ≤ 1, C2 : (1, 0) to (0, 1);x = 1 − t, y = t, 0 ≤ t ≤ 1, C3 :

(0, 1) to (0, 0);x = 0, y = 1− t, 0 ≤ t ≤ 1,

∫ 1

0

(0)dt+

∫ 1

0

(−1)dt+

∫ 1

0

(0)dt = −1.

(b) C1 : (0, 0) to (1, 0);x = t, y = 0, 0 ≤ t ≤ 1, C2 : (1, 0) to (1, 1);x = 1, y = t, 0 ≤ t ≤ 1, C3 : (1, 1) to (0, 1);x =

1−t, y = 1, 0 ≤ t ≤ 1, C4 : (0, 1) to (0, 0);x = 0, y = 1−t, 0 ≤ t ≤ 1,

∫ 1

0

(0)dt+

∫ 1

0

(−1)dt+

∫ 1

0

(−1)dt+

∫ 1

0

(0)dt =

−2.

34. (a) C1 : (0, 0) to (1, 1);x = t, y = t, 0 ≤ t ≤ 1, C2 : (1, 1) to (2, 0);x = 1 + t, y = 1 − t, 0 ≤ t ≤ 1, C3 :

(2, 0) to (0, 0);x = 2− 2t, y = 0, 0 ≤ t ≤ 1,

∫ 1

0

(0)dt+

∫ 1

0

2dt+

∫ 1

0

(0)dt = 2.

(b) C1 : (−5, 0) to (5, 0);x = t, y = 0,−5 ≤ t ≤ 5, C2 : x = 5 cos t, y = 5 sin t, 0 ≤ t ≤ π,

∫ 5

−5

(0)dt +
∫ π

0

(−25)dt = −25π.

35. C1 : x = t, y = z = 0, 0 ≤ t ≤ 1,

∫ 1

0

0 dt = 0; C2 : x = 1, y = t, z = 0, 0 ≤ t ≤ 1,

∫ 1

0

(−t) dt = −1

2
; C3 : x =

1, y = 1, z = t, 0 ≤ t ≤ 1,

∫ 1

0

3 dt = 3;

∫

C

x2z dx− yx2 dy + 3 dz = 0− 1

2
+ 3 =

5

2
.

36. C1 : (0, 0, 0) to (1, 1, 0);x = t, y = t, z = 0, 0 ≤ t ≤ 1, C2 : (1, 1, 0) to (1, 1, 1);x = 1, y = 1, z = t, 0 ≤ t ≤ 1, C3 :

(1, 1, 1) to (0, 0, 0);x = 1− t, y = 1− t, z = 1− t, 0 ≤ t ≤ 1,

∫ 1

0

(−t3)dt+

∫ 1

0

3 dt+

∫ 1

0

−3dt = −1/4.

37.

∫ π

0

(0)dt = 0.

38.

∫ 1

0

(e2t − 4e−t)dt = e2/2 + 4e−1 − 9/2.

39.

∫ 1

0

e−tdt = 1− e−1

40.

∫ π/2

0

(7 sin2 t cos t+ 3 sin t cos t)dt = 23/6.

41. Represent the circular arc by x = 3 cos t, y = 3 sin t, 0 ≤ t ≤ π/2.

∫

C

x
√
yds = 9

√
3

∫ π/2

0

√
sin t cos t dt = 6

√
3.

42. δ(x, y) = k
√
x2 + y2 where k is the constant of proportionality,

∫

C

k
√
x2 + y2ds = k

∫ 1

0

et(
√

2et) dt =
√

2k

∫ 1

0

e2t dt = (e2 − 1)k/
√

2.

43.

∫

C

kx

1 + y2
ds = 15k

∫ π/2

0

cos t

1 + 9 sin2 t
dt = 5k tan−1 3.

44. δ(x, y, z) = kz where k is the constant of proportionality,

∫

C

k z ds =

∫ 4

1

k(4
√
t)(2 + 1/t) dt = 136k/3.
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45. C : x = t2, y = t, 0 ≤ t ≤ 1; W =

∫ 1

0

3t4dt = 3/5.

46. W =

∫ 3

1

(t2 + 1− 1/t3 + 1/t)dt = 92/9 + ln 3.

47. W =

∫ 1

0

(t3 + 5t6)dt = 27/28.

48. C1 : (0, 0, 0) to (1, 3, 1); x = t, y = 3t, z = t, 0 ≤ t ≤ 1, C2 : (1, 3, 1) to (2,−1, 4); x = 1 + t, y = 3− 4t, z = 1 + 3t,

0 ≤ t ≤ 1, W =

∫ 1

0

(4t+ 8t2)dt+

∫ 1

0

(−11− 17t− 11t2)dt = −37/2.

49. C : x = 4 cos t, y = 4 sin t, 0 ≤ t ≤ π/2,
∫ π/2

0

(
−1

4
sin t+ cos t

)
dt = 3/4.

50. C1 : (0, 3) to (6, 3);x = 6t, y = 3, 0 ≤ t ≤ 1, C2 : (6, 3) to (6, 0);x = 6, y = 3 − 3t, 0 ≤ t ≤ 1,

∫ 1

0

6

36t2 + 9
dt +

∫ 1

0

−12

36 + 9(1− t)2
dt =

1

3
tan−1 2− 2

3
tan−1(1/2).

51. Represent the parabola by x = t, y = t2, 0 ≤ t ≤ 2.

∫

C

3x ds =

∫ 2

0

3t
√

1 + 4t2 dt = (17
√

17− 1)/4.

52. Represent the semicircle by x = 2 cos t, y = 2 sin t, 0 ≤ t ≤ π.

∫

C

x2 y ds =

∫ π

0

16 cos2 t sin t dt = 32/3.

53. (a) 2πrh = 2π(1)2 = 4π.

(b) S =

∫

C

z(t) dt, since the average height is 2.

(c) C : x = cos t, y = sin t, 0 ≤ t ≤ 2π;S =

∫ 2π

0

(2 + (1/2) sin 3t) dt = 4π.

54. C : x = a cos t, y = −a sin t, 0 ≤ t ≤ 2π,

∫

C

x dy − y dx
x2 + y2

=

∫ 2π

0

−a2 cos2 t− a2 sin2 t

a2
dt = −

∫ 2π

0

dt = −2π.

55. W =

∫

C

F · dr =

∫ 1

0

(λt2(1− t), t− λt(1− t)) · (1, λ− 2λt) dt = −λ/12, W = 1 when λ = −12.

56. The force exerted by the farmer is F =

(
150 + 20− 1

10
z

)
k =

(
170− 3

4π
t

)
k, so F · dr =

(
170− 1

10
z

)
dz, and

W =

∫ 60

0

(
170− 1

10
z

)
dz = 10,020 foot-pounds. Note that the functions x(z), y(z) are irrelevant.

57. (a) From (8), ∆sk =

∫ tk

tk−1

‖r′(t)‖ dt, thus m∆tk ≤ ∆sk ≤ M∆tk for all k. Obviously ∆sk ≤ M(max∆tk),

and since the right side of this inequality is independent of k, it follows that max∆sk ≤ M(max∆tk). Similarly
m(max∆tk) ≤ max∆sk.

(b) This follows from max∆tk ≤
1

m
max∆sk and max∆sk ≤Mmax∆tk.
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Exercise Set 15.3

1. ∂x/∂y = 0 = ∂y/∂x, conservative so ∂φ/∂x = x and ∂φ/∂y = y, φ = x2/2 + k(y), k′(y) = y, k(y) = y2/2 + K,
φ = x2/2 + y2/2 +K.

2. ∂(3y2)/∂y = 6y = ∂(6xy)/∂x, conservative so ∂φ/∂x = 3y2 and ∂φ/∂y = 6xy, φ = 3xy2 +k(y), 6xy+k′(y) = 6xy,
k′(y) = 0, k(y) = K, φ = 3xy2 +K.

3. ∂(x2y)/∂y = x2 and ∂(5xy2)/∂x = 5y2, not conservative.

4. ∂(ex cos y)/∂y = −ex sin y = ∂(−ex sin y)/∂x, conservative so ∂φ/∂x = ex cos y and ∂φ/∂y = −ex sin y, φ =
ex cos y + k(y), −ex sin y + k′(y) = −ex sin y, k′(y) = 0, k(y) = K, φ = ex cos y +K.

5. ∂(cos y + y cosx)/∂y = − sin y + cosx = ∂(sinx − x sin y)/∂x, conservative so ∂φ/∂x = cos y + y cosx and
∂φ/∂y = sinx− x sin y, φ = x cos y + y sinx+ k(y), −x sin y + sinx+ k′(y) = sinx− x sin y, k′(y) = 0, k(y) = K,
φ = x cos y + y sinx+K.

6. ∂(x ln y)/∂y = x/y and ∂(y lnx)/∂x = y/x, not conservative.

7. (a) Let C : x(t) = 1 + 2t, y = 4−3t, 0 ≤ t ≤ 1. Then I =

∫

C

(2xy3 dx+ (1 + 3x2y2) dy =

∫ 1

0

[2(1 + 2t)(4−3t)3)2 +

(1 + 3(1 + 2t)2(4− 3t)2)(−3)]dt = −58.

(b) Let C1 : x(t) = 1, y(t) = 4 − 3t, 0 ≤ t ≤ 1 and C2 : x(t) = 2t − 1, y = 1, 1 ≤ t ≤ 2. Then I1 =∫ 1

0
[(1 + 3(4− 3t)2](−3) = −66 and I2 =

∫ 2

1
2(2t− 1)2 dt = 8, so I = I1 + I2 = −66 + 8 = −58.

8. (a) ∂(y sinx)/∂y = sinx = ∂(− cosx)/∂x, independent of path.

(b) C1 : x = πt, y = 1− 2t, 0 ≤ t ≤ 1;

∫ 1

0

(π sinπt− 2πt sinπt+ 2 cosπt)dt = 0.

(c) ∂φ/∂x = y sinx and ∂φ/∂y = − cosx, φ = −y cosx + k(y), − cosx + k′(y) = − cosx, k′(y) = 0, k(y) = K,
φ = −y cosx+K. Let K = 0 to get φ(π,−1)− φ(0, 1) = (−1)− (−1) = 0.

9. ∂(3y)/∂y = 3 = ∂(3x)/∂x, φ = 3xy, φ(4, 0)− φ(1, 2) = −6.

10. ∂(ex sin y)/∂y = ex cos y = ∂(ex cos y)/∂x, φ = ex sin y, φ(1, π/2)− φ(0, 0) = e.

11. ∂(2xey)/∂y = 2xey = ∂(x2ey)/∂x, φ = x2ey, φ(3, 2)− φ(0, 0) = 9e2.

12. ∂(3x− y + 1)/∂y = −1 = ∂[−(x+ 4y + 2)]/∂x, φ = 3x2/2− xy + x− 2y2 − 2y, φ(0, 1)− φ(−1, 2) = 11/2.

13. ∂(2xy3)/∂y = 6xy2 = ∂(3x2y2)/∂x, φ = x2y3, φ(−1, 0)− φ(2,−2) = 32.

14. ∂(ex ln y − ey/x)/∂y = ex/y − ey/x = ∂(ex/y − ey lnx)/∂x, φ = ex ln y − ey lnx, φ(3, 3)− φ(1, 1) = 0.

15. φ = x2y2/2, W = φ(0, 0)− φ(1, 1) = −1/2.

16. φ = x2y3,W = φ(4, 1)− φ(−3, 0) = 16.

17. φ = exy, W = φ(2, 0)− φ(−1, 1) = 1− e−1.

18. φ = e−y sinx,W = φ(−π/2, 0)− φ(π/2, 1) = −1− 1/e.

19. False, the integral must be zero for all closed curves C.
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20. True, Theorem 15.3.3.

21. True; if ∇φ is constant then φ is linear.

22. True, Theorem 15.3.3.

23. ∂(ey + yex)/∂y = ey + ex = ∂(xey + ex)/∂x so F is conservative, φ(x, y) = xey + yex so

∫

C

F · dr = φ(0, ln 2) −
φ(1, 0) = ln 2− 1.

24. ∂(2xy)/∂y = 2x = ∂(x2 + cos y)/∂x so F is conservative, φ(x, y) = x2y+ sin y so

∫

C

F · dr = φ(π, π/2)−φ(0, 0) =

π3/2 + 1.

25. F · dr = [(ey + yex)i + (xey + ex)j] · [(π/2) cos(πt/2)i + (1/t)j]dt =
(π

2
cos(πt/2)(ey + yex) + (xey + ex)/t

)
dt, so

∫

C

F · dr =

∫ 2

1

(
π

2
cos(πt/2)

(
t+ (ln t)esin(πt/2)

)
+

(
sin(πt/2) +

1

t
esin(πt/2)

))
dt = ln 2− 1 ≈ −0.306853.

26. F · dr =
(
2t2 cos(t/3) + [t2 + cos(t cos(t/3))](cos(t/3)− (t/3) sin(t/3))

)
dt, so

∫

C

F · dr =

∫ π

0

(
2t2 cos(t/3) + [t2 + cos(t cos(t/3))](cos(t/3)− (t/3) sin(t/3))

)
dt = 1 + π3/2.

27. No; a closed loop can be found whose tangent everywhere makes an angle < π with the vector field, so the line

integral

∫

C

F · dr > 0, and by Theorem 15.3.2 the vector field is not conservative.

28. The vector field is constant, say F = ai + bj, so let φ(x, y) = ax+ by and F is conservative.

29. Let r(t) be a parametrization of the circle C. Then by Theorem 15.3.2(b),

∫

C

Fdr =

∫

C

F · r′(t) dt = 0. Let

h(t) = F(x, y) · r′(t). Then h is continuous. We must find two points at which h = 0. If h(t) = 0 everywhere
on the circle, then we are done; otherwise there are points at which h is nonzero, say h(t1) > 0. Then there is a
small interval around t1 on which the integral of h is positive. (Let ε = h(t1)/2. Since h(t) is continuous there

exists δ > 0 such that for |t − t1| < δ, h(t) > ε/2. Then
∫ t1+δ

t1−δ h(t) dt ≥ (2δ)ε/2 > 0.) Since

∫

C

h = 0, there are

points on the circle where h < 0, say h(t2) < 0. Now consider the parametrization h(θ), 0 ≤ θ ≤ 2π. Let θ1 < θ2

correspond to the points above where h > 0 and h < 0. Then by the Intermediate Value Theorem on [θ1, θ2] there
must be a point where h = 0, say h(θ3) = 0, θ1 < θ3 < θ2. To find a second point where h = 0, assume that h is
a periodic function with period 2π (if need be, extend the definition of h). Then h(t2 − 2π) = h(t2) < 0. Apply
the Intermediate Value Theorem on [t2 − 2π, t1] to find an additional point θ4 at which h = 0. The reader should
prove that θ3 and θ4 do indeed correspond to distinct points on the circle.

30. The function F · r′(t) is not necessarily continuous since the tangent to the square has obvious discontinuities. For
a counterexample to the result, let the square have vertices at (0, 0), (0, 1), (1, 1), (1, 0). Let Φ(x, y) = xy + x+ y
and let F = ∇Φ = (y+ 1)i+ (x+ 1)j. Then F is conservative , but on the bottom side of the square, where y = 0,
F · r′ = −F · j = −x− 1 ≤ 1 < 0. On the top edge F · r′ = F · j = x+ 1 ≥ 1 > 0. Similarly for the other two sides
of the square. Thus at no point is F · r′ = 0.

31. If F is conservative, then F = ∇φ =
∂φ

∂x
i+

∂φ

∂y
j+

∂φ

∂z
k and hence f =

∂φ

∂x
, g =

∂φ

∂y
, and h =

∂φ

∂z
. Thus

∂f

∂y
=

∂2φ

∂y∂x

and
∂g

∂x
=

∂2φ

∂x∂y
,
∂f

∂z
=

∂2φ

∂z∂x
and

∂h

∂x
=

∂2φ

∂x∂z
,
∂g

∂z
=

∂2φ

∂z∂y
and

∂h

∂y
=

∂2φ

∂y∂z
. The result follows from the equality

of mixed second partial derivatives.
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32. Let f(x, y, z) = yz, g(x, y, z) = xz, h(x, y, z) = yx2, then ∂f/∂z = y, ∂h/∂x = 2xy 6= ∂f/∂z, thus by Exercise 31,

F = f i + gj + hk is not conservative, and by Theorem 15.3.2,

∫

C

yz dx+ xz dy + yx2 dz is not independent of the

path.

33.
∂

∂y
(h(x)[x sin y + y cos y]) = h(x)[x cos y − y sin y + cos y],

∂

∂x
(h(x)[x cos y − y sin y]) = h(x) cos y + h′(x)[x cos y −

y sin y], equate these two partial derivatives to get (x cos y − y sin y)(h′(x)− h(x)) = 0 which holds for all x and y
if h′(x) = h(x), h(x) = Cex where C is an arbitrary constant.

34. (a)
∂

∂y

cx

(x2 + y2)3/2
= − 3cxy

(x2 + y2)−5/2
=

∂

∂x

cy

(x2 + y2)3/2
when (x, y) 6= (0, 0), so by Theorem 15.3.3, F is

conservative. Set ∂φ/∂x = cx/(x2 + y2)−3/2, then φ(x, y) = −c(x2 + y2)−1/2 + k(y), ∂φ/∂y = cy/(x2 + y2)−3/2 +

k′(y), so k′(y) = 0. Thus φ(x, y) = − c

(x2 + y2)1/2
is a potential function.

(b) curl F = 0 is similar to part (a), so F is conservative. Let φ(x, y, z) =

∫
cx

(x2 + y2 + z2)3/2
dx = −c(x2 +y2 +

z2)−1/2 + k(y, z). As in part (a), ∂k/∂y = ∂k/∂z = 0, so φ(x, y, z) = −c/(x2 + y2 + z2)1/2 is a potential function
for F.

35. (a) See Exercise 34, c = 1; W =

∫ Q

P

F · dr = φ(3, 2, 1)− φ(1, 1, 2) = − 1√
14

+
1√
6

.

(b) C begins at P (1, 1, 2) and ends at Q(3, 2, 1) so the answer is again W = − 1√
14

+
1√
6

.

(c) The circle is not specified, but cannot pass through (0, 0, 0), so Φ is continuous and differentiable on the circle.
Start at any point P on the circle and return to P , so the work is Φ(P )− Φ(P ) = 0. C begins at, say, (3, 0) and
ends at the same point so W = 0.

36. (a) F · dr =

(
y
dx

dt
− xdy

dt

)
dt for points on the circle x2 + y2 = 1, so C1 : x = cos t, y = sin t, 0 ≤ t ≤ π,

∫

C1

F · dr =

∫ π

0

(− sin2 t − cos2 t) dt = −π, C2 : x = cos t, y = − sin t, 0 ≤ t ≤ π,

∫

C2

F · dr =

∫ π

0

(sin2 t +

cos2 t) dt = π.

(b)
∂f

∂y
=

x2 − y2

(x2 + y2)2
,
∂g

∂x
= − y2 − x2

(x2 + y2)2
=
∂f

∂y
.

(c) The circle about the origin of radius 1, which is formed by traversing C1 and then traversing C2 in the reverse
direction, does not lie in an open simply connected region inside which F is continuous, since F is not defined at
the origin, nor can it be defined there in such a way as to make the resulting function continuous there.

37. If C is composed of smooth curves C1, C2, . . . , Cn and curve Ci extends from (xi−1, yi−1) to (xi, yi) then

∫

C

F · dr =

n∑

i=1

∫

Ci

F · dr =
n∑

i=1

[φ(xi, yi)−φ(xi−1, yi−1)] = φ(xn, yn)−φ(x0, y0), where (x0, y0) and (xn, yn) are the endpoints

of C.

38.

∫

C1

F · dr +

∫

−C2

F · dr = 0, but

∫

−C2

F · dr = −
∫

C2

F · dr so

∫

C1

F · dr =

∫

C2

F · dr, thus

∫

C

F · dr is

independent of path.

39. Let C1 be an arbitrary piecewise smooth curve from (a, b) to a point (x, y1) in the disk, and C2 the vertical line

segment from (x, y1) to (x, y). Then φ(x, y) =

∫

C1

F · dr +

∫

C2

F · dr =

∫ (x,y1)

(a,b)

F · dr +

∫

C2

F · dr. The first
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term does not depend on y; hence
∂φ

∂y
=

∂

∂y

∫

C2

F · dr =
∂

∂y

∫

C2

f(x, y)dx+ g(x, y)dy. However, the line integral

with respect to x is zero along C2, so
∂φ

∂y
=

∂

∂y

∫

C2

g(x, y) dy. Express C2 as x = x, y = t where t varies from y1

to y, then
∂φ

∂y
=

∂

∂y

∫ y

y1

g(x, t) dt = g(x, y).

Exercise Set 15.4

1.

∫∫

R

(2x−2y)dA =

∫ 1

0

∫ 1

0

(2x−2y)dy dx = 0; for the line integral, on x = 0, y2 dx = 0, x2 dy = 0; on y = 0, y2 dx =

x2 dy = 0; on x = 1, y2 dx+x2 dy = dy; and on y = 1, y2 dx+x2 dy = dx, hence

∮

C

y2 dx+x2 dy =

∫ 1

0

dy+

∫ 0

1

dx =

1− 1 = 0.

2.

∫∫

R

(1− 1)dA = 0; for the line integral let x = cos t, y = sin t,

∮

C

y dx+ x dy =

∫ 2π

0

(− sin2 t+ cos2 t)dt = 0.

3.

∫ 4

−2

∫ 2

1

(2y − 3x)dy dx = 0.

4.

∫ 2π

0

∫ 3

0

(1 + 2r sin θ)r dr dθ = 9π.

5.

∫ π/2

0

∫ π/2

0

(−y cosx+ x sin y)dy dx = 0.

6.

∫∫

R

(sec2 x− tan2 x)dA =

∫∫

R

dA = π.

7.

∫∫

R

[1− (−1)]dA = 2

∫∫

R

dA = 8π.

8.

∫ 1

0

∫ x

x2

(2x− 2y)dy dx = 1/30.

9.

∫∫

R

(
− y

1 + y
− 1

1 + y

)
dA = −

∫∫

R

dA = −4.

10.

∫ π/2

0

∫ 4

0

(−r2)r dr dθ = −32π.

11.

∫∫

R

(
− y2

1 + y2
− 1

1 + y2

)
dA = −

∫∫

R

dA = −1.

12.

∫∫

R

(cosx cos y − cosx cos y)dA = 0.

13.

∫ 1

0

∫ √x

x2

(y2 − x2)dy dx = 0.
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14. (a)

∫ 2

0

∫ 2x

x2

(−6x+ 2y)dy dx = −56/15. (b)

∫ 2

0

∫ 2x

x2

6y dy dx = 64/5.

15. False, Green’s Theorem applies to closed curves in the plane.

16. False, the first partial derivatives need not even exist.

17. True, it is the area of the region bounded by C.

18. True by Green’s Theorem.

19. (a) C : x = cos t, y = sin t, 0 ≤ t ≤ 2π;

∮

C

=

∫ 2π

0

(
esin t(− sin t) + sin t cos tecos t

)
dt ≈ −3.550999378;

∫∫

R

[
∂

∂x
(yex)− ∂

∂y
ey
]
dA =

∫∫

R

[yex − ey] dA =

∫ 2π

0

∫ 1

0

[
r sin θer cos θ − er sin θ

]
r dr dθ ≈ −3.550999378.

(b) C1 : x = t, y = t2, 0 ≤ t ≤ 1;

∫

C1

[ey dx+ yex dy] =

∫ 1

0

[
et

2

+ 2t3et
]
dt ≈ 2.589524432,

C2 : x = t2, y = t, 0 ≤ t ≤ 1;

∫

C2

[ey dx+ yex dy] =

∫ 1

0

[
2tet + tet

2
]
dt =

e+ 3

2
≈ 2.859140914.

∫

C1

−
∫

C2

≈ −0.269616482;

∫∫

R

=

∫ 1

0

∫ √x

x2

[yex − ey] dy dx ≈ −0.269616482.

20. (a)

∮

C

x dy =

∫ 2π

0

ab cos2 t dt = πab. (b)

∮

C

−y dx =

∫ 2π

0

ab sin2 t dt = πab.

21. A =
1

2

∮

C

−y dx+ x dy =
1

2

∫ 2π

0

(3a2 sin4 φ cos2 φ+ 3a2 cos4 φ sin2 φ)dφ =
3

2
a2

∫ 2π

0

sin2 φ cos2 φdφ =

=
3

8
a2

∫ 2π

0

sin2 2φdφ = 3πa2/8.

22. C1 : (0, 0) to (a, 0);x = at, y = 0, 0 ≤ t ≤ 1, C2 : (a, 0) to (0, b);x = a − at, y = bt, 0 ≤ t ≤ 1, C3 :

(0, b) to (0, 0);x = 0, y = b− bt, 0 ≤ t ≤ 1, A =

∮

C

x dy =

∫ 1

0

(0)dt+

∫ 1

0

ab(1− t)dt+

∫ 1

0

(0)dt =
1

2
ab.

23. C1 : (0, 0) to (a, 0); x = at, y = 0, 0 ≤ t ≤ 1, C2 : (a, 0) to (a cos t0, b sin t0); x = a cos t, y = b sin t, 0 ≤ t ≤ t0,

C3 : (a cos t0, b sin t0) to (0, 0); x = −a(cos t0)t, y = −b(sin t0)t, −1 ≤ t ≤ 0, A =
1

2

∮

C

−y dx+x dy =
1

2

∫ 1

0

(0) dt+

1

2

∫ t0

0

ab dt+
1

2

∫ 0

−1

(0) dt =
1

2
ab t0.

24. C1 : (0, 0) to (a, 0); x = at, y = 0, 0 ≤ t ≤ 1, C2 : (a, 0) to (a cosh t0, b sinh t0); x = a cosh t, y = b sinh t, 0 ≤ t ≤ t0,

C3 : (a cosh t0, b sinh t0) to (0, 0); x = −a(cosh t0)t, y = −b(sinh t0)t, −1 ≤ t ≤ 0, A =
1

2

∮

C

−y dx + x dy =

1

2

∫ 1

0

(0) dt+
1

2

∫ t0

0

ab dt+
1

2

∫ 0

−1

(0) dt =
1

2
ab t0.

25. curlF(x, y, z) = (gx − fy)k, since f and g are independent of z. Thus

∫∫

R

curlF · k dA =

∫∫

R

(gx − fy) dA =

∫

C

f(x, y) dx+ g(x, y) dy =

∫

C

F · dr by Green’s Theorem.
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26. The boundary of the region R in Figure Ex-22 is C = C1 − C2, so by Green’s Theorem,

∫

C1

F · dr−
∫

C2

F · dr =
∫

C1−C2

F · dr =

∫

C

F · dr = 0 , since fy = gx. Thus

∫

C1

=

∫

C2

.

27. Let C1 denote the graph of g(x) from left to right, and C2 the graph of f(x) from left to right. On the vertical

sides x = const, and so dx = 0 there. Thus the area between the curves is A(R) =

∫∫

R

dA = −
∫

C

y dx =

−
∫

C1

g(x) dx+

∫

C2

f(x) dx = −
∫ b

a

g(x) dx+

∫ b

a

f(x) dx =

∫ b

a

(f(x)− g(x)) dx.

28. Let A(R1) denote the area of the region R1 bounded by C and the lines y = y0, y = y1 and the y-axis. Then by
Formula (6) A(R1) =

∫
C
x dy, since the integrals on the top and bottom are zero (dy = 0 there), and x = 0 on the

y-axis. Similarly, A(R2) =
∫
−C y dx = −

∫
C
y dx, where R2 is the region bounded by C, x = x0, x = x1 and the

x-axis.

(a) R1 (b) R2 (c)

∫

C

y dx+ x dy = A(R1) +A(R2) = x1y1 − x0y0.

(d) Let φ(x, y) = xy. Then ∇φ · dr = y dx + x dy and thus by the Fundamental Theorem

∫

C

y dx + x dy =

φ(x1, y1)− φ(x0, y0) = x1y1 − x0y0.

(e)

∫ t1

t0

x(t)
dy

dt
dt = x(t1)y(t1)− x(t0)y(t0)−

∫ t1

t0

y(t)
dx

dt
dt which is equivalent to

∫

C

y dx+ x dy = x1y1 − x0y0.

29. W =

∫∫

R

y dA =

∫ π

0

∫ 5

0

r2 sin θ dr dθ = 250/3.

30. We cannot apply Green’s Theorem on the region enclosed by the closed curve C, since F does not have first
order partial derivatives at the origin. However, the curve Cx0

, consisting of y = x3
0/4, x0 ≤ x ≤ 2;x =

2, x3
0/4 ≤ y ≤ 2; and y = x3/4, x0 ≤ x ≤ 2 encloses a region Rx0

in which Green’s Theorem does hold, and

W =

∮

C

F · dr = lim
x0→0+

∮

Cx0

F · dr = lim
x0→0+

∫∫

Rx0

∇ · F dA = lim
x0→0+

∫ 2

x0

∫ x3/4

x3
0/4

(
1

2
x−1/2 − 1

2
y−1/2

)
dy dx =

lim
x0→0+

(
−18

35

√
2−
√

2

4
x3

0 + x
3/2
0 +

3

14
x

7/2
0 − 3

10
x

5/2
0

)
= −18

35

√
2.

31.

∮

C

y dx− x dy =

∫∫

R

(−2)dA = −2

∫ 2π

0

∫ a(1+cos θ)

0

r dr dθ = −3πa2.

32. x̄ =
1

A

∫∫

R

x dA, but

∮

C

1

2
x2dy =

∫∫

R

x dA from Green’s Theorem so x̄ =
1

A

∮

C

1

2
x2dy =

1

2A

∮

C

x2dy. Similarly,

ȳ = − 1

2A

∮

C

y2dx.

33. A =

∫ 1

0

∫ x

x3

dy dx =
1

4
; C1 : x = t, y = t3, 0 ≤ t ≤ 1,

∫

C1

x2 dy =

∫ 1

0

t2(3t2) dt =
3

5
, C2 : x = t, y = t, 0 ≤

t ≤ 1;

∫

C2

x2 dy =

∫ 1

0

t2 dt =
1

3
,

∮

C

x2 dy =

∫

C1

−
∫

C2

=
3

5
− 1

3
=

4

15
, x̄ =

8

15
,

∫

C

y2 dx =

∫ 1

0

t6 dt −
∫ 1

0

t2 dt =

1

7
− 1

3
= − 4

21
, ȳ =

8

21
, centroid

(
8

15
,

8

21

)
.
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34. A =
a2

2
;C1 : x = t, y = 0, 0 ≤ t ≤ a,C2 : x = a − t, y = t, 0 ≤ t ≤ a;C3 : x = 0, y = a − t, 0 ≤ t ≤ a;

∫

C1

x2 dy =

0,

∫

C2

x2 dy =

∫ a

0

(a− t)2 dt =
a3

3
,

∫

C3

x2 dy = 0,

∮

C

x2 dy =

∫

C1

+

∫

C2

+

∫

C3

=
a3

3
, x̄ =

a

3
;

∫

C

y2 dx = 0−
∫ a

0

t2 dt+ 0 =

−a
3

3
, ȳ =

a

3
, centroid

(a
3
,
a

3

)
.

35. x̄ = 0 from the symmetry of the region, C1 : (a, 0) to (−a, 0) along y =
√
a2 − x2; x = a cos t, y = a sin t,

0 ≤ t ≤ π, C2 : (−a, 0) to (a, 0); x = t, y = 0, −a ≤ t ≤ a, A = πa2/2, ȳ = − 1

2A

[∫ π

0

−a3 sin3 t dt+

∫ a

−a
(0)dt

]
=

− 1

πa2

(
−4a3

3

)
=

4a

3π
; centroid

(
0,

4a

3π

)
.

36. A =
ab

2
;C1 : x = t, y = 0, 0 ≤ t ≤ a,C2 : x = a, y = t, 0 ≤ t ≤ b;C3 : x = a− at, y = b− bt, 0 ≤ t ≤ 1;

∫

C1

x2 dy =

0,

∫

C2

x2 dy =

∫ b

0

a2 dt = ba2,

∫

C3

x2 dy =

∫ 1

0

a2(1− t)2(−b) dt = −ba
2

3
,

∮

C

x2 dy =

∫

C1

+

∫

C2

+

∫

C3

=
2ba2

3
, x̄ =

2a

3
;

∫

C

y2 dx = 0 + 0−
∫ 1

0

ab2(1− t)2 dt = −ab
2

3
, ȳ =

b

3
, centroid

(
2a

3
,
b

3

)
.

37. From Green’s Theorem, the given integral equals

∫∫

R

(1−x2−y2)dA where R is the region enclosed by C. The value

of this integral is maximum if the integration extends over the largest region for which the integrand 1−x2− y2 is
nonnegative so we want 1− x2− y2 ≥ 0, x2 + y2 ≤ 1. The largest region is that bounded by the circle x2 + y2 = 1
which is the desired curve C.

38. (a) C : x = a+ (c− a)t, y = b+ (d− b)t, 0 ≤ t ≤ 1,

∫

C

−y dx+ x dy =

∫ 1

0

(ad− bc)dt = ad− bc.

(b) Let C1, C2, and C3 be the line segments from (x1, y1) to (x2, y2), (x2, y2) to (x3, y3), and (x3, y3) to (x1, y1),

then if C is the entire boundary consisting of C1, C2, and C3. A =
1

2

∫

C

−y dx + x dy =
1

2

3∑

i=1

∫

Ci

−y dx + x dy

=
1

2
[(x1y2 − x2y1) + (x2y3 − x3y2) + (x3y1 − x1y3)].

(c) A =
1

2
[(x1y2 − x2y1) + (x2y3 − x3y2) + · · ·+ (xny1 − x1yn)].

(d) A =
1

2
[(0− 0) + (6 + 8) + (0 + 2) + (0− 0)] = 8.

39.

∫

C

F · dr =

∫

C

(x2 + y) dx+ (4x− cos y) dy = 3

∫∫

R

dA = 3(25− 2) = 69.

40.

∫

C

F · dr =

∫

C

(e−x + 3y) dx+ x dy = −2

∫∫

R

dA = −2[π(4)2 − π(2)2] = −24π.

Exercise Set 15.5

1. R is the annular region between x2 + y2 = 1 and x2 + y2 = 4;
∫∫

σ

z2dS =

∫∫

R

(x2 + y2)

√
x2

x2 + y2
+

y2

x2 + y2
+ 1 dA =

√
2

∫∫

R

(x2 + y2)dA =
√

2

∫ 2π

0

∫ 2

1

r3dr dθ =
15

2
π
√

2.
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2. z = 1− x− y, R is the triangular region enclosed by x+ y = 1, x = 0 and y = 0;
∫∫

σ

xy dS =

∫∫

R

xy
√

3 dA =
√

3

∫ 1

0

∫ 1−x

0

xy dy dx =

√
3

24
.

3. Let r(u, v) = cosui + vj + sinuk, 0 ≤ u ≤ π, 0 ≤ v ≤ 1. Then ru = − sinui + cosuk, rv = j, ru × rv =

− cosui− sinuk, ‖ru × rv‖ = 1,

∫∫

σ

x2y dS =

∫ 1

0

∫ π

0

v cos2 u du dv = π/4.

4. z =
√

4− x2 − y2, R is the circular region enclosed by x2 + y2 = 3;

∫∫

σ

(x2 + y2)z dS =

=

∫∫

R

(x2 + y2)
√

4− x2 − y2

√
x2

4− x2 − y2
+

y2

4− x2 − y2
+ 1 dA =

∫∫

R

2(x2 + y2)dA = 2

∫ 2π

0

∫ √3

0

r3dr dθ = 9π.

5. If we use the projection of σ onto the xz-plane then y = 1−x andR is the rectangular region in the xz-plane enclosed

by x = 0, x = 1, z = 0 and z = 1;

∫∫

σ

(x−y−z)dS =

∫∫

R

(2x−1−z)
√

2dA =
√

2

∫ 1

0

∫ 1

0

(2x−1−z)dz dx = −
√

2/2.

6. R is the triangular region enclosed by 2x + 3y = 6, x = 0, and y = 0;

∫∫

σ

(x + y)dS =

∫∫

R

(x + y)
√

14 dA =

√
14

∫ 3

0

∫ (6−2x)/3

0

(x+ y)dy dx = 5
√

14.

7. There are six surfaces, parametrized by projecting onto planes:

σ1 : z = 0; 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (onto xy-plane), σ2 : x = 0; 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 (onto yz-plane),

σ3 : y = 0; 0 ≤ x ≤ 1, 0 ≤ z ≤ 1 (onto xz-plane), σ4 : z = 1; 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (onto xy-plane),

σ5 : x = 1; 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 (onto yz-plane), σ6 : y = 1; 0 ≤ x ≤ 1, 0 ≤ z ≤ 1 (onto xz-plane).

By symmetry the integrals over σ1, σ2 and σ3 are equal, as are those over σ4, σ5 and σ6, and

∫∫

σ1

(x+ y + z)dS =

∫ 1

0

∫ 1

0

(x+ y)dx dy = 1;

∫∫

σ4

(x+ y+ z)dS =

∫ 1

0

∫ 1

0

(x+ y+ 1)dx dy = 2, thus,

∫∫

σ

(x+ y+ z)dS = 3 · 1 + 3 · 2 = 9.

8. Let r(φ, θ) = a sinφ cos θ i+a sinφ sin θ j+a cosφk, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π; ‖rφ×rθ‖ = a2 sinφ, x2+y2 = a2 sin2 φ,∫∫

σ

f(x, y, z) =

∫ 2π

0

∫ π

0

a4 sin3 φdφ dθ =
8

3
πa4.

9. True by definition of the integral.

10. False, it could be more on one part and less on another; or f = 1 + g where the integral of g is zero.

11. False, it’s the total mass of the lamina.

12. True, Theorem 15.5.3.

13. (a) The integral is improper because the function z(x, y) is not differentiable when x2 + y2 = 1.

(b) Fix r0, 0 < r0 < 1. Then z + 1 =
√

1− x2 − y2 + 1, and

∫∫

σr0

(z + 1) dS =
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=

∫∫

σr0

(
√

1− x2 − y2 + 1)

√
1 +

x2

1− x2 − y2
+

y2

1− x2 − y2
dx dy =

∫ 2π

0

∫ r0

0

(
√

1− r2 + 1)
1√

1− r2
r dr dθ =

= 2π

(
1 +

1

2
r2
0 −

√
1− r2

0

)
, and, after passing to the limit as r0 → 1,

∫∫

σ

(z + 1) dS = 3π.

(c) Let r(φ, θ) = sinφ cos θi+ sinφ sin θj+ cosφk, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π/2; ‖rφ× rθ‖ = sinφ,

∫∫

σ

(1 + cosφ) dS =

∫ 2π

0

∫ π/2

0

(1 + cosφ) sinφdφ dθ = 2π

∫ π/2

0

(1 + cosφ) sinφdφ = 3π.

14. (a) The function z(x, y) is not differentiable at the origin (in fact it’s partial derivatives are unbounded there).

(b) R is the circular region enclosed by x2 + y2 = 1;

∫∫

σ

√
x2 + y2 + z2 dS =

=

∫∫

R

√
2(x2 + y2)

√
x2

x2 + y2
+

y2

x2 + y2
+ 1 dA = lim

r0→0+
2

∫∫

R′

√
x2 + y2 dA, where R′ is the annular region en-

closed by x2 + y2 = 1 and x2 + y2 = r2
0 with r0 slightly larger than 0 because

√
x2

x2 + y2
+

y2

x2 + y2
+ 1 is not

defined for x2 + y2 = 0, so

∫∫

σ

√
x2 + y2 + z2 dS = lim

r0→0+
2

∫ 2π

0

∫ 1

r0

r2dr dθ = lim
r0→0+

4π

3
(1− r3

0) =
4π

3
.

(c) The cone is contained in the locus of points satisfying φ = π/4, so it can be parametrized with spherical

coordinates ρ, θ: r(ρ, θ) =
1√
2
ρ cos θi +

1√
2
ρ sin θj +

1√
2
ρk, 0 ≤ θ ≤ 2π, r < ρ ≤

√
2. Then rρ =

1√
2

cos θi +

1√
2

sin θj +
1√
2
k, rθ = − 1√

2
ρ sin θi +

1√
2
ρ cos θ j, rρ × rθ =

ρ

2
(− cos θi− sin θj + k) and ‖rρ × rθ‖ =

1√
2
ρ, and

thus

∫∫

σr

f(x, y, z) dS = lim
r→0

∫ 2π

0

∫ √2

r

ρ
1√
2
ρ dρ dθ = lim

r→0
2π

1√
2

1

3
ρ3

]√2

r

= lim
r→0

√
2

3

(
2
√

2− r3
)
π =

4π

3
.

15. (a) Subdivide the right hemisphere σ ∩ {x > 0} into patches, each patch being as small as desired (i). For
each patch there is a corresponding patch on the left hemisphere σ ∩ {x < 0} which is the reflection through the
yz-plane. Condition (ii) now follows.

(b) Use the patches in Part (a) and the function f(x, y, z) = xn to define the sum in Definition 15.5.1. The
patches of the sum divide into two classes, each the negative of the other since n is odd. Thus the sum adds to
zero. Since xn is a continuous function the limit exists and must also be zero,

∫
σ
xn dS = 0.

16. Since g is independent of x it is convenient to say that g is an even function of x, and hence f(x, y)g(x, y) is
a continuous odd function of x. Following the argument in Exercise 15, the sum again breaks into two classes,
consisting of pairs of patches with the opposite sign. Thus the sum is zero and

∫
σ
fg dS = 0.

17. (a) Permuting the variables x, y, z by sending x → y → z → x will leave the integrals equal, through symmetry
in the variables.

(b)

∫∫

σ

(x2 + y2 + z2) dS = surface area of sphere, so each integral contributes one third, i.e.

∫∫

σ

x2 dS =

1

3



∫∫

σ

x2 dS +

∫∫

σ

y2 dS +

∫∫

σ

z2 dS


.
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(c) Since σ has radius 1,

∫∫

σ

dS is the surface area of the sphere, which is 4π, therefore

∫∫

σ

x2 dS =
4

3
π.

18.

∫∫

σ

(x−y)2 dS =

∫∫

σ

x2 dS−
∫∫

σ

2xy dS+

∫

σ

y2 dS =
4

3
π+0+

4

3
π =

8

3
π. The middle integral is zero by Exercise

15 as the integrand is an odd function of x.

19. (a)

√
29

16

∫ 6

0

∫ (12−2x)/3

0

xy(12− 2x− 3y)dy dx.

(b)

√
29

4

∫ 3

0

∫ (12−4z)/3

0

yz(12− 3y − 4z)dy dz.

(c)

√
29

9

∫ 3

0

∫ 6−2z

0

xz(12− 2x− 4z)dx dz.

20. (a) a

∫ a

0

∫ √a2−x2

0

x dy dx (b) a

∫ a

0

∫ √a2−z2

0

z dy dz (c) a

∫ a

0

∫ √a2−z2

0

xz√
a2 − x2 − z2

dx dz

21. 18
√

29/5.

22. a4/3.

23.

∫ 4

0

∫ 2

1

y3z
√

4y2 + 1 dy dz;
1

2

∫ 4

0

∫ 4

1

xz
√

1 + 4x dx dz.

24. a

∫ 9

0

∫ a/
√

2

a/
√

5

x2y√
a2 − y2

dy dx, a

∫ 2a/
√

5

a/
√

2

∫ 9

0

x2dx dz

25. 391
√

17/15− 5
√

5/3.

26. The regionR : 3x2+2y2 = 5 is symmetric in y. The integrand is x2yz dS = x2y(5−3x2−2y2)
√

1 + 36x2 + 16y2 dy dx,

which is odd in y, hence

∫∫

σ

x2yz dS = 0.

27. z =
√

4− x2,
∂z

∂x
= − x√

4− x2
,
∂z

∂y
= 0;

∫∫

σ

δ0dS = δ0

∫∫

R

√
x2

4− x2
+ 1 dA = 2δ0

∫ 4

0

∫ 1

0

1√
4− x2

dx dy =
4

3
πδ0.

28. z =
1

2
(x2 + y2), R is the circular region enclosed by x2 + y2 = 8;

∫∫

σ

δ0dS = δ0

∫∫

R

√
x2 + y2 + 1 dA =

δ0

∫ 2π

0

∫ √8

0

√
r2 + 1 r dr dθ =

52

3
πδ0.

29. z = 4−y2, R is the rectangular region enclosed by x = 0, x = 3, y = 0 and y = 3;

∫∫

σ

y dS =

∫∫

R

y
√

4y2 + 1 dA =

∫ 3

0

∫ 3

0

y
√

4y2 + 1 dy dx =
1

4
(37
√

37− 1).

30. R is the annular region enclosed by x2 + y2 = 1 and x2 + y2 = 16;

∫∫

σ

x2z dS =
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=

∫∫

R

x2
√
x2 + y2

√
x2

x2 + y2
+

y2

x2 + y2
+ 1 dA =

√
2

∫∫

R

x2
√
x2 + y2 dA =

√
2

∫ 2π

0

∫ 4

1

r4 cos2 θ dr dθ =
1023
√

2

5
π.

31. M =

∫∫

σ

δ(x, y, z)dS =

∫∫

σ

δ0dS = δ0

∫∫

σ

dS = δ0S.

32. δ(x, y, z) = |z|; use z =
√
a2−x2−y2, let R be the circular region enclosed by x2+y2 =a2, and σ the hemisphere

above R. By the symmetry of both the surface and the density function with respect to the xy-plane we have

M = 2

∫∫

σ

z dS = 2

∫∫

R

√
a2 − x2 − y2

√
x2

a2 − x2 − y2
+

y2

a2 − x2 − y2
+ 1 dA = lim

r0→a−
2a

∫∫

Rr0

dA where Rr0 is the

circular region with radius r0 that is slightly less than a. But

∫∫

Rr0

dA is simply the area of the circle with radius

r0 so M = lim
r0→a−

2a(πr2
0) = 2πa3.

33. By symmetry x̄ = ȳ = 0.

∫∫

σ

dS =

∫∫

R

√
x2 + y2 + 1 dA =

∫ 2π

0

∫ √8

0

√
r2 + 1 r dr dθ =

52π

3
,

∫∫

σ

z dS =

∫∫

R

z
√
x2 + y2 + 1 dA =

1

2

∫∫

R

(x2 + y2)
√
x2 + y2 + 1 dA =

1

2

∫ 2π

0

∫ √8

0

r3
√
r2 + 1 dr dθ =

596π

15
, so

z̄ =
596π/15

52π/3
=

149

65
. The centroid is (x̄, ȳ, z̄) = (0, 0, 149/65).

34. By symmetry x̄ = ȳ = 0.

∫∫

σ

dS =

∫∫

R

2√
4− x2 − y2

dA = 2

∫ 2π

0

∫ √3

0

r√
4− r2

dr dθ = 4π,

∫∫

σ

z dS =

∫∫

R

2 dA = (2)(area of circle of radius
√

3) = 6π, so z̄ =
6π

4π
=

3

2
. The centroid is (x̄, ȳ, z̄) = (0, 0, 3/2).

35. ∂r/∂u = cos vi + sin vj + 3k, ∂r/∂v = −u sin vi + u cos vj, ‖∂r/∂u× ∂r/∂v‖ =
√

10u; 3
√

10

∫∫

R

u4 sin v cos v dA =

3
√

10

∫ π/2

0

∫ 2

1

u4 sin v cos v du dv = 93/
√

10.

36. ∂r/∂u = j, ∂r/∂v = −2 sin vi + 2 cos vk, ‖∂r/∂u× ∂r/∂v‖ = 2; 8

∫∫

R

1

u
dA = 8

∫ 2π

0

∫ 3

1

1

u
du dv = 16π ln 3.

37. ∂r/∂u = cos vi + sin vj + 2uk, ∂r/∂v = −u sin vi + u cos vj, ‖∂r/∂u× ∂r/∂v‖ = u
√

4u2 + 1;

∫∫

R

u dA =

=

∫ π

0

∫ sin v

0

u du dv = π/4.

38. ∂r/∂u = 2 cosu cos vi + 2 cosu sin vj− 2 sinuk, ∂r/∂v = −2 sinu sin vi + 2 sinu cos vj; ‖∂r/∂u× ∂r/∂v‖ = 4 sinu;

4

∫∫

R

e−2 cosu sinu dA = 4

∫ 2π

0

∫ π/2

0

e−2 cosu sinu du dv = 4π(1− e−2).

39. ∂z/∂x = −2xe−x
2−y2 , ∂z/∂y = −2ye−x

2−y2 , (∂z/∂x)2 + (∂z/∂y)2 + 1 = 4(x2 + y2)e−2(x2+y2) + 1; use polar

coordinates to get M =

∫ 2π

0

∫ 3

0

r2
√

4r2e−2r2 + 1 dr dθ ≈ 57.895751.
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40. (b) A =

∫∫

σ

dS =

∫ 2π

0

∫ 1

−1

1

2

√
40u cos(v/2) + u2 + 4u2 cos2(v/2) + 100du dv ≈ 62.93768644; x̄ =

1

A

∫∫

σ

x dS ≈

0.016302; ȳ = z̄ = 0 by symmetry.

Exercise Set 15.6

1. (a) Zero. (b) Zero. (c) Positive. (d) Negative. (e) Zero. (f) Zero.

2. 0; the vector field is constant, so when we compute the flux, for any given contribution on one face of the cube,
we will get the same contribution with a minus sign on the opposite face. (Whatever ”flows in” on one side ”flows
out” on the opposite, so the total flux is 0.)

3. The vector field is constant −5i on a square like this, n = i, so

∫∫

R

F · n dS = −5A(R) = −80.

4. n = −j, so F · n = −1,

∫∫

R

F · n dS = −A(R) = −25.

5. n = k, so F · n = 5, so the flux is 5A(R) = 5 · 6 = 30.

6. n = j, so F · n = 3, so the flux is 3A(R) = 3 · 25π = 75π.

7. n = k, so F · n = 8, so the flux is 8A(R) = 8 · 25π = 200π.

8. (a) n = − cos vi− sin vj. (b) Inward, by inspection.

9. n = k, so F · n = x,

∫∫

R

F · n dS =

∫ 2

0

∫ 2

0

x dx dy = 4.

10. n = k, so F · n = 2x,

∫∫

R

F · n dS =

∫ 3

0

∫ 2

0

2x dx dy = 12.

11. n = −zxi− zyj + k,

∫∫

R

F · n dS =

∫∫

R

(2x2 + 2y2 + 2(1− x2 − y2)) dS =

∫ 2π

0

∫ 1

0

2r dr dθ = 2π.

12. n = −j, so F · n = −(x+ e−1),

∫∫

R

F · n dS = −
∫ 4

0

∫ 2

0

x+ e−1 dx dz = −8− 8/e.

13. R is the annular region enclosed by x2 + y2 = 1 and x2 + y2 = 4;

∫∫

σ

F · n dS =

=

∫∫

R

(
− x2

√
x2 + y2

− y2

√
x2 + y2

+ 2z

)
dA =

∫∫

R

√
x2 + y2dA =

∫ 2π

0

∫ 2

1

r2dr dθ =
14π

3
.

14. R is the circular region enclosed by x2 +y2 = 4;

∫∫

σ

F · n dS =

∫∫

R

(2y2−1)dA =

∫ 2π

0

∫ 2

0

(2r2 sin2 θ−1)r dr dθ =

4π.
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15. R is the circular region enclosed by x2 +y2−y = 0;

∫∫

σ

F · n dS =

∫∫

R

(−x)dA = 0 since the region R is symmetric

across the y-axis.

16. With z =
1

2
(6 − 6x − 3y), R is the triangular region enclosed by 2x + y = 2, x = 0, and y = 0;

∫∫

σ

F · n dS =

∫∫

R

(
3x2 +

3

2
yx+ zx

)
dA = 3

∫∫

R

x dA = 3

∫ 1

0

∫ 2−2x

0

x dy dx = 1.

17. ∂r/∂u = cos vi + sin vj− 2uk, ∂r/∂v = −u sin vi + u cos vj, ∂r/∂u× ∂r/∂v = 2u2 cos vi + 2u2 sin vj + uk;
∫∫

R

(2u3 + u) dA =

∫ 2π

0

∫ 2

1

(2u3 + u)du dv = 18π.

18. ∂r/∂u = k, ∂r/∂v = −2 sin vi + cos vj, ∂r/∂u × ∂r/∂v = − cos vi − 2 sin vj;

∫∫

R

(2 sin2 v − e− sin v cos v) dA =

∫ 2π

0

∫ 5

0

(2 sin2 v − e− sin v cos v)du dv = 10π.

19. ∂r/∂u = cos vi+sin vj+2k, ∂r/∂v = −u sin vi+u cos vj, ∂r/∂u×∂r/∂v = −2u cos vi−2u sin vj+uk;

∫∫

R

u2 dA =

∫ π

0

∫ sin v

0

u2du dv = 4/9.

20. ∂r/∂u = 2 cosu cos vi+2 cosu sin vj−2 sinuk, ∂r/∂v = −2 sinu sin vi+2 sinu cos vj; ∂r/∂u×∂r/∂v = 4 sin2 u cos vi+

4 sin2 u sin vj + 4 sinu cosuk;

∫∫

R

8 sinu dA = 8

∫ 2π

0

∫ π/3

0

sinu du dv = 8π.

21. In each part, divide σ into the six surfaces

σ1 : x = −1 with |y| ≤ 1, |z| ≤ 1, and n = −i, σ2 : x = 1 with |y| ≤ 1, |z| ≤ 1, and n = i,

σ3 : y = −1 with |x| ≤ 1, |z| ≤ 1, and n = −j, σ4 : y = 1 with |x| ≤ 1, |z| ≤ 1, and n = j,

σ5 : z = −1 with |x| ≤ 1, |y| ≤ 1, and n = −k, σ6 : z = 1 with |x| ≤ 1, |y| ≤ 1, and n = k,

(a)

∫∫

σ1

F · n dS =

∫∫

σ1

dS = 4,

∫∫

σ2

F · n dS =

∫∫

σ2

dS = 4, and

∫∫

σi

F · n dS = 0 for i = 3, 4, 5, 6, so

∫∫

σ

F · n dS = 4 + 4 + 0 + 0 + 0 + 0 = 8.

(b)

∫∫

σ1

F · n dS =

∫∫

σ1

dS = 4, similarly

∫∫

σi

F · n dS = 4 for i = 2, 3, 4, 5, 6, so

∫∫

σ

F · n dS = 4+4+4+4+4+4 =

24.

(c)

∫∫

σ1

F · n dS = −
∫∫

σ1

dS = −4,

∫∫

σ2

F · n dS = 4, similarly

∫∫

σi

F · n dS = −4 for i = 3, 5 and

∫∫

σi

F · n dS =

4 for i = 4, 6, so

∫∫

σ

F · n dS = −4 + 4− 4 + 4− 4 + 4 = 0.
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22. Decompose σ into a top σ1 (the disk) and a bottom σ2 (the portion of the paraboloid). Then n1 = k,

∫∫

σ1

F · n1 dS =

−
∫∫

σ1

y dS = −
∫ 2π

0

∫ 1

0

r2 sin θ dr dθ = 0,n2 = (2xi + 2yj− k)/
√

1 + 4x2 + 4y2,

∫∫

σ2

F · n2 dS =

=

∫∫

σ2

y(2x2 + 2y2 + 1)√
1 + 4x2 + 4y2

dS = 0, because the surface σ2 is symmetric with respect to the xy-plane and the integrand

is an odd function of y. Thus the flux is 0.

23. False, the Möbius strip is not orientable.

24. False, the flux is a scalar.

25. False, the value can be zero if as much liquid passes in the negative direction as in the positive.

26. True, it is

∫∫

σ

n · n dS =

∫∫

σ

dS = A(σ).

27. The surface is parametrized by x = u cos v, y = u sin v, z = u, 1 ≤ u ≤ 2, 0 ≤ v ≤ 2π.
∂r

∂u
× ∂r

∂v
= −(u cos vi +

u sin vj− uk);

∫∫

σ

F · n dS =

∫∫

R

u (cos v + sin v − 1) dA =

∫ 2π

0

∫ 2

1

(cos v + sin v − 1)u du dv = −3π.

28. The surface is parametrized by x = 4 cosu, y = 4 sinu, z = v, 0 ≤ u ≤ 2π, −2 ≤ v ≤ 2.
∂r

∂u
× ∂r

∂v
= (4 cosui +

4 sinuj);

∫∫

σ

F · n dS =

∫∫

R

12 cosu+ 28 sinudA =

∫ 2π

0

∫ 2

−2

12 cosu+ 28 sinu dv du = 0.

29. (a) n =
1√
3

[i + j + k], V =

∫

σ

F ·n dS =

∫ 1

0

∫ 1−x

0

(2x− 3y + 1− x− y) dy dx = 0 m3/s.

(b) m = 0 · 806 = 0 kg/s.

30. (a) Let x = 3 sinφ cos θ, y = 3 sinφ sin θ, z = 3 cosφ, n = sinφ cos θi + sinφ sin θ j + cosφk, so V =

∫

σ

F ·n dS =
∫∫

A

9 sinφ (−3 sin2 φ sin θ cos θ + 3 sinφ cosφ sin θ + 9 sinφ cosφ cos θ) dA =

∫ 2π

0

∫ 3

0

3 sinφ cos θ(− sinφ sin θ +

4 cosφ) r dr dθ = 0 m3.

(b)
dm

dt
= 0 · 1060 = 0 kg/s.

31. (a) G(x, y, z) = x−g(y, z), ∇G = i−∂g
∂y

j−∂g
∂z

k, apply Theorem 15.6.3:

∫∫

σ

F · ndS =

∫∫

R

F ·
(
i− ∂x

∂y
j− ∂x

∂z
k

)
dA,

if σ is oriented by front normals, and

∫∫

σ

F · ndS =

∫∫

R

F ·
(
−i +

∂x

∂y
j +

∂x

∂z
k

)
dA, if σ is oriented by back

normals, where R is the projection of σ onto the yz-plane.

(b) R is the semicircular region in the yz-plane enclosed by z =
√

1− y2 and z = 0;

∫∫

σ

F · n dS =

∫∫

R

(−y −
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2yz + 16z)dA =

∫ 1

−1

∫ √1−y2

0

(−y − 2yz + 16z)dz dy =
32

3
.

32. (a) G(x, y, z) = y − g(x, z), ∇G = −∂g
∂x

i + j − ∂g

∂z
k, apply Theorem 15.6.3:

∫∫

R

F ·
(
∂y

∂x
i− j +

∂y

∂z
k

)
dA,

σ oriented by left normals, and

∫∫

R

F ·
(
−∂y
∂x

i + j− ∂y

∂z
k

)
dA, σ oriented by right normals, where R is the

projection of σ onto the xz-plane.

(b) R is the semicircular region in the xz-plane enclosed by z =
√

1− x2 and z = 0;

∫∫

σ

F · n dS =

∫∫

R

(−2x2 +

(x2 + z2)− 2z2)dA = −
∫ 1

−1

∫ √1−x2

0

(x2 + z2)dz dx = −π
4

.

33. (a) On the sphere, ‖r‖ = a so F = akr and F · n = akr · (r/a) = ak−1‖r‖2 = ak−1a2 = ak+1, hence∫∫

σ

F · n dS = ak+1

∫∫

σ

dS = ak+1(4πa2) = 4πak+3.

(b) If k = −3, then

∫∫

σ

F · n dS = 4π.

34. Let r = sinu cos vi + sinu sin vj + cosuk, ru × rv = sin2 u cos vi + sin2 u sin vj + sinu cosuk,F · (ru × rv) =

a2 sin3 u cos2 v +
1

a
sin3 u sin2 v + a sinu cos3 u,

∫∫

σ

F · n dS =

∫ 2π

0

∫ π

0

(
a2 sin3 u cos2 v +

1

a
sin3 u sin2 v + a sinu cos3 u

)
du dv =

4

3a

∫ π

0

(a3 cos2 v + sin2 v) dv =

4π

3

(
a2 +

1

a

)
= 3π if a =

1

2
,
−1±

√
33

4
.

35. Let r = a sinu cos vi+a sinu sin vj+a cosuk, ru×rv = a2 sin2 u cos vi+a2 sin2 u sin vj+a2 sinu cosuk,F · (ru×rv) =(
6

a
+ 1

)
a3 sin3 u cos2 v − 4a4 sin3 u sin2 v + a5 sinu cos2 u,

∫∫

σ

F · n dS =

∫ 2π

0

∫ π

0

((
6

a
+ 1

)
a3 sin3 u cos2 v − 4a4 sin3 u sin2 v + a5 sinu cos2 u

)
du dv =

=
4

3
a2(6 + a− 4a2 + a3)π = 0 if a = −1, 2, 3. We discard a = −1 because a is the radius of the sphere.

Exercise Set 15.7

1. σ1 : x = 0,F · n = −x = 0,

∫∫

σ1

(0)dA = 0, σ2 : x = 1,F · n = x = 1,

∫∫

σ2

(1)dA = 1,

σ3 : y = 0,F · n = −y = 0,

∫∫

σ3

(0)dA = 0, σ4 : y = 1,F · n = y = 1,

∫∫

σ4

(1)dA = 1,

σ5 : z = 0,F · n = −z = 0,

∫∫

σ5

(0)dA = 0, σ6 : z = 1,F · n = z = 1,

∫∫

σ6

(1)dA = 1.

∫∫

σ

F · n = 3;

∫∫∫

G

div FdV =

∫∫∫

G

3dV = 3.
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2. Let r = sinu cos vi + sinu sin vj + cosuk, ru × rv = sin2 u cos vi + sin2 u sin vj + sinu cosuk,F · (ru × rv) =
5 sin2 u sin v + 7 sinu cosu,
∫∫

σ

F · n dS =

∫ 2π

0

∫ π

0

5 sin2 u sin v + 7 sinu cosu du dv = 0;

∫∫∫

G

div FdV =

∫∫∫

G

0dV = 0.

3. σ1 : z = 1,n = k,F · n = z2 = 1,

∫∫

σ1

(1)dS = π, σ2 : n = 2xi + 2yj− k,F · n = 4x2 − 4x2y2 − x4 −

3y4,

∫∫

σ2

F · n dS =

∫ 2π

0

∫ 1

0

[
4r2 cos2 θ − 4r4 cos2 θ sin2 θ − r4 cos4 θ − 3r4 sin4 θ

]
r dr dθ =

π

3
;

∫∫

σ

F · n dS =
4π

3
;

∫∫∫

G

div FdV =

∫∫∫

G

(2 + z)dV =

∫ 2π

0

∫ 1

0

∫ 1

r2
(2 + z)dz r dr dθ = 4π/3.

4. σ1 : x = 0,F · n = −xy = 0,

∫∫

σ1

(0)dA = 0, σ2 : x = 2,F · n = xy = 2y,

∫∫

σ2

(2y)dA = 8,

σ3 : y = 0,F · n = −yz = 0,

∫∫

σ3

(0)dA = 0, σ4 : y = 2,F · n = yz = 2z,

∫∫

σ4

(2z)dA = 8,

σ5 : z = 0,F · n = −xz = 0,

∫∫

σ5

(0)dA = 0, σ6 : z = 2,F · n = xz = 2x,

∫∫

σ6

(2x)dA = 8.

∫∫

σ

F · n = 24;

∫∫∫

G

div FdV =

∫∫∫

G

(y + z + x)dV = 24.

5. False, it equates a surface integral with a volume integral.

6. True, the integral of a positive function is positive.

7. True, see the subsection “Sources and Sinks”.

8. False, see Theorem 15.7.2.

9. G is the rectangular solid;

∫∫∫

G

div F dV =

∫ 2

0

∫ 1

0

∫ 3

0

(2x− 1) dx dy dz = 12.

10. G is the spherical solid enclosed by σ;

∫∫∫

G

div F dV =

∫∫∫

G

0 dV = 0

∫∫∫

G

dV = 0.

11. G is the cylindrical solid;

∫∫∫

G

div F dV = 3

∫∫∫

G

dV = (3)(volume of cylinder) = (3)[πa2(1)] = 3πa2.

12. G is the solid bounded by z = 1−x2−y2 and the xy-plane;

∫∫∫

G

div F dV = 3

∫∫∫

G

dV = 3

∫ 2π

0

∫ 1

0

∫ 1−r2

0

r dz dr dθ =

3π

2
.

13. G is the cylindrical solid;

∫∫∫

G

div F dV = 3

∫∫∫

G

(x2 + y2 + z2)dV = 3

∫ 2π

0

∫ 2

0

∫ 3

0

(r2 + z2)r dz dr dθ = 180π.
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14. G is the tetrahedron;

∫∫∫

G

div F dV =

∫∫∫

G

x dV =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

x dz dy dx =
1

24
.

15. G is the hemispherical solid bounded by z =
√

4− x2 − y2 and the xy-plane;

∫∫∫

G

div F dV = 3

∫∫∫

G

(x2 + y2 +

z2)dV = 3

∫ 2π

0

∫ π/2

0

∫ 2

0

ρ4 sinφdρ dφ dθ =
192π

5
.

16. G is the hemispherical solid;

∫∫∫

G

div F dV = 5

∫∫∫

G

z dV = 5

∫ 2π

0

∫ π/2

0

∫ a

0

ρ3 sinφ cosφdρ dφ dθ =
5πa4

4
.

17. G is the conical solid;

∫∫∫

G

div F dV = 2

∫∫∫

G

(x+ y + z)dV = 2

∫ 2π

0

∫ 1

0

∫ 1

r

(r cos θ + r sin θ + z)r dz dr dθ =
π

2
.

18. G is the solid bounded by z = 2x and z = x2+y2;

∫∫∫

G

div F dV =

∫∫∫

G

dV = 2

∫ π/2

0

∫ 2 cos θ

0

∫ 2r cos θ

r2
r dz dr dθ =

π

2
.

19. From the examples we see that we need to integrate the divergence of the vector field over the whole volume.
The former is div F = 4x2. Finding the volume is more difficult. We are looking for all the points in the x-y
plane that lie above the plane z = 0, and that lie i) underneath the surface z = 4 − x2, (this surface passes
through the parabola z = 4 − x2 in the x-z plane and has no restriction on y); and ii) lie underneath the plane
z = 5 − y together with the condition y ≥ 0. First we observe that −2 ≤ x ≤ 2. Given such a value of x,
we note that 0 ≤ y ≤ 5. Finally, 0 ≤ z ≤ min(5 − y, 4 − x2). And which is the minimum? We check the
boundary, where one z equals the other z, i.e. 4− x2 = 5− y, or the parabola y = x2 + 1 in the x-y plane. Thus∫∫∫

G

div F dV = 4

∫∫∫

G

x2dV =

∫ 2

−2

∫ 1+x2

0

∫ 4−x2

0

4x2dz dy dx+

∫ 2

−2

∫ 5

x2+1

∫ 5−y

0

4x2 dz dy dx =
4608

35
.

20.

∫∫

σ

r · n dS =

∫∫∫

G

div r dV = 3

∫∫∫

G

dV = 3vol(G).

21.

∫∫

σ

F · n dS = 3[π(32)(5)] = 135π.

22.

∫∫

σ

F · n dS =

∫∫∫

G

divF dV =

∫∫∫

G

0 dV = 0; since the vector field is constant, the same amount enters as

leaves.

23. (a) F = xi + yj + zk, div F = 3. (b) F = −xi− yj− zk, div F = −3.

24. (a) The flux through any cylinder whose axis is the z-axis is positive by inspection; by the Divergence Theorem,
this says that the divergence cannot be negative at the origin, else the flux through a small enough cylinder would
also be negative (impossible), hence the divergence at the origin must be ≥ 0.

(b) Similar to part (a), ≤ 0.

25. 0 =

∫∫∫

R

div F dV =

∫∫

σ

F · n dS. Let σ1 denote that part of σ on which F · n > 0 and let σ2 denote the part
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where F ·n < 0. If

∫∫

σ1

F ·n > 0 then the integral over σ2 is negative (and equal in magnitude). Thus the boundary

between σ1 and σ2 is infinite, hence F and n are perpendicular on an infinite set.

26. No; the argument in Exercise 25 rests on the assumption that F · n is continuous, which may not be true on
a cube because the tangent jumps from one value to the next. Let φ(x, y, z) = xy + xz + yz + x + y + z, so
F = ∇φ = (y+ z+ 1)i+ (x+ z+ 1)j+ (x+ y+ 1)k. On each side of the cube we must show F ·n 6= 0. On the face
where x = 0, for example, F · n = −(y + z + 1) ≤ −1 < 0, and on the face where x = 1,F · n = y + z + 1 ≥ 1 > 0.
The other faces can be treated in a similar manner.

27.

∫∫

σ

curl F · n dS =

∫∫∫

G

div(curl F)dV =

∫∫∫

G

(0)dV = 0.

28.

∫∫

σ

∇f · n dS =

∫∫∫

G

div (∇f)dV =

∫∫∫

G

∇2fdV .

29.

∫∫

σ

(f∇g) · n dS =

∫∫∫

G

div (f∇g)dV =

∫∫∫

G

(f∇2g +∇f · ∇g)dV by Exercise 31, Section 15.1.

30.

∫∫

σ

(f∇g) · n dS =

∫∫∫

G

(f∇2g +∇f · ∇g)dV by Exercise 29;

∫∫

σ

(g∇f) · n dS =

∫∫∫

G

(g∇2f +∇g · ∇f)dV by

interchanging f and g; subtract to obtain the result.

31. Since v is constant, ∇ · v = 0. Let F = fv; then divF = (∇f)v and by the Divergence Theorem

∫∫

σ

fv · n dS =

∫∫

σ

F · n dS =

∫∫∫

G

divF dV =

∫∫∫

G

(∇f) · v dV .

32. Let r = ui + vj + wk so that, for r 6= 0, F(x, y, z) = r/||r||k =
u

(u2 + v2 + w2)k/2
i +

v

(u2 + v2 + w2)k/2
j +

w

(u2 + v2 + w2)k/2
k. Now

∂F1

∂u
=

u2 + v2 + w2 − ku2

(u2 + v2 + w2)(k/2)+1
; similarly for ∂F2/∂v, ∂F3/∂w, so that

div F =
3(u2 + v2 + w2)− k(u2 + v2 + w2)

(u2 + v2 + w2)(k/2)+1
= 0 if and only if k = 3.

33. div F = 0; no sources or sinks.

34. div F = y − x; sources where y > x, sinks where y < x.

35. div F = 3x2 + 3y2 + 3z2; sources at all points except the origin, no sinks.

36. div F = 3(x2 + y2 + z2 − 1); sources outside the sphere x2 + y2 + z2 = 1, sinks inside the sphere x2 + y2 + z2 = 1.

37. Let σ1 be the portion of the paraboloid z = 1−x2−y2 for z ≥ 0, and σ2 the portion of the plane z = 0 for x2+y2 ≤ 1.

Then

∫∫

σ1

F · n dS =

∫∫

R

F · (2xi+ 2yj+ k) dA =

∫ 1

−1

∫ √1−x2

−
√

1−x2

(2x[x2y− (1− x2 − y2)2] + 2y(y3 − x) + (2x+ 2−

3x2 − 3y2)) dy dx = 3π/4; z = 0 and n = −k on σ2 so F · n = 1− 2x,

∫∫

σ2

F · n dS =

∫∫

σ2

(1− 2x)dS = π. Thus

∫∫

σ

F · n dS = 3π/4 + π = 7π/4. But div F = 2xy+ 3y2 + 3, so

∫∫∫

G

div F dV =

∫ 1

−1

∫ √1−x2

−
√

1−x2

∫ 1−x2−y2

0

(2xy+

3y2 + 3) dz dy dx = 7π/4.
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Exercise Set 15.8

1. If σ is oriented with upward normals then C consists of three parts parametrized as C1 : r(t) = (1 − t)i + tj for

0 ≤ t ≤ 1, C2 : r(t) = (1− t)j + tk for 0 ≤ t ≤ 1, C3 : r(t) = ti + (1− t)k for 0 ≤ t ≤ 1.

∫

C1

F · dr =

∫

C2

F · dr =

∫

C3

F · dr =

∫ 1

0

(3t−1)dt =
1

2
, so

∮

C

F · dr =
1

2
+

1

2
+

1

2
=

3

2
. curl F = i+ j+k, z = 1−x−y, R is the triangular

region in the xy-plane enclosed by x+ y = 1, x = 0, and y = 0;

∫∫

σ

(curl F) · n dS = 3

∫∫

R

dA = (3)(area of R) =

(3)

[
1

2
(1)(1)

]
=

3

2
.

2. If σ is oriented with upward normals then C can be parametrized as r(t) = cos ti + sin tj + k for 0 ≤ t ≤ 2π.
∮

C

F · dr =

∫ 2π

0

(sin2 t cos t− cos2 t sin t)dt = 0; curl F = 0 so

∫∫

σ

(curl F) · n dS =

∫∫

σ

0 dS = 0.

3. If σ is oriented with upward normals then C can be parametrized as r(t) = a cos ti + a sin tj for 0 ≤ t ≤ 2π.
∮

C

F · dr =

∫ 2π

0

0 dt = 0; curl F = 0 so

∫∫

σ

(curl F) · n dS =

∫∫

σ

0 dS = 0.

4. If σ is oriented with upward normals then C can be parametrized as r(t) = 3 cos ti + 3 sin tj for 0 ≤ t ≤ 2π.
∮

C

F · dr =

∫ 2π

0

(9 sin2 t+ 9 cos2 t)dt = 9

∫ 2π

0

dt = 18π. curl F = −2i+ 2j+ 2k, R is the circular region in the xy-

plane enclosed by x2+y2 = 9;

∫∫

σ

(curl F) · n dS =

∫∫

R

(−4x+4y+2)dA =

∫ 2π

0

∫ 3

0

(−4r cos θ+4r sin θ+2)r dr dθ =

18π.

5. Take σ as the part of the plane z = 0 for x2 + y2 ≤ 1 with n = k; curl F = −3y2i+ 2zj+ 2k,

∫∫

σ

(curl F) · n dS =

2

∫∫

σ

dS = (2)(area of circle) = (2)[π(1)2] = 2π.

6. curl F = xi + (x− y)j + 6xy2k;

∫∫

σ

(curl F) · n dS =

∫∫

R

(x− y − 6xy2)dA =

∫ 1

0

∫ 3

0

(x− y − 6xy2)dy dx = −30.

7. C is the boundary of R and curl F = 2i + 3j + 4k, so

∮

C

F · r =

∫∫

R

curlF · n dS =

∫∫

R

4x+ 6y + 4 dA = 4(area

of R) = 16π.

8. curl F = −4i−6j+6yk, z = y/2 oriented with upward normals, R is the triangular region in the xy-plane enclosed

by x+ y = 2, x = 0, and y = 0;

∫∫

σ

(curl F) · n dS =

∫∫

R

(3 + 6y)dA =

∫ 2

0

∫ 2−x

0

(3 + 6y)dy dx = 14.

9. curl F = xk, take σ as part of the plane z = y oriented with upward normals, R is the circular region in the

xy-plane enclosed by x2 + y2 − y = 0;

∫∫

σ

(curl F) · n dS =

∫∫

R

x dA =

∫ π

0

∫ sin θ

0

r2 cos θ dr dθ = 0.

10. curl F = −yi − zj − xk, z = 1 − x − y oriented with upward normals, R is the triangular region in the xy-plane
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enclosed by x+ y = 1, x = 0 and y = 0;

∫∫

σ

(curl F) · n dS =

∫∫

R

(−y − z − x)dA = −
∫∫

R

dA = −1

2
(1)(1) = −1

2
.

11. curl F = i + j + k, take σ as the part of the plane z = 0 with x2 + y2 ≤ a2 and n = k;

∫∫

σ

(curl F) · n dS =

∫∫

σ

dS = area of circle = πa2.

12. curl F = i + j + k, take σ as the part of the plane z = 1/
√

2 with x2 + y2 ≤ 1/2 and n = k;

∫∫

σ

(curl F) · n dS =

∫∫

σ

dS = area of circle =
π

2
.

13. True, Theorem 15.8.1.

14. False, Green’s Theorem is a special case of Stokes’s Theorem.

15. False, the circulation is

∫

C

F· T ds.

16. True, Theorem 15.8.1.

17. (a) Take σ as the part of the plane 2x+ y+ 2z = 2 in the first octant, oriented with downward normals; curl F =

−xi+(y−1)j−k,

∮

C

F · T ds =

∫∫

σ

(curl F) · n dS =

∫∫

R

(
x− 1

2
y +

3

2

)
dA =

∫ 1

0

∫ 2−2x

0

(
x− 1

2
y +

3

2

)
dy dx =

3

2
.

(b) At the origin curl F = −j− k and with n = k, curl F(0, 0, 0) · n = (−j− k) · k = −1.

(c) The rotation of F has its maximum value at the origin about the unit vector in the same direction as curl

F(0, 0, 0) so n = − 1√
2
j− 1√

2
k.

18. (a) Using the hint, the orientation of the curve C with respect to the surface σ1 is the opposite of the orientation of

C with respect to the surface σ2. Thus in the expressions

∫∫

σ1

(curl F) ·n dS =

∫

C

F ·T dS and

∫∫

σ2

(curl F) ·n dS =

∮

C

F ·T dS, the two line integrals have oppositely oriented tangents T. Hence

∫∫

σ

(curl F) · n dS =

∫∫

σ1

(curl F) ·

n dS +

∫∫

σ2

(curl F) · n dS = 0.

(b) The flux of the curl field through the boundary of a solid is zero.

19. (a) The flow is independent of z and has no component in the direction of k, and so by inspection the only
nonzero component of the curl is in the direction of k. However both sides of (9) are zero, as the flow is orthogonal
to the curve Ca. Thus the curl is zero.

(b) Since the flow appears to be tangential to the curve Ca, it seems that the right hand side of (9) is nonzero,
and thus the curl is nonzero, and points in the positive z-direction.
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20. (a) The only nonzero vector component of the vector field is in the direction of i, and it increases with y and
is independent of x. Thus the curl of F is nonzero, and points in the positive z-direction. Alternatively, let

F = f i, and let C be the circle of radius ε with positive orientation. Then T = − sin θ i+ cos θ j, and

∮

C

F·T ds =

−ε
∫ 2π

0

f(ε, θ) sin θ dθ = −ε
∫ π

0

f(ε, θ) sin θ dθ − ε
∫ 0

−π
f(ε, θ) sin θ dθ = −ε

∫ π

0

(f(ε, θ) − f(−ε, θ)) sin θ dθ < 0, be-

cause from the picture f(ε, θ) > f(ε,−θ) for 0 < θ < π. Thus, from (9), the curl is nonzero and points in the
negative z-direction.

(b) By inspection the vector field is constant, and thus its curl is zero.

21. Since F is conservative, if C is any closed curve then

∫

C

F ·dr = 0. But

∫

C

F ·dr =

∫

C

F ·T ds from (30) of Section

15.2. In equation (9) the direction of n is arbitrary, so for any fixed curve Ca the integral

∫

Ca

F ·Tds = 0. Thus

curl F(P0) · n = 0. But n is arbitrary, so we conclude that curl F = 0.

22. Since

∮

C

E · rdr =

∫∫

σ

curl E · n dS, it follows that

∫∫

σ

curl E · ndS = −
∫∫

σ

∂B

∂t
· ndS. This relationship holds

for any surface σ, hence curl E = −∂B
∂t

.

23. Parametrize C by x = cos t, y = sin t, 0 ≤ t ≤ 2π. But F = x2yi + (y3 − x)j + (2x − 1)k along C so

∮

C

F · dr =

−5π/4. Since curl F = (−2z − 2)j + (−1 − x2)k,

∫∫

σ

(curl F) · n dS =

∫∫

R

(curl F) · (2xi + 2yj + k) dA =

∫ 1

−1

∫ √1−x2

−
√

1−x2

[2y(2x2 + 2y2 − 4)− 1− x2] dy dx = −5π/4.
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2. (b) c
r− r0

‖r− r0‖3
. (c) c

(x− x0)i + (y − y0)j + (z − z0)k√
(x− x0)2 + (y − y0)2 + (z − z0)2

3. v = (1− x)i+ (2− y)j, ‖v‖ =
√

(1− x)2 + (2− y)2,u =
1

‖v‖v =
1− x√

(1− x)2 + (2− y)2
i+

2− y√
(1− x)2 + (2− y)2

j.

4.
−2y

(x− y)2
i +

2x

(x− y)2
j.

5. i + j + k.

6. div F =
y2 − x2

(x2 + y2)2
+

x2 − y2

(x2 + y2)2
+

1

(x2 + y2)
=

1

x2 + y2
, the level surface of div F = 1 is the cylinder about the

z-axis of radius 1.

7. (a)

∫ b

a

[
f(x(t), y(t))

dx

dt
+ g(x(t), y(t))

dy

dt

]
dt. (b)

∫ b

a

f(x(t), y(t))
√
x′(t)2 + y′(t)2 dt.

8. (a) M =

∫

C

δ(x, y, z) ds. (b) L =

∫

C

ds.

11. s = θ, x = cos θ, y = sin θ,

∫ 2π

0

(cos θ − sin θ) dθ = 0, also follows from odd function rule.
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12.

∫ 2π

0

[cos t(− sin t) + t cos t− 2 sin2 t] dt = 0 + 0− 2π = −2π.

13.

∫ 2

1

(
t

2t
− 2

2t

t

)
dt =

∫ 2

1

(
−7

2

)
dt = −7

2
.

14. r(t) = ti + t2j,W =

∫

C

F · r =

∫ 1

0

[(t2)2 + t(t2)(2t)] dt =
3

5
.

16. By the Fundamental Theorem of Line Integrals,

∫

C

∇f · dr = f(1, 2,−1)− f(0, 0, 0) = −4.

17. (a) If h(x)F is conservative, then
∂

∂y
(yh(x)) =

∂

∂x
(−2xh(x)), or h(x) = −2h(x)− 2xh′(x) which has the general

solution x3h(x)2 = C1, h(x) = Cx−3/2, so C
y

x3/2
i−C 2

x1/2
j is conservative, with potential function φ = −2Cy/

√
x.

(b) If g(y)F(x, y) is conservative then
∂

∂y
(yg(y)) =

∂

∂x
(−2xg(y)), or g(y)+yg′(y) = −2g(y), with general solution

g(y) = C/y3, so F = C
1

y2
i− C 2x

y3
j is conservative, with potential function Cx/y2.

18. (a) fy − gx = exy + xyexy − exy − xyexy = 0 so the vector field is conservative.

(b) φx = yexy − 1, φ = exy − x+ k(x), φy = xexy, let k(x) = 0;φ(x, y) = exy − x.

(c) W =

∫

C

F · dr = φ(x(8π), y(8π))− φ(x(0), y(0)) = φ(8π, 0)− φ(0, 0) = −8π.

21. Let O be the origin, P the point with polar coordinates θ = α, r = f(α), and Q the point with polar coordinates

θ = β, r = f(β). Let C1 : O to P ; x = t cosα, y = t sinα, 0 ≤ t ≤ f(α),−y dx
dt

+ x
dy

dt
= 0; C2 : P to Q;

x = f(t) cos t, y = f(t) sin t, α ≤ θ ≤ β,−y dx
dt

+ x
dy

dt
= f(t)2; C3 : Q to O; x = −t cosβ, y = −t sinβ, −f(β) ≤

t ≤ 0,−y dx
dt

+ x
dy

dt
= 0. A =

1

2

∮

C

−y dx+ x dy =
1

2

∫ β

α

f(t)2 dt; set t = θ and r = f(θ) = f(t), A =
1

2

∫ β

α

r2 dθ.

22. (a)

∫

C

f(x) dx+ g(y) dy =

∫∫

R

(
∂

∂x
g(y)− ∂

∂y
f(x)

)
dA = 0.

(b) W =

∫

C

F · dr =

∫

C

f(x) dx + g(y) dy = 0, so the work done by the vector field around any simple closed

curve is zero. The field is conservative.

23.

∫∫

σ

f(x, y, z)dS =

∫∫

R

f(x(u, v), y(u, v), z(u, v))‖ru × rv‖ du dv.

24. Cylindrical coordinates r(θ, z) = cos θi+sin θj+zk, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1, rθ = − sin θi+cos θj, rz = k, ‖rθ×rz‖ =

‖rθ‖‖rz‖ sin(π/2) = 1; by Theorem 15.5.1,

∫∫

σ

z dS =

∫ 2π

0

∫ 1

0

z dz dθ = π.

25. Yes; by imagining a normal vector sliding around the surface it is evident that the surface has two sides.
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27. r = xi + yj + (1 − x2 − y2)k, rx × ry = 2xi + 2yj + k, F = xi + yi + 2zk, Φ =

∫∫

R

F · (rx × ry) dA =

∫∫

R

(2x2 + 2y2 + 2(1− x2 − y2)) dA = 2A = 2π.

28. r = sinφ cos θi+sinφ sin θj+cosφk,
∂r

∂φ
×∂r
∂θ

= sin2 φ cos θi+sin2 φ sin θj+sinφ cosφk,Φ =

∫∫

σ

F·
(
∂r

∂φ
× ∂r

∂θ

)
dA =

∫ 2π

0

∫ π

0

(sin3 φ cos2 θ+ 2 sin3 φ sin2 θ+ 3 sinφ cos2 φ) dφ dθ = 8π. We can also obtain this result by the Divergence

Theorem, simply by multiplying 6 (the constant divergence of the vector field) with 4π/3 (the volume of the unit
sphere).

30. Dnφ = n · ∇φ, so

∫∫

σ

DnφdS =

∫∫

σ

n · ∇φdS =

∫∫∫

G

∇ · (∇φ) dV =

∫∫∫

G

[
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

]
dV .

31. By Exercise 30,

∫∫

σ

Dnf dS = −
∫∫∫

G

[fxx + fyy + fzz] dV = −6

∫∫∫

G

dV = −6vol(G) = −8π.

32. C is defined by r(θ) = cos θi + sin θj + k, 0 ≤ θ ≤ 2π, r′(θ) = − sin θi + cos θj,T = − sin θi + cos θj. By Stokes’

Theorem

∫∫

σ

(curlF) · n dS =

∫

C

F ·T ds =

∫ 2π

0

− sin θ(1− sin θ) + cos θ(cos θ + 1) dθ = 2π.

33. A computation of curl F shows that curl F = 0 if and only if the three given equations hold. Moreover the
equations hold if F is conservative, so it remains to show that F is conservative if curl F = 0. Let C by any simple
closed curve in the region. Since the region is simply connected, there is a piecewise smooth, oriented surface σ in

the region with boundary C. By Stokes’ Theorem,

∮

C

F · dr =

∫∫

σ

(curl F) · n dS =

∫∫

σ

0 dS = 0. By the 3-space

analog of Theorem 15.3.2, F is conservative.

34. (a) Conservative, φ(x, y, z) = xz2 − e−y. (b) Not conservative, fy 6= gx.

35. (a) Conservative, φ(x, y, z) = − cosx+ yz. (b) Not conservative, fz 6= hx.

36. (a) F(x, y, z) =
qQ(xi + yj + zk)

4πε0(x2 + y2 + z2)3/2
.

(b) F = ∇φ, where φ = − qQ

4πε0(x2 + y2 + z2)1/2
, so W = φ(3, 1, 5)− φ(3, 0, 0) =

qQ

4πε0

(
1

3
− 1√

35

)
.
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1. Using Newton’s Second Law of Motion followed by Theorem 12.6.2 we have Work =

∫

C

F ·T ds =

∫

C

ma ·T ds =

m

∫

C

[
d2s

dt2
T + κ

(
ds

dt

)2

N

]
·T ds. But N ·T = 0 and v =

ds

dt
so

∫

C

F ·T ds = m

∫

C

d2s

dt2
ds = m

∫

C

(
dv

dt

)
ds =

m

∫ b

a

v(t)

(
dv

dt

)
dt = m

∫ b

a

d

dt

(
1

2
(v(t))2

)
dt =

1

2
m[v(b)]2 − 1

2
m[v(a)]2, which is the change in kinetic energy of

the particle.

2. Work performed with a ’constrained’ motion and under the influence of F is equal to

∫

C

(F+S) · dr =

∫

C

F · dr =
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∫

C

F ·Tds, because

∫

C

S · dr = 0 by normality of S and C. Now proceed as in Exercise 1.

3.

∫

C

F ·dr =

∫ t1

t0

∇φ(x, y, z) · 〈x′(t), y′(t), z′(t)〉 dt = φ(x(t1), y(t1), z(t1))−φ(x(t0), y(t0), z(t0)), which is the change

in potential energy of the particle, or the negative of the kinetic energy of the particle. Note that we have used

Theorem 15.3.3. For constrained motions the following calculations apply: work =

∫

C

(F+S) · dr =

∫

C

F · dr and

continue as before.

4. The equation of motion can be expressed with r(t) = x(t)i+ y(t)j, with x′′(t) = 0, y′′(t) = −g. Integrating, we get
(recall child starts at rest, so (x(0), y(0)) = (x0, y0), (x′(0), y′(0)) = (0, 0)), r′(t) = −gtj, r(t) = x0i+ (y0− gt2/2)j.
So the motion ends when y0 = gt2/2, t =

√
2y0/g. Finally, from the picture y0 = ` sin θ, so t =

√
2` sin θ/g, v =

gt =
√

2g` sin θ.
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3. (a) Only two points of the graph, (−1, 13) and (1, 13), are in the window.
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(d) This graph uses the window [−4, 4]× [−4, 28].
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4. (a) Only two points of the graph, (−1,−13) and (1,−13), are in the window.
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(d) This graph uses the window [−4, 4]× [−28, 4].
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8] and the range is [0, 4]. The graph below uses the window [−3, 3]× [−1, 5].

!3 3

!1

5

x

y

6. The domain is [−3, 1] and the range is [0, 2]. The graph below uses the window [−3.5, 1.5]× [−.5, 2.5].

!3 1

2

x

y

7.

−6 15

−60

20

x

y

8.

!18 30

!4

6

x

y

9.

0.2−0.2

−2

2

x

y

10.

−900 900

12

−12

x

y

11.

−400 1200

−1500000

1000000

x

y

12.

−5 20

−1000

2500

x

y
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13.

!5 5

!10

10

x

y

14. 20

15

18/11

x

y

15.

!3 3

!7

7

x

y

16.

!5 5

!7

7

x

y

17. (a) f(x) =
√

16− x2

−5 5

−5

5

x

y

(b) f(x) = −
√

16− x2

−5 5

−5

5

x

y

(c)

−5 5

−5

5

x

y

(d)

−5 5

−5

5

x

y

(e) No; it fails the vertical line test.

18. (a) y = ±3

2

√
4− x2

!3 3

!4

4

x

y

(b) y = ±
√
x2 + 1

!3 3

!3

3

x

y

19. (a)
−3 3

3

x

y

(b)
−2 4

3

x

y

(c)

−3 3

−1

2

x

y
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(d)

1

!2" 2"
x

y

(e)

1

−3π 3π

x

y

(f)

!3 2

!1

1

x

y

20.

!3 3

1

!1

x

y

21.

!1 3

!2

4

x

y

22. It is difficult to show all parts of the function in one window, so 3 different views are shown below:

!2 5

!10

1 x
y

!5 25

!200

100

x

y

!300 700

!300000

500000

x

y

23. (a) The two graphs should be identical:

!32 32

4 x
y

(b) The two graphs should be identical:

!8 8
!1

1 x
y

(c) !32 1 32

16

x

y

(d)
!1 4

3

x

y

24. The graph is shown below. If your calculator leaves out the middle part of the graph of y = (x2 − 4)2/3, it
is because it is rounding off the exponent 2/3 to some value with an even denominator. Suppose, for example,
that a calculator rounds 2/3 to 0.66667 = 66667/100000. For x between −2 and 2, x2 − 4 is negative, and so
y = (x2 − 4)66667/100000 is not defined.
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!5 !2 2 5

8

x

y

25. (a) Positive values of c make the parabola open upward; negative values make it open downward. Large values
(positive or negative) make it pointier.

!4 4

!4

4

x

y

c = 1

c = 0.5

c = 0

c = !0.1

c = !3

(b) The parabola keeps the same shape, but its vertex is moved to (−c/2,−c2/4).

!4 4

!3

5

x

y

c = 3

c = 2 c = !2

c = !3

c = 1
c = 0

c = !1

(c) The parabola keeps the same shape, but is translated vertically.

!3 2

!2

5

x

y

c = 2

c = 0

c = !1

26. (a) y =
√
x(x− 1)(x− 2) or y = −

√
x(x− 1)(x− 2). The graph is the first one shown in part (b).

(b) Whenever 0 < a < b, the graph consists of a finite loop with 0 ≤ x ≤ a and an infinite part with x ≥ b. If
we multiply both a and b by a positive number s, then the new graph is obtained from the original by expanding
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it horizontally by a factor of s and vertically by a factor of s3/2. To see this, let f(x) = ±
√
x(x− a)(x− b) and

g(x) = ±
√
x(x− as)(x− bs); then g(x) = ±

√
s3
x

s
(
x

s
− a) (

x

s
− b) = s3/2 f

(x
s

)
. (For example, compare the

graphs below for a = 1, b = 2 and for a = 4, b = 8.) So the shape of the graph is mainly determined by the ratio
b/a. When b/a is large, the loop is almost symmetrical across the line x = a/2, and is approximately an ellipse.
When b/a is slightly larger than 1, the loop is not symmetric across a vertical line, and has almost a corner at
x = a, where it almost touches the infinite piece of the graph.

a = 1, b = 2:

4

!5

5

x

y

a = 4, b = 8:

16

!40

40

x

y

a = 1, b = 5:

10

!10

10

x

y

a = 1, b = 1.1:

2

!2

2

x

y

27.

5!

5!

"5!

"5!
x

y

y = xy = "x

28.

!5 5

!1

1

x

y

!1 1

!1

1

x

y

!0.1 0.1

!1

1

x

y

29. (a)

4

!3

1

x

y

(b)

!1
1

!2"

2"

x

y
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30. (a)

5

!2

2

x

y

(b)

!8 8

!"/2

"/2

x

y

31.

!3 8

!3

8

x

y

f

f !1

32.

!5 11

!5

11

x

y

f

f !1

33.
3

3

x

y

f

f !1

34. 6

6

x

y

f

f !1

35. (a) One possible answer is x = 4 cos t, y = 3 sin t.

(b) One possible answer is x = −1 + 4 cos t, y = 2 + 3 sin t.

(c)

!4 4

!3

3

x

y

(a)

!5 3
!1

5

x

y

(b)

(!1, 2)



Trigonometry Review

Exercise Set B

1. (a) 5π/12 (b) 13π/6 (c) π/9 (d) 23π/30

2. (a) 7π/3 (b) π/12 (c) 5π/4 (d) 11π/12

3. (a) 12◦ (b) (270/π)◦ (c) 288◦ (d) 540◦

4. (a) 18◦ (b) (360/π)◦ (c) 72◦ (d) 210◦

5. sin θ cos θ tan θ csc θ sec θ cot θ

(a)
√

21/5 2/5
√

21/2 5/
√

21 5/2 2/
√

21

(b) 3/4
√

7/4 3/
√

7 4/3 4/
√

7
√

7/3

(c) 3/
√

10 1/
√

10 3
√

10/3
√

10 1/3

6. sin θ cos θ tan θ csc θ sec θ cot θ

(a) 1/
√

2 1/
√

2 1
√

2
√

2 1

(b) 3/5 4/5 3/4 5/3 5/4 4/3

(c) 1/4
√

15/4 1/
√

15 4 4/
√

15
√

15

7. sin θ = 3/
√

10, cos θ = 1/
√

10. 8. sin θ =
√

5/3, tan θ =
√

5/2.

9. tan θ =
√

21/2, csc θ = 5/
√

21. 10. cot θ =
√

15, sec θ = 4/
√

15.

11. Let x be the length of the side adjacent to θ, then cos θ = x/6 = 0.3, x = 1.8.

12. Let x be the length of the hypotenuse, then sin θ = 2.4/x = 0.8, x = 2.4/0.8 = 3.

13. θ sin θ cos θ tan θ csc θ sec θ cot θ

(a) 225◦ −1/
√

2 −1/
√

2 1 −
√

2 −
√

2 1

(b) −210◦ 1/2 −
√

3/2 −1/
√

3 2 −2/
√

3 −
√

3

(c) 5π/3 −
√

3/2 1/2 −
√

3 −2/
√

3 2 −1/
√

3

(d) −3π/2 1 0 — 1 — 0

753
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14. θ sin θ cos θ tan θ csc θ sec θ cot θ

(a) 330◦ −1/2
√

3/2 −1/
√

3 −2 2/
√

3 −
√

3

(b) −120◦ −
√

3/2 −1/2
√

3 −2/
√

3 −2 1/
√

3

(c) 9π/4 1/
√

2 1/
√

2 1
√

2
√

2 1

(d) −3π 0 −1 0 — −1 —

15. sin θ cos θ tan θ csc θ sec θ cot θ

(a) 4/5 3/5 4/3 5/4 5/3 3/4

(b) −4/5 3/5 −4/3 −5/4 5/3 −3/4

(c) 1/2 −
√

3/2 −1/
√

3 2 −2
√

3 −
√

3

(d) −1/2
√

3/2 −1/
√

3 −2 2/
√

3 −
√

3

(e) 1/
√

2 1/
√

2 1
√

2
√

2 1

(f) 1/
√

2 −1/
√

2 −1
√

2 −
√

2 −1

16. sin θ cos θ tan θ csc θ sec θ cot θ

(a) 1/4
√

15/4 1/
√

15 4 4/
√

15
√

15

(b) 1/4 −
√

15/4 −1/
√

15 4 −4/
√

15 −
√

15

(c) 3/
√

10 1/
√

10 3
√

10/3
√

10 1/3

(d) −3/
√

10 −1/
√

10 3 −
√

10/3 −
√

10 1/3

(e)
√

21/5 −2/5 −
√

21/2 5/
√

21 −5/2 −2/
√

21

(f) −
√

21/5 −2/5
√

21/2 −5/
√

21 −5/2 2/
√

21

17. (a) x = 3 sin 25◦ ≈ 1.2679. (b) x = 3/ tan(2π/9) ≈ 3.5753.

18. (a) x = 2/ sin 20◦ ≈ 5.8476. (b) x = 3/ cos(3π/11) ≈ 4.5811.

19. sin θ cos θ tan θ csc θ sec θ cot θ

(a) a/3
√

9− a2/3 a/
√

9− a2 3/a 3/
√

9− a2
√

9− a2/a

(b) a/
√
a2 + 25 5/

√
a2 + 25 a/5

√
a2 + 25/a

√
a2 + 25/5 5/a

(c)
√
a2 − 1/a 1/a

√
a2 − 1 a/

√
a2 − 1 a 1/

√
a2 − 1

20. (a) θ = 3π/4± 2nπ and θ = 5π/4± 2nπ, n = 0, 1, 2, . . .

(b) θ = 5π/4± 2nπ and θ = 7π/4± 2nπ, n = 0, 1, 2, . . .

21. (a) θ = 3π/4± nπ, n = 0, 1, 2, . . .

(b) θ = π/3± 2nπ and θ = 5π/3± 2nπ, n = 0, 1, 2, . . .

22. (a) θ = 7π/6± 2nπ and θ = 11π/6± 2nπ, n = 0, 1, 2, . . .

(b) θ = π/3± nπ, n = 0, 1, 2, . . .

23. (a) θ = π/6± nπ, n = 0, 1, 2, . . .
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(b) θ = 4π/3± 2nπ and θ = 5π/3± 2nπ, n = 0, 1, 2, . . .

24. (a) θ = 3π/2± 2nπ, n = 0, 1, 2, . . .

(b) θ = π ± 2nπ, n = 0, 1, 2, . . .

25. (a) θ = 3π/4± nπ, n = 0, 1, 2, . . .

(b) θ = π/6± nπ, n = 0, 1, 2, . . .

26. (a) θ = 2π/3± 2nπ and θ = 4π/3± 2nπ, n = 0, 1, 2, . . .

(b) θ = 7π/6± 2nπ and θ = 11π/6± 2nπ, n = 0, 1, 2, . . .

27. (a) θ = π/3± 2nπ and θ = 2π/3± 2nπ, n = 0, 1, 2, . . .

(b) θ = π/6± 2nπ and θ = 11π/6± 2nπ, n = 0, 1, 2, . . .

28. sin θ = −3/5, cos θ = −4/5, tan θ = 3/4, csc θ = −5/3, sec θ = −5/4, cot θ = 4/3.

29. sin θ = 2/5, cos θ = −
√

21/5, tan θ = −2/
√

21, csc θ = 5/2, sec θ = −5/
√

21, cot θ = −
√

21/2.

30. (a) θ = π/2± 2nπ, n = 0, 1, 2, . . . (b) θ = ±2nπ, n = 0, 1, 2, . . . (c) θ = π/4± nπ, n = 0, 1, 2, . . .

(d) θ = π/2± 2nπ, n = 0, 1, 2, . . . (e) θ = ±2nπ, n = 0, 1, 2, . . . (f) θ = π/4± nπ, n = 0, 1, 2, . . .

31. (a) θ = ±nπ, n = 0, 1, 2, . . . (b) θ = π/2± nπ, n = 0, 1, 2, . . . (c) θ = ±nπ, n = 0, 1, 2, . . .

(d) θ = ±nπ, n = 0, 1, 2, . . . (e) θ = π/2± nπ, n = 0, 1, 2, . . . (f) θ = ±nπ, n = 0, 1, 2, . . .

32. Construct a right triangle with one angle equal to 17◦, measure the lengths of the sides and hypotenuse and use
formula (6) for sin θ and cos θ to approximate sin 17◦ and cos 17◦.

33. (a) s = rθ = 4(π/6) = 2π/3 cm. (b) s = rθ = 4(5π/6) = 10π/3 cm.

34. r = s/θ = 7/(π/3) = 21/π. 35. θ = s/r = 2/5.

36. θ = s/r so A =
1

2
r2θ =

1

2
r2(s/r) =

1

2
rs.

37. (a) 2πr = R(2π − θ), r =
2π − θ

2π
R.

(b) h =
√
R2 − r2 =

√
R2 − (2π − θ)2R2/(4π2) =

√
4πθ − θ2

2π
R.

38. The circumference of the circular base is 2πr. When cut and flattened, the cone becomes a circular sector of radius
L. If θ is the central angle that subtends the arc of length 2πr, then θ = (2πr)/L so the area S of the sector is
S = (1/2)L2(2πr/L) = πrL which is the lateral surface area of the cone.

39. Let h be the altitude as shown in the figure, then h = 3 sin 60◦ = 3
√

3/2 so A =
1

2
(3
√

3/2)(7) = 21
√

3/4.

7

h3

60°
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40. Draw the perpendicular from vertex C as shown in the figure, then h = 9 sin 30◦ = 9/2, a = h/ sin 45◦ = 9
√

2/2,

c1 = 9 cos 30◦ = 9
√

3/2, c2 = a cos 45◦ = 9/2, c1 + c2 = 9(
√

3 + 1)/2, angle C = 180◦ − (30◦ + 45◦) = 105◦.

A B

C

9 ah

c1 c2

30° 45°

41. Let x be the distance above the ground, then x = 10 sin 67◦ ≈ 9.2 ft.

42. Let x be the height of the building, then x = 120 tan 76◦ ≈ 481 ft.

43. From the figure, h = x− y but x = d tanβ, y = d tanα so h = d(tanβ − tanα).

d

y

h

x

!
"

44. From the figure, d = x− y but x = h cotα, y = h cotβ so d = h(cotα− cotβ), h =
d

cotα− cotβ
.

h

yd
xx

! "

45. (a) sin 2θ = 2 sin θ cos θ = 2(
√

5/3)(2/3) = 4
√

5/9.

(b) cos 2θ = 2 cos2 θ − 1 = 2(2/3)2 − 1 = −1/9.

46. (a) sin(α− β) = sinα cosβ − cosα sinβ = (3/5)(1/
√

5)− (4/5)(2/
√

5) = −1/
√

5.

(b) cos(α+ β) = cosα cosβ − sinα sinβ = (4/5)(1/
√

5)− (3/5)(2/
√

5) = −2/(5
√

5).

47. sin 3θ = sin(2θ + θ) = sin 2θ cos θ + cos 2θ sin θ = (2 sin θ cos θ) cos θ + (cos2 θ − sin2 θ) sin θ = 2 sin θ cos2 θ +
sin θ cos2 θ − sin3 θ = 3 sin θ cos2 θ − sin3 θ; similarly, cos 3θ = cos3 θ − 3 sin2 θ cos θ.

48.
cos θ sec θ

1 + tan2 θ
=

cos θ sec θ

sec2 θ
=

cos θ

sec θ
=

cos θ

(1/ cos θ)
= cos2 θ.

49.
cos θ tan θ + sin θ

tan θ
=

cos θ(sin θ/ cos θ) + sin θ

sin θ/ cos θ
= 2 cos θ.

50. 2 csc 2θ =
2

sin 2θ
=

2

2 sin θ cos θ
=

(
1

sin θ

)(
1

cos θ

)
= csc θ sec θ.

51. tan θ + cot θ =
sin θ

cos θ
+

cos θ

sin θ
=

sin2 θ + cos2 θ

sin θ cos θ
=

1

sin θ cos θ
=

2

2 sin θ cos θ
=

2

sin 2θ
= 2 csc 2θ.
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52.
sin 2θ

sin θ
− cos 2θ

cos θ
=

sin 2θ cos θ − cos 2θ sin θ

sin θ cos θ
=

sin θ

sin θ cos θ
= sec θ.

53.
sin θ + cos 2θ − 1

cos θ − sin 2θ
=

sin θ + (1− 2 sin2 θ)− 1

cos θ − 2 sin θ cos θ
=

sin θ(1− 2 sin θ)

cos θ(1− 2 sin θ)
= tan θ.

54. Using (47), 2 sin 2θ cos θ = 2(1/2)(sin θ + sin 3θ) = sin θ + sin 3θ.

55. Using (47), 2 cos 2θ sin θ = 2(1/2)[sin(−θ) + sin 3θ] = sin 3θ − sin θ.

56. tan(θ/2) =
sin(θ/2)

cos(θ/2)
=

2 sin2(θ/2)

2 sin(θ/2) cos(θ/2)
=

1− cos θ

sin θ
.

57. tan(θ/2) =
sin(θ/2)

cos(θ/2)
=

2 sin(θ/2) cos(θ/2)

2 cos2(θ/2)
=

sin θ

1 + cos θ
.

58. From (52), cos(π/3 + θ) + cos(π/3− θ) = 2 cos(π/3) cos θ = 2(1/2) cos θ = cos θ.

59. From the figures, area =
1

2
hc but h = b sinA, so area =

1

2
bc sinA. The formulas area =

1

2
ac sinB and area

=
1

2
ab sinC follow by drawing altitudes from vertices B and C, respectively.

A B

C

ab

c

h

60. From right triangles ADC and BDC, h1 = b sinA = a sinB so a/ sinA = b/ sinB. From right triangles AEB and
CEB, h2 = c sinA = a sinC so a/ sinA = c/ sinC, thus a/ sinA = b/ sinB = c/ sinC.

A B

C

D

E

ab

c

h1

h2

61. (a) sin(π/2 + θ) = sin(π/2) cos θ + cos(π/2) sin θ = (1) cos θ + (0) sin θ = cos θ.

(b) cos(π/2 + θ) = cos(π/2) cos θ − sin(π/2) sin θ = (0) cos θ − (1) sin θ = − sin θ.

(c) sin(3π/2− θ) = sin(3π/2) cos θ − cos(3π/2) sin θ = (−1) cos θ − (0) sin θ = − cos θ.

(d) cos(3π/2 + θ) = cos(3π/2) cos θ − sin(3π/2) sin θ = (0) cos θ − (−1) sin θ = sin θ.

62. tan(α + β) =
sin(α+ β)

cos(α+ β)
=

sinα cosβ + cosα sinβ

cosα cosβ − sinα sinβ
, divide numerator and denominator by cosα cosβ and use

tanα =
sinα

cosα
and tanβ =

sinβ

cosβ
to get (38); tan(α− β) = tan(α+ (−β)) =

tanα+ tan(−β)

1− tanα tan(−β)
=

tanα− tanβ

1 + tanα tanβ
because tan(−β) = − tanβ.
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63. (a) Add (34) and (36) to get sin(α−β) + sin(α+β) = 2 sinα cosβ, so sinα cosβ = (1/2)[sin(α−β) + sin(α+β)].

(b) Subtract (35) from (37). (c) Add (35) and (37).

64. (a) From (47), sin
A+B

2
cos

A−B
2

=
1

2
(sinB + sinA), so sinA+ sinB = 2 sin

A+B

2
cos

A−B
2

.

(b) Use (49). (c) Use (48).

65. sinα+ sin(−β) = 2 sin
α− β

2
cos

α+ β

2
, but sin(−β) = − sinβ, so sinα − sinβ = 2 cos

α+ β

2
sin

α− β
2

.

66. (a) From (34), C sin(α+ φ) = C sinα cosφ+ C cosα sinφ so C cosφ = 3 and C sinφ = 5, square and add to get
C2(cos2 φ+sin2 φ) = 9+25, C2 = 34. If C =

√
34 then cosφ = 3/

√
34 and sinφ = 5/

√
34 so φ is the first-quadrant

angle for which tanφ = 5/3. 3 sinα+ 5 cosα =
√

34 sin(α+ φ).

(b) Follow the procedure of part (a) to get C cosφ = A and C sinφ = B, C =
√
A2 +B2, tanφ = B/A where

the quadrant in which φ lies is determined by the signs of A and B because cosφ = A/C and sinφ = B/C, so
A sinα+B cosα =

√
A2 +B2 sin(α+ φ).

67. Consider the triangle having a, b, and d as sides. The angle formed by sides a and b is π − θ so from the law of
cosines, d2 = a2 + b2 − 2ab cos(π − θ) = a2 + b2 + 2ab cos θ, d =

√
a2 + b2 + 2ab cos θ.

68. (a) Angle of inclination = tan−1(1/2) ≈ 27◦.

(b) tan−1(−1) = −45◦ so angle of inclination = 180◦ − 45◦ = 135◦.

(c) Angle of inclination = tan−1 2 ≈ 63◦.

(d) tan−1(−57) ≈ −89◦ so angle of inclination ≈ 180◦ − 89◦ = 91◦.

69. (a) tan−1(−1/2) ≈ −27◦ so angle of inclination ≈ 180◦ − 27◦ = 153◦.

(b) Angle of inclination = tan−1 1 = 45◦.

(c) tan−1(−2) ≈ −63◦ so angle of inclination ≈ 180◦ − 63◦ = 117◦.

(d) Angle of inclination = tan−1 57 ≈ 89◦.

70. (a) y = −
√

3

3
x+

2

3
. tan−1

(
−
√

3

3

)
= −30◦, so angle of inclination = 180◦ − 30◦ = 150◦.

(b) y = 4x− 7. Angle of inclination = tan−1 4 ≈ 76◦.

71. (a) Angle of inclination = tan−1
√

3 = 60◦.

(b) y = −2x− 5. tan−1(−2) ≈ −63◦ so angle of inclination ≈ 180◦ − 63◦ = 117◦.



Solving Polynomial Equations

Exercise Set C

1. (a) q(x) = x2 + 4x+ 2, r(x) = −11x+ 6.

(b) q(x) = 2x2 + 4, r(x) = 9.

(c) q(x) = x3 − x2 + 2x− 2, r(x) = 2x+ 1.

2. (a) q(x) = 2x2 − x+ 2, r(x) = 5x+ 5.

(b) q(x) = x3 + 3x2 − x+ 2, r(x) = 3x− 1.

(c) q(x) = 5x3 − 5, r(x) = 4x2 + 10.

3. (a) q(x) = 3x2 + 6x+ 8, r(x) = 15.

(b) q(x) = x3 − 5x2 + 20x− 100, r(x) = 504.

(c) q(x) = x4 + x3 + x2 + x+ 1, r(x) = 0.

4. (a) q(x) = 2x2 + x− 1, r(x) = 0.

(b) q(x) = 2x3 − 5x2 + 3x− 39, r(x) = 147.

(c) q(x) = x6 + x5 + x4 + x3 + x2 + x+ 1, r(x) = 2.

5.
x 0 1 −3 7

p(x) −4 −3 101 5001

6.
x 1 −1 3 −3 7 −7 21 −21

p(x) −24 −12 12 0 420 −168 10416 −7812

7. (a) q(x) = x2 + 6x+ 13, r = 20. (b) q(x) = x2 + 3x− 2, r = −4.

8. (a) q(x) = x4 − x3 + x2 − x+ 1, r = −2. (b) q(x) = x4 + x3 + x2 + x+ 1, r = 0.

9. Assume r = a/b where a and b are integers with a > 0:

(a) b divides 1, b = ±1; a divides 24, a = 1, 2, 3, 4, 6, 8, 12, 24;

the possible candidates are {±1,±2,±3,±4,±6,±8,±12,±24}.

(b) b divides 3 so b = ±1,±3; a divides −10 so a = 1, 2, 5, 10;
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the possible candidates are {±1,±2,±5,±10,±1/3,±2/3,±5/3,±10/3}.

(c) b divides 1 so b = ±1; a divides 17 so a = 1, 17;

the possible candidates are {±1,±17}.

10. An integer zero c divides −21, so c = ±1,±3,±7,±21 are the only possibilities; substitution of these candidates
shows that the integer zeros are −7,−1, 3.

11. (x+ 1)(x− 1)(x− 2) 12. (x+ 2)(3x+ 1)(x− 2) 13. (x+ 3)3(x+ 1)

14. (x− 1)(2x+ 3)(x2 + 3) 15. (x+ 3)(x+ 2)(x+ 1)2(x− 3) 17. −3 is the only real root.

18. x = −3/2, 2±
√

3 are the real roots. 19. x = −2,−2/3,−1±
√

3 are the real roots. 20. −2,−1, 1/2, 3.

21. −2, 2, 3 are the only real roots.

23. If x− 1 is a factor then p(1) = 0, so k2 − 7k + 10 = 0, k2 − 7k + 10 = (k − 2)(k − 5), so k = 2, 5.

24. (−3)7 = −2187, so −3 is a root and thus by Theorem C.4, x+ 3 is a factor of x7 + 2187.

25. If the side of the cube is x then x2(x− 3) = 196; the only real root of this equation is x = 7 cm.

26. (a) If x− x3 = 1 then x3 − x+ 1 = 0. The only candidates for a rational root are 1 and −1, neither of which is a
root.

(b) Let f(x) = x3 − x+ 1. Since f(−2) = −5 < 0 and f(−1) = 1 > 0, there is a real root x between −2 and −1.
(In fact, x ≈ −1.3247.)

27. Use the Factor Theorem with x as the variable and y as the constant c.

(a) For any positive integer n the polynomial xn − yn has x = y as a root.

(b) For any positive even integer n the polynomial xn − yn has x = −y as a root.

(c) For any positive odd integer n the polynomial xn + yn has x = −y as a root.
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